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What is a Time-Sensitive Network (TSN)?

Copyright © TTTech Computertechnik AG. All rights reserved.

Time Sensitive Networking covers a set of Ethernet sub-standards and amendments 
currently defined in the IEEE 802.1 TSN task group 

• Critical traffic guarantees through time 
synchronization and scheduled frame 
transmission

• TSN supports the coexistence of critical 
and non-critical traffic over the same 
communication backbone. 



TSN (Qbv) switch
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Offline scheduling

The TSN (Qbv) schedule defines open and close events for the Gate Control List (GCL) in 
each output port of every TSN device in the network
The schedule is build off-line taking into account the maximum possible clock deviation 
(precision) when all clocks are synchronized.
The schedule enforces a deterministic behaviour of frame transmission and reception.

TSN schedule
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Clock drift
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• Each clock Ci has a drift rate 𝜌i
• The maximum clock drift in the network is

𝜌max = maxi {𝜌i}
• Typical values of 𝜌max are 50 - 100ppm, i.e., 

between 50 and 100 μs/sec
• All clocks need to be synchronized with a 

certain rate - synchronization interval (l)
• The envelope, l, and 𝜌max determine the value 

of the network precision 𝛿
• The precision is a safe upper bound on the 

deviation between any two clocks in the 
network



Time synchronization in TSN
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• clock synchronization protocol that provides a common clock 
reference for all network devices called GrandMaster (GM)

• each clock is at most 𝛿 (precision) away from the GM time
• Best Master Clock Algorithm (BMCA) constructs the  

synchronization spanning tree with the GM as root node
• time is propagated from the root to the leaves
• each bridge corrects the received time by adding the 

propagation delay and residence time in the bridge and 
forwards the corrected time to the next nodes in the tree

• if the GM node fails, a new GM has to be elected, and the 
spanning tree has to be recreated via the BCMA

• is an update to 802.1AS
• introduces multiple domains:

• domains are fully 
independent
• separate BMCA

• introduces multiple time scales
• introduces redundancy: configure 

redundant paths and redundant 
GMs (hot standby)

IEEE 802.1AS IEEE 802.1AS-rev



Synchronized deterministic network
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Perfectly synchronized network
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Synchronized network
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Synchronization loss
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Out-of-sync interval
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Figure 3. Clock synchronization (inspired by [11, p.59]).

all clocks need to be synchronized with a certain rate, also
called the synchronization interval [11, p.59], as shown in
Fig. 3. Maintaining the synchronization requires a correction
that adjusts the value of the clocks in such a way that the
worst-case drift in relation to each other over the subsequent
synchronization interval will not cause the relative offset to
exceed the desired precision [11, p.60]. A precision of < 1µs
relative to the reference clock is possible for networks with
under 5 hops and 1 Gbit/s links [12]; however, this precision is
not achievable for nodes that are more than 30 hops away from
the reference clock node [13]. In order to provide the necessary
synchronization, the IEEE 802.1AS standard mandates that at
least one node is defined as a clock grandmaster (GM). The
GM constitutes the root node of the synchronization spanning
tree, which is constructed via the Best Master Clock Algorithm
(BMCA) [14]. For each clock domain, the BMCA constructs
one spanning tree consisting of the time-aware nodes in the
respective domain and paths from the GM to these nodes [12].
Once the tree is constructed, the GM sends its time value to the
connected neighboring nodes within the spanning tree for the
given synchronization domain. Each switch then corrects the
received time by adding the propagation delay and residence
time in the switch and forwards the corrected time to the next
nodes in the spanning tree [14]. We refer the reader to [12],
[13] for a detailed description of 802.1AS.

Within the same clock domain, all nodes use the same
GM. If the GM node fails, a new GM has to be elected, and
the spanning tree has to be recreated via the BCMA. In the
reelection phase, the first step of the process is detecting the
loss of a GM via a time-out value specified by the standard
(default is 3s [10]), which, in essence, implements a watchdog
timer checking for announce messages from the GM. In a
second step, the BMCA runs, and each node sends its clock
value until the spanning tree is recomputed.

The IEEE 802.1AS-rev [3] is a revision of 802.1AS within
the TSN context, introducing fault-tolerance for clock syn-
chronization. The upgraded protocol allows multiple clock
domains to be simultaneously active and overlapping, therefore
enabling multiple GMs to be active at the same time [15].
These GMs deliver their time values to independent clock
domains, and if the domains overlap, a hot standby GM mech-
anism is enabled. Hence, whenever a GM fails, the transition
to another GM is seamless. Additionally, the revision offers

improved accuracy of the time measurement [16]. However, at
the time of writing this paper, the P802.1ASdm (Hot Standby)
amendment is unfinished, and to the best of our knowledge,
the drafted 802.1AS-rev features are not yet supported in any
currently available TSN devices on the market.

III. FAULT AND NETWORK MODELS

We represent the TSN network as a finite, unweighted,
connected, undirected graph G = (V,E) consisting of the set
of time-aware nodes (vertices) V and the set of bi-directional,
full-duplex physical links (edges) E. If nodes are not time-
aware or are not part of the considered synchronization do-
main, they are not part of the set V , and their connected edges
(links) are not part of the set E.

When synchronization is lost, the clocks of individual
devices begin to drift apart, eventually exceeding the bounds
of the assumed precision. The synchronization loss will be
detected after the configured timeout time (see below), and the
BMCA will execute to recompute the spanning tree and select
a new GM. This re-computation takes a certain amount of
time and is proportional to the number of hops in the spanning
tree. After this, the new time will be propagated to the devices,
which will be synchronized again. In the case of a GM failure,
we assume an arbitrary runtime selection of the next GM out of
a defined set of eligible GM nodes and the resulting spanning
trees, each having the respective GM node as the root.

A subgraph Tv = (V,E0 ✓ E) is a rooted spanning tree
of G, denoted with Tv

r7! G, if it is a connected, acyclic
subgraph of G where all paths to leaf nodes originate in the
root node v. We denote the set of nodes that can take the role
of grandmaster with GM(V ). The longest path in terms of the
number of edges of a tree T is denoted by l(T ). The number
of hops for the longest path out of all the possible spanning
trees for a given network G is denoted with

NG =max({l(Tv) | v 2 GM(V ), Tv
r7! G}). (1)

We define the out-of-sync interval tresync as the time span
between the instant an out-of-sync occurs until the moment
when the affected clocks are again resynchronized. We assume
the following model for computing the out-of-sync interval of
a given network G:

tresync = �t + �hop ⇥NG, (2)

where �t is the timeout bound for out-of-sync detection, �hop
is an upper bound for the BMCA to run and propagate
information on each node, and NG is derived from Eq. 1.
Typically, a node waits for 3 announce cycles (each cycle being
by default 1s) until it assumes that sync has been lost. This
is defined in [10] as the announceReceiptTimeoutTimeInterval

which is announceReceiptTimeout ⇥ announceInterval, both
of which can be configured. The �hop duration is not defined
in the standard, but we extrapolate a safe upper bound of 1s
per hop, supported by our empirical observations and in-house
development know-how. However, please note that this value
needs to be configured as a safe upper-bound for the given
network and devices.

Can we compute an upper bound on the time until the network is resynchronized in 802.1AS-rev?

timeout bound for 
out-of-sync detection

number of hops for the 
longest path out of all the 
possible spanning trees

upper bound for the BMCA 
to run and propagate 

information on each node

configuration item in 802.1AS-rev:
announceReceiptTimeout × announceInterval

safe upper bound of 1sec per hop

safe upper bound as a function 
of the topology and 

the subset of eligible GM 
candidate nodes



Out-of-sync drift
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We cannot trust the timeliness of critical messages during
the out-of-sync interval until all nodes are re-synchronized.
However, we can compute the maximum deviation between
any two clocks at the end of the out-of-sync interval. We
introduce the out-of-sync drift, denoted by �s, to represent
the maximum drift between any two clocks at the end of
the out-of-sync interval. We bound the worst-case clock drift
rate ⇢max for all clocks which means that between any two
clocks, the drift is at most ⇢ = 2 ⇥ ⇢max [s/s] [17]. The
value for ⇢max depends on the quality of the individual
clock oscillators. Typical values of ⇢max are between 50 and
100ppm, meaning that the maximum deviation between any
two clocks is between 50 and 100µs per second. The out-of-

sync drift, �s [µs], is computed as

�s = 2⇥ ⇢max ⇥ tresync (3)

If, for e.g., we consider the worst-case configuration with
NG = 3, �t = 3s, �hop = 1s and ⇢max = 100ppm, the upper
bound on the deviation between any two clocks following a
GM failure at the point of re-synchronization is 1200µs.

IV. MECHANISMS FOR OUT-OF-SYNC MITIGATION

An approach to add robustness in cases of synchronization
loss is to mitigate non-deterministic behavior by introducing
an out-of-sync mode in case of sync loss. The out-of-sync
mode aims to contain the damage that arises from the arrival
of frames outside the expected time bounds, for example, by
triggering a priority regeneration within the affected devices
(e.g., via 802.1Qci [1]), causing a redirection of scheduled
frames to low-priority, non-scheduled queues. If a segment
of the network (e.g., being in a different time domain) is
not affected by the synchronization loss, we want to prevent
frames coming from the faulty devices (or time domain)
from interfering with the deterministic queue states of the
synchronized devices. Critical frames received by an out-of-
sync device will be re-assigned into a non-scheduled queue at
the next (potentially in-sync) node. Hence, subsequent nodes
will not have scheduled queues polluted by out-of-time frames.

Despite limiting the impact on the critical frames being
forwarded to synchronized devices, there may still be some
frames within an out-of-sync device that were enqueued before
the priority regeneration became effective or even ahead of the
sync-loss detection. Therefore, as soon as the respective timed-
gate opens, potentially at an incorrect time, the transmitted
frames may not correspond to the original schedule.

A possible strategy to prevent the propagation of these
types of incorrect frames is to use the Per-Stream Filtering
and Policing mechanism defined in IEEE 802.1Qci [1]. The
standard provides mechanisms to control the admission of
frames on ingress based on timing parameters driven by the
local clock. The mechanism allows rejecting frames if their
arrival time is not equal to the one specified in the local
schedule. Hence, nodes can filter frames from devices that
have experienced a synchronization loss and thus maintain
their queues in a deterministic state. A benefit of using time-
based policing is that it is independent of the detection of a

sync loss. If one device is out of sync on the critical stream
route, its frames will be dropped at the subsequent device since
they will inherit the wrong timing behavior. Therefore critical
frames will only be transmitted from sender to receiver(s) if
all forwarding devices are synchronized.

With the first method, a sync loss will still lead to critical
frames being received at the listener devices, albeit with the
wrong timeliness, while the filtering method will not let critical
frames arrive at the receiver.

V. SCHEDULE-BASED SYNC LOSS ROBUSTNESS

The main problem with the mitigation strategies presented
above is that until the synchronization loss is detected (e.g.,
up to 3s), the clocks’ drift can be significant and exceed
the precision specified at design-time. Hence, while we may
be able in some situations to prevent the impact of ill-
timed frames, the partial loss of synchronism will lead to
compromising a subset of the critical communication. We
propose a mitigation strategy consisting of enhancing the
synthesis of schedules to feature robustness during the re-
synchronization intervals, i.e., we create the schedules so that,
even when synchronization is lost, the state of the queues
will be deterministic until synchronization is restored. Through
this, we ensure that deterministic queue states are preserved
and that all critical frames reach their destinations within their
allowed end-to-end latency constraint.

Based on our previous work on scheduling TSN net-
works [4], we extend the scheduling constraints used to
synthesize GCL schedules.The schedule events (i.e., the frame
transmission and forwarding times) will be placed so that an
extended deviation from the nominal network precision is tol-
erated, which accounts for the worst-case drift in the network
over the re-synchronization interval. In this way, even when a
GM fails, the schedule will still be deterministic, and the real-
time properties of streams will still be fulfilled until a new
GM is elected and the synchronization is restored. The new
scheduling method entails a trade-off between a reduction of
the solution space in exchange for robust schedules tolerating
synchronization losses. In [4], we have presented the necessary
correctness constraints for generating valid TSN schedules and
formalized them based on a generic model of TSN networks.
We use a similar notation as in our previous work [4], [8]
but introduce certain simplifications without loss of generality,
e.g., the macrotick is the same for all devices, there is one
frame per stream, and the link propagation delay is 0. Please
note that the extensions presented in this paper can be readily
generalized for the more general model presented in [4], [6].

The TSN network, encoded as a graph G = (V,E),
comprises a set of time-aware nodes (vertices) V and a set
of bi-directional, full-duplex physical links (edges) E, where
a link from node va to node vb is expressed as (va, vb) 2 E.
We denote the set of critical streams with S where a stream
si 2 S is defined by the tuple hli, Ti, Dii, which contains the
frame size, the period, and the end-to-end deadline. The route
for a stream si is computed at design-time and formalized as
an ordered sequence of links, e.g., the communication route

Example: 
• NG =3, 𝛿t =3s, 𝛿hop =1s, and 𝜌max =100ppm
• the upper bound on the deviation between any two clocks following a GM failure at the 

point of re-synchronization is 1200μs

for a stream si is computed at design-time and formalized as
an ordered sequence of links, e.g., the communication route
from a sender v1 to a receiver vn is represented via the set
Ri = {(v1, v2), ..., (vn�1, vn)}. We formalize, similar to [4],
[8], the frame of a stream si on a link (va, vb) as f (va,vb)

i with
�(va,vb)
i and l(va,vb)i representing the transmission time from

node va through link (va, vb) and the duration of the frame on
the respective link, respectively. The set of all frames which
are sent on a link (va, vb) is denoted by F (va,vb).

For the sake of brevity, we will not repeat all of the
constraints and refer the reader to [4], [8] for the complete
formalism. We only adapt the constraints in which the preci-
sion of the network is included and extend them to account
for the out-of-sync drift �s over the out-of-sync interval.

Flow Transmission Constraint. The constraint ensures that
a frame can only be forwarded from a device once it has been
received on that device. Since the reception of a frame on a
device is defined by the sending time on the previous hop,
the constraint relates the transmission times in two different
devices and hence needs to take into account the network
precision, denoted with �. We extend this constraint from [4]
to include not only the precision but also the out-of-sync drift

�s over the out-of-sync interval:

8si 2 S, 8(va, vx), (vx, vb) 2 Ri :

�(vx,vb)
i � (�(va,vx)

i + l(va,vx)i ) � � +�s.

By including the maximum drift �s, we ensure that the
sending time of the frame instance of a stream from node
vx is placed at a safe distance from the sending time of the
predecessor frame instance in node va. By safe, we mean that
if there is a loss of sync and the two involved clocks drift
further apart from the network’s precision, the frame will still
be forwarded by node vx only after it has been received. The
upper bound on the out-of-sync drift ensures that the interval
is safe since by the time the drift reaches �+�s, the network
will be re-synchronized with a precision below �.

End-to-End Latency. The deadline of a stream, denoted by
si.D, captures the requirement that the time from the sending
of a stream at the sender until the stream’s reception at the
receiver is less than or equal to the desired bound. We use
src(si) 2 Ri and dest(si) 2 Ri to represent the sender link
and the last link before the receiving node, respectively. The
maximum end-to-end latency constraint (extended from [4]) is

8si 2 S : �dest(si)
i + ldest(si)i � �src(si)

i  Di � (� +�s).

Here we have to consider that the clocks of the sender and
receiver nodes can drift beyond the precision of the network in
case of a loss of synchronization. Again, the condition is safe
since in the worst case, by the time the drift exceeds � +�s,
the network will be re-synchronized. This constraint clearly
shows that the solution space is constrained by the additional
term subtracted from the deadline in order to achieve a safe
bound in case of synchronization loss.

802.1Qbv Flow/Frame Isolation. The frame/flow isolation
constraint imposes a deterministic state of the queues. We refer

the reader to [4] for an in-depth explanation of the queue
determinism problem and the complete formalization. Let
f (va,vb)
i and f (va,vb)

j be the frame instances of streams si 2 S
and sj 2 S on link (va, vb), respectively. The frames are
both sent on link (va, vb) of device va. Stream si arrives from
device vx connected to va via link (vx, va) 2 Ri and stream
fj arrives from device vy connected to va via (vy, va) 2 Rj .
For any link (va, vb) and any such frame pair f (va,vb)

i and
f (va,vb)
j , we extend the stream isolation constraint from [4] to

include the out-of-sync drift �s as follows:

8↵ 2
h
0, hpji/Ti

⌘
, 8� 2

h
0, hpji/Tj

⌘
:

(�
(vy,va)
j + � ⇥ Tj � �(va,vb)

i � ↵⇥ Ti � � +�s)_

(�(vx,va)
i + ↵⇥ Ti � �(va,vb)

j � � ⇥ Tj � � +�s).

The hyperperiod of the two streams is hpji = lcm(Ti, Tj) and
↵,� 2 N are index to the period instances. The constraint
ensures that once a device receives a stream, no other stream
sharing the same queue can enter the device until the first
stream has been transmitted and the queue is empty. Since
this constraint also relates the sending times of frames on
different devices, we have to consider both the precision and
the maximum drift in order to make the resulting schedule
robust during the re-synchronization interval.

A. Design space exploration

When generating the schedule with the out-of-sync drift �s,
the solution space is reduced, and previously feasible use-cases
may become unschedulable. For example, it may occur that the
utilization on some links or the end-to-end deadline constraints
of some streams is too tight to accommodate the maximum
drift. In such cases, we cannot guarantee that the schedule is
robust during the out-of-sync interval.

We can transform the problem into a design space explo-
ration by configuring the maximum drift to be a variable that
is computed by the scheduler rather than a fixed constant
input. Thus, the scheduling problem becomes an optimization
problem, with the optimization objective being to maximize the
out-of-sync drift �s subject to the constraints defined above
and in [4]. We can use the resulting maximized value of the
out-of-sync drift �s to select the best configuration parameters
in terms of �t1, which is the timeout bound for out-of-sync
detection, the maximum number of hops NG, and the worst-
case clock drift rate ⇢max. Selecting a value for one parameter
will constrain the possible values for the other dimensions in
the configuration space. The easiest parameter to change is
�t since the devices’ clocks cannot be easily changed, and the
topology is often fixed. However, it may be necessary in some
cases to select devices with better clocks or reconfigure the
network such that the maximum number of hops is reduced.

We show the configuration space for different example
networks where the maximized �s is 100, 500, 1000, 1500µs
in Fig. 4. Please note that configuration spaces with smaller

1�t is configured via the announceReceiptTimeout and the announceInterval

values in the IEEE 802.1AS configuration.

If we can generate a schedule with an extended precision 
parameter, we can effectively maintain determinism even 
when sync is temporarily lost → schedule robustness
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It is trivial to extend the relevant constraints from our previous work✤ to include the 
robustness parameter added to the precision when generating the schedule tables.

✤ our previous work:
• S.S. Craciunas, R. Serna Oliver, M. Chmelik, and W. Steiner - Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sensitive Networks

In Proc. 24th International Conference on Real-Time Networks and Systems (RTNS), pp. 183-192, ACM, 2016.
• R. Serna Oliver, S.S. Craciunas, and W. Steiner - IEEE 802.1Qbv Gate Control List Synthesis using Array Theory Encoding

In Proc. 24th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pp. 13-24, IEEE, 2018.

Schedule robustness

from a sender v1 to a receiver vn is represented via the set
Ri = {(v1, v2), ..., (vn�1, vn)}. We formalize, similar to [4],
[8], the frame of a stream si on a link (va, vb) as f (va,vb)

i with
�(va,vb)
i and l(va,vb)i representing the transmission time from

node va through link (va, vb) and the duration of the frame on
the respective link, respectively. The set of all frames which
are sent on a link (va, vb) is denoted by F (va,vb).

For the sake of brevity, we will not repeat all of the
constraints and refer the reader to [4], [8] for the complete
formalism. We only adapt the constraints in which the preci-
sion of the network is included and extend them to account
for the out-of-sync drift �s over the out-of-sync interval.

Flow Transmission Constraint. The constraint ensures that
a frame can only be forwarded from a device once it has been
received on that device. Since the reception of a frame on a
device is defined by the sending time on the previous hop,
the constraint relates the transmission times in two different
devices and hence needs to take into account the network
precision, denoted with �. We extend this constraint from [4]
to include not only the precision but also the out-of-sync drift

�s over the out-of-sync interval:

8si 2 S, 8(va, vx), (vx, vb) 2 Ri :

�(vx,vb)
i � (�(va,vx)

i + l(va,vx)i ) � � +�s.

By including the maximum drift �s, we ensure that the
sending time of the frame instance of a stream from node
vx is placed at a safe distance from the sending time of the
predecessor frame instance in node va. By safe, we mean that
if there is a loss of sync and the two involved clocks drift
further apart from the network’s precision, the frame will still
be forwarded by node vx only after it has been received. The
upper bound on the out-of-sync drift ensures that the interval
is safe since by the time the drift reaches �+�s, the network
will be re-synchronized with a precision below �.

End-to-End Latency. The deadline of a stream, denoted by
si.D, captures the requirement that the time from the sending
of a stream at the sender until the stream’s reception at the
receiver is less than or equal to the desired bound. We denote
the sending link of stream si with src(si) 2 Ri and the
last link before the receiving node with dest(si) 2 Ri. The
maximum end-to-end latency constraint (extended from [4]) is

8si 2 S : �dest(si)
i + ldest(si)i � �src(si)

i  Di � (� +�s).

Here we have to consider that the clocks of the sender and
receiver nodes can drift beyond the precision of the network in
case of a loss of synchronization. Again, the condition is safe
since in the worst case, by the time the drift exceeds � +�s,
the network will be re-synchronized. This constraint clearly
shows that the solution space is constrained by the additional
term subtracted from the deadline in order to achieve a safe
bound in case of synchronization loss.

802.1Qbv Flow/Frame Isolation. The frame/flow isolation
constraint imposes a deterministic state of the queues. We refer
the reader to [4] for an in-depth explanation of the queue
determinism problem and the complete formalization. Let

f (va,vb)
i and f (va,vb)

j be the frame instances of streams si 2 S
and sj 2 S on link (va, vb), respectively. The frames are
both sent on link (va, vb) of device va. Stream si arrives from
device vx connected to va via link (vx, va) 2 Ri and stream
fj arrives from device vy connected to va via (vy, va) 2 Rj .
For any link (va, vb) and any such frame pair f (va,vb)

i and
f (va,vb)
j , we extend the stream isolation constraint from [4] to

include the out-of-sync drift �s as follows:

8↵ 2
h
0, hpji/Ti

⌘
, 8� 2

h
0, hpji/Tj

⌘
:

(�
(vy,va)
j + � ⇥ Tj � �(va,vb)

i � ↵⇥ Ti � � +�s)_

(�(vx,va)
i + ↵⇥ Ti � �(va,vb)

j � � ⇥ Tj � � +�s).

The hyperperiod of the two streams is hpji = lcm(Ti, Tj) and
↵,� 2 N are index to the period instances. The constraint
ensures that once a device receives a stream, no other stream
sharing the same queue can enter the device until the first
stream has been transmitted and the queue is empty. Since
this constraint also relates the sending times of frames on
different devices, we have to consider both the precision and
the maximum drift in order to make the resulting schedule
robust during the re-synchronization interval.

A. Design space exploration

When generating the schedule with the out-of-sync drift �s,
the solution space is reduced, and previously feasible use-cases
may become unschedulable. For example, it may occur that the
utilization on some links or the end-to-end deadline constraints
of some streams is too tight to accommodate the maximum
drift. In such cases, we cannot guarantee that the schedule is
robust during the out-of-sync interval.

We can transform the problem into a design space explo-
ration by configuring the maximum drift to be a variable that
is computed by the scheduler rather than a fixed constant
input. Thus, the scheduling problem becomes an optimization
problem, with the optimization objective being to maximize the
out-of-sync drift �s subject to the constraints defined above
and in [4]. We can use the resulting maximized value of the
out-of-sync drift �s to select the best configuration parameters
in terms of �t1, which is the timeout bound for out-of-sync
detection, the maximum number of hops NG, and the worst-
case clock drift rate ⇢max. Selecting a value for one parameter
will constrain the possible values for the other dimensions in
the configuration space. The easiest parameter to change is
�t since the devices’ clocks cannot be easily changed, and the
topology is often fixed. However, it may be necessary in some
cases to select devices with better clocks or reconfigure the
network such that the maximum number of hops is reduced.

We show the configuration space for different example
networks where the maximized �s is 100, 500, 1000, 15000µs
in Fig. 4. Please note that configuration spaces with smaller
areas are plotted over the ones with larger areas where they
overlap. In Fig. 4(a) we show the configuration space for ⇢max
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from a sender v1 to a receiver vn is represented via the set
Ri = {(v1, v2), ..., (vn�1, vn)}. We formalize, similar to [4],
[8], the frame of a stream si on a link (va, vb) as f (va,vb)

i with
�(va,vb)
i and l(va,vb)i representing the transmission time from

node va through link (va, vb) and the duration of the frame on
the respective link, respectively. The set of all frames which
are sent on a link (va, vb) is denoted by F (va,vb).

For the sake of brevity, we will not repeat all of the
constraints and refer the reader to [4], [8] for the complete
formalism. We only adapt the constraints in which the preci-
sion of the network is included and extend them to account
for the out-of-sync drift �s over the out-of-sync interval.

Flow Transmission Constraint. The constraint ensures that
a frame can only be forwarded from a device once it has been
received on that device. Since the reception of a frame on a
device is defined by the sending time on the previous hop,
the constraint relates the transmission times in two different
devices and hence needs to take into account the network
precision, denoted with �. We extend this constraint from [4]
to include not only the precision but also the out-of-sync drift

�s over the out-of-sync interval:

8si 2 S, 8(va, vx), (vx, vb) 2 Ri :

�(vx,vb)
i � (�(va,vx)

i + l(va,vx)i ) � � +�s.

By including the maximum drift �s, we ensure that the
sending time of the frame instance of a stream from node
vx is placed at a safe distance from the sending time of the
predecessor frame instance in node va. By safe, we mean that
if there is a loss of sync and the two involved clocks drift
further apart from the network’s precision, the frame will still
be forwarded by node vx only after it has been received. The
upper bound on the out-of-sync drift ensures that the interval
is safe since by the time the drift reaches �+�s, the network
will be re-synchronized with a precision below �.

End-to-End Latency. The deadline of a stream, denoted by
si.D, captures the requirement that the time from the sending
of a stream at the sender until the stream’s reception at the
receiver is less than or equal to the desired bound. We denote
the sending link of stream si with src(si) 2 Ri and the
last link before the receiving node with dest(si) 2 Ri. The
maximum end-to-end latency constraint (extended from [4]) is

8si 2 S : �dest(si)
i + ldest(si)i � �src(si)

i  Di � (� +�s).

Here we have to consider that the clocks of the sender and
receiver nodes can drift beyond the precision of the network in
case of a loss of synchronization. Again, the condition is safe
since in the worst case, by the time the drift exceeds � +�s,
the network will be re-synchronized. This constraint clearly
shows that the solution space is constrained by the additional
term subtracted from the deadline in order to achieve a safe
bound in case of synchronization loss.

802.1Qbv Flow/Frame Isolation. The frame/flow isolation
constraint imposes a deterministic state of the queues. We refer
the reader to [4] for an in-depth explanation of the queue
determinism problem and the complete formalization. Let

f (va,vb)
i and f (va,vb)

j be the frame instances of streams si 2 S
and sj 2 S on link (va, vb), respectively. The frames are
both sent on link (va, vb) of device va. Stream si arrives from
device vx connected to va via link (vx, va) 2 Ri and stream
fj arrives from device vy connected to va via (vy, va) 2 Rj .
For any link (va, vb) and any such frame pair f (va,vb)

i and
f (va,vb)
j , we extend the stream isolation constraint from [4] to

include the out-of-sync drift �s as follows:
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↵,� 2 N are index to the period instances. The constraint
ensures that once a device receives a stream, no other stream
sharing the same queue can enter the device until the first
stream has been transmitted and the queue is empty. Since
this constraint also relates the sending times of frames on
different devices, we have to consider both the precision and
the maximum drift in order to make the resulting schedule
robust during the re-synchronization interval.

A. Design space exploration

When generating the schedule with the out-of-sync drift �s,
the solution space is reduced, and previously feasible use-cases
may become unschedulable. For example, it may occur that the
utilization on some links or the end-to-end deadline constraints
of some streams is too tight to accommodate the maximum
drift. In such cases, we cannot guarantee that the schedule is
robust during the out-of-sync interval.

We can transform the problem into a design space explo-
ration by configuring the maximum drift to be a variable that
is computed by the scheduler rather than a fixed constant
input. Thus, the scheduling problem becomes an optimization
problem, with the optimization objective being to maximize the
out-of-sync drift �s subject to the constraints defined above
and in [4]. We can use the resulting maximized value of the
out-of-sync drift �s to select the best configuration parameters
in terms of �t1, which is the timeout bound for out-of-sync
detection, the maximum number of hops NG, and the worst-
case clock drift rate ⇢max. Selecting a value for one parameter
will constrain the possible values for the other dimensions in
the configuration space. The easiest parameter to change is
�t since the devices’ clocks cannot be easily changed, and the
topology is often fixed. However, it may be necessary in some
cases to select devices with better clocks or reconfigure the
network such that the maximum number of hops is reduced.

We show the configuration space for different example
networks where the maximized �s is 100, 500, 1000, 15000µs
in Fig. 4. Please note that configuration spaces with smaller
areas are plotted over the ones with larger areas where they
overlap. In Fig. 4(a) we show the configuration space for ⇢max
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vx is placed at a safe distance from the sending time of the
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if there is a loss of sync and the two involved clocks drift
further apart from the network’s precision, the frame will still
be forwarded by node vx only after it has been received. The
upper bound on the out-of-sync drift ensures that the interval
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si.D, captures the requirement that the time from the sending
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receiver is less than or equal to the desired bound. We denote
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case of a loss of synchronization. Again, the condition is safe
since in the worst case, by the time the drift exceeds � +�s,
the network will be re-synchronized. This constraint clearly
shows that the solution space is constrained by the additional
term subtracted from the deadline in order to achieve a safe
bound in case of synchronization loss.
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constraint imposes a deterministic state of the queues. We refer
the reader to [4] for an in-depth explanation of the queue
determinism problem and the complete formalization. Let
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The hyperperiod of the two streams is hpji = lcm(Ti, Tj) and
↵,� 2 N are index to the period instances. The constraint
ensures that once a device receives a stream, no other stream
sharing the same queue can enter the device until the first
stream has been transmitted and the queue is empty. Since
this constraint also relates the sending times of frames on
different devices, we have to consider both the precision and
the maximum drift in order to make the resulting schedule
robust during the re-synchronization interval.

A. Design space exploration

When generating the schedule with the out-of-sync drift �s,
the solution space is reduced, and previously feasible use-cases
may become unschedulable. For example, it may occur that the
utilization on some links or the end-to-end deadline constraints
of some streams is too tight to accommodate the maximum
drift. In such cases, we cannot guarantee that the schedule is
robust during the out-of-sync interval.

We can transform the problem into a design space explo-
ration by configuring the maximum drift to be a variable that
is computed by the scheduler rather than a fixed constant
input. Thus, the scheduling problem becomes an optimization
problem, with the optimization objective being to maximize the
out-of-sync drift �s subject to the constraints defined above
and in [4]. We can use the resulting maximized value of the
out-of-sync drift �s to select the best configuration parameters
in terms of �t1, which is the timeout bound for out-of-sync
detection, the maximum number of hops NG, and the worst-
case clock drift rate ⇢max. Selecting a value for one parameter
will constrain the possible values for the other dimensions in
the configuration space. The easiest parameter to change is
�t since the devices’ clocks cannot be easily changed, and the
topology is often fixed. However, it may be necessary in some
cases to select devices with better clocks or reconfigure the
network such that the maximum number of hops is reduced.

We show the configuration space for different example
networks where the maximized �s is 100, 500, 1000, 15000µs
in Fig. 4. Please note that configuration spaces with smaller
areas are plotted over the ones with larger areas where they
overlap. In Fig. 4(a) we show the configuration space for ⇢max
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and �t when NG = 5. We can see that, for high values of
�s, the timeout bound for out-of-sync detection �t can be as
high as 5s (for typical values of ⇢max between 50ppm and
100ppm), whereas for low values of �s, we either have to
reduce �t or select devices with very accurate clocks (under
10ppm). In Fig. 4(b) we show the dependency between ⇢max

and NG when �s = {100, 500, 1000, 1500}µs and �t is set
to the default value of 3s. We can see that the quality of the
clocks needs to be improved significantly if we have networks
where the maximum number of hops in the spanning tree goes
beyond 5. In Fig. 4(a) we plot the configuration space of �t
as a function of NG for networks with the same �s as above
and with with ⇢max = 30ppm clocks. We can see that if
the resulting out-of-sync drift �s is very low, we can only
guarantee out-of-sync robustness for very small networks with
under 5 hops, while as the out-of-sync drift gets larger, we
can support networks with up to 25 hops depending on the
configured value of the out-of-sync detection interval �t.

Based on our fault model, we can generate robust schedules
against failures of the GM and can tolerate the network being
out of sync for the duration of the out-of-sync interval. After
the out-of-sync interval, the network devices are again syn-
chronized to below the originally configured precision. Hence,
the schedule is again robust to a new loss of synchronization.
However, if a device fails while the corrected time is being
propagated through the spanning tree, i.e., if a failure occurs
while the devices’ clocks are not within the precision envelope,
the robustness property does not hold anymore. In the case
of such cascading failures, the out-of-sync interval may be
longer than the one computed at design time (see Sect. III).
Such types of failures are not fully tolerated by our method.
However, in the design space exploration, we can maximize
the out-of-sync interval by maximizing �s and hence mitigate,
to some degree, the impact of cascading failures. Furthermore,
with the enhancements in IEEE 802.1AS-rev [3] introducing
hot-standby grandmasters, it will be possible to tolerate the
loss of all GMs before entering the re-synchronization phase.

VI. EXPERIMENTS

We have developed a customized scheduler tool computing
optimized GCLs with a configurable precision parameter. The
tool is based on the frame-based scheduler in [4] using the
Z3 [18] SMT/OMT solver v.4.8.10 running on a 64bit Cygwin
environment within Windows 10. Unless otherwise stated, all
experiments assume up to 2 dedicated queues for 802.1Qbv

SW1

SW6 SW7

SW3

ES6A
ES6B

ES6D
ES6C

ES7A
ES7B

ES7D
ES7C

SW4 SW5

SW2

ES4A
ES4B

ES4D
ES4C

ES5A
ES5B

ES5D
ES5C

Figure 5. Test Topology.

unicast scheduled traffic with the scheduler macrotick fixed at
1µs, a constant link latency of 1µs, and homogeneous link
speeds of 1Gbps. The hardware platform is an Intel i7-8650U
CPU @1.90GHz notebook with 16GB of main memory.

A. Schedulability

We assess the impact of our approach on the network
schedulability by running a set of experiments on a synthetic
scenario with the tree topology depicted in Fig. 5. The test
network consists of 7 switches (SW1 to SW7), of which SW4
to SW7 connect 4 end nodes each, named ESiA, ESiB, ESiC,
and ESiD, where i refers to the SW index (4  i  7).
Each end node from SW4, SW5, and SW6 transmits full-
sized Ethernet messages (i.e., a payload of 1500 byte) with
a periodic data stream to each end node of SW7. Each node
of SW7 transmits a response 100-byte payload message in
opposite streams to all other nodes in SW4, SW5, and SW6.
We adjust the period of communication between 10 ms and
500µs to increase the link utilization, with the stream deadline
being equal to the period. Table I summarizes the configuration
settings for the experiments and the schedulability results
for different configurations. The permutation of these values
result in �s = {1200, 800, 600, 400, 60, 40}. The results show
how the choice of parameters affecting the schedule robust-
ness impacts the schedulability when the utilization increases,
particularly in the bottleneck link (SW3!SW7), where the
utilization increased from 5.76% to 57.6%.

B. End-To-End Latency

We evaluate the impact of adding out-of-sync robustness
on the achievable end-to-end latency of streams. We have
instrumented our scheduler to minimize the end-to-end latency
of each stream, combining the individual objectives as Pareto
fronts (c.f. [18]). Fig. 6 depicts the accrued end-to-end latency
of all streams, with and without out-of-sync robustness, for the
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and NG when �s = {100, 500, 1000, 1500}µs and �t is set
to the default value of 3s. We can see that the quality of the
clocks needs to be improved significantly if we have networks
where the maximum number of hops in the spanning tree goes
beyond 5. In Fig. 4(a) we plot the configuration space of �t
as a function of NG for networks with the same �s as above
and with with ⇢max = 30ppm clocks. We can see that if
the resulting out-of-sync drift �s is very low, we can only
guarantee out-of-sync robustness for very small networks with
under 5 hops, while as the out-of-sync drift gets larger, we
can support networks with up to 25 hops depending on the
configured value of the out-of-sync detection interval �t.

Based on our fault model, we can generate robust schedules
against failures of the GM and can tolerate the network being
out of sync for the duration of the out-of-sync interval. After
the out-of-sync interval, the network devices are again syn-
chronized to below the originally configured precision. Hence,
the schedule is again robust to a new loss of synchronization.
However, if a device fails while the corrected time is being
propagated through the spanning tree, i.e., if a failure occurs
while the devices’ clocks are not within the precision envelope,
the robustness property does not hold anymore. In the case
of such cascading failures, the out-of-sync interval may be
longer than the one computed at design time (see Sect. III).
Such types of failures are not fully tolerated by our method.
However, in the design space exploration, we can maximize
the out-of-sync interval by maximizing �s and hence mitigate,
to some degree, the impact of cascading failures. Furthermore,
with the enhancements in IEEE 802.1AS-rev [3] introducing
hot-standby grandmasters, it will be possible to tolerate the
loss of all GMs before entering the re-synchronization phase.

VI. EXPERIMENTS

We have developed a customized scheduler tool computing
optimized GCLs with a configurable precision parameter. The
tool is based on the frame-based scheduler in [4] using the
Z3 [18] SMT/OMT solver v.4.8.10 running on a 64bit Cygwin
environment within Windows 10. Unless otherwise stated, all
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unicast scheduled traffic with the scheduler macrotick fixed at
1µs, a constant link latency of 1µs, and homogeneous link
speeds of 1Gbps. The hardware platform is an Intel i7-8650U
CPU @1.90GHz notebook with 16GB of main memory.

A. Schedulability

We assess the impact of our approach on the network
schedulability by running a set of experiments on a synthetic
scenario with the tree topology depicted in Fig. 5. The test
network consists of 7 switches (SW1 to SW7), of which SW4
to SW7 connect 4 end nodes each, named ESiA, ESiB, ESiC,
and ESiD, where i refers to the SW index (4  i  7).
Each end node from SW4, SW5, and SW6 transmits full-
sized Ethernet messages (i.e., a payload of 1500 byte) with
a periodic data stream to each end node of SW7. Each node
of SW7 transmits a response 100-byte payload message in
opposite streams to all other nodes in SW4, SW5, and SW6.
We adjust the period of communication between 10 ms and
500µs to increase the link utilization, with the stream deadline
being equal to the period. Table I summarizes the configuration
settings for the experiments and the schedulability results
for different configurations. The permutation of these values
result in �s = {1200, 800, 600, 400, 60, 40}. The results show
how the choice of parameters affecting the schedule robust-
ness impacts the schedulability when the utilization increases,
particularly in the bottleneck link (SW3!SW7), where the
utilization increased from 5.76% to 57.6%.

B. End-To-End Latency

We evaluate the impact of adding out-of-sync robustness
on the achievable end-to-end latency of streams. We have
instrumented our scheduler to minimize the end-to-end latency
of each stream, combining the individual objectives as Pareto
fronts (c.f. [18]). Fig. 6 depicts the accrued end-to-end latency
of all streams, with and without out-of-sync robustness, for the
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�s, the timeout bound for out-of-sync detection �t can be as
high as 5s (for typical values of ⇢max between 50ppm and
100ppm), whereas for low values of �s, we either have to
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10ppm). In Fig. 4(b) we show the dependency between ⇢max
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where the maximum number of hops in the spanning tree goes
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as a function of NG for networks with the same �s as above
and with with ⇢max = 30ppm clocks. We can see that if
the resulting out-of-sync drift �s is very low, we can only
guarantee out-of-sync robustness for very small networks with
under 5 hops, while as the out-of-sync drift gets larger, we
can support networks with up to 25 hops depending on the
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Based on our fault model, we can generate robust schedules
against failures of the GM and can tolerate the network being
out of sync for the duration of the out-of-sync interval. After
the out-of-sync interval, the network devices are again syn-
chronized to below the originally configured precision. Hence,
the schedule is again robust to a new loss of synchronization.
However, if a device fails while the corrected time is being
propagated through the spanning tree, i.e., if a failure occurs
while the devices’ clocks are not within the precision envelope,
the robustness property does not hold anymore. In the case
of such cascading failures, the out-of-sync interval may be
longer than the one computed at design time (see Sect. III).
Such types of failures are not fully tolerated by our method.
However, in the design space exploration, we can maximize
the out-of-sync interval by maximizing �s and hence mitigate,
to some degree, the impact of cascading failures. Furthermore,
with the enhancements in IEEE 802.1AS-rev [3] introducing
hot-standby grandmasters, it will be possible to tolerate the
loss of all GMs before entering the re-synchronization phase.
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We have developed a customized scheduler tool computing
optimized GCLs with a configurable precision parameter. The
tool is based on the frame-based scheduler in [4] using the
Z3 [18] SMT/OMT solver v.4.8.10 running on a 64bit Cygwin
environment within Windows 10. Unless otherwise stated, all
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unicast scheduled traffic with the scheduler macrotick fixed at
1µs, a constant link latency of 1µs, and homogeneous link
speeds of 1Gbps. The hardware platform is an Intel i7-8650U
CPU @1.90GHz notebook with 16GB of main memory.

A. Schedulability

We assess the impact of our approach on the network
schedulability by running a set of experiments on a synthetic
scenario with the tree topology depicted in Fig. 5. The test
network consists of 7 switches (SW1 to SW7), of which SW4
to SW7 connect 4 end nodes each, named ESiA, ESiB, ESiC,
and ESiD, where i refers to the SW index (4  i  7).
Each end node from SW4, SW5, and SW6 transmits full-
sized Ethernet messages (i.e., a payload of 1500 byte) with
a periodic data stream to each end node of SW7. Each node
of SW7 transmits a response 100-byte payload message in
opposite streams to all other nodes in SW4, SW5, and SW6.
We adjust the period of communication between 10 ms and
500µs to increase the link utilization, with the stream deadline
being equal to the period. Table I summarizes the configuration
settings for the experiments and the schedulability results
for different configurations. The permutation of these values
result in �s = {1200, 800, 600, 400, 60, 40}. The results show
how the choice of parameters affecting the schedule robust-
ness impacts the schedulability when the utilization increases,
particularly in the bottleneck link (SW3!SW7), where the
utilization increased from 5.76% to 57.6%.

B. End-To-End Latency

We evaluate the impact of adding out-of-sync robustness
on the achievable end-to-end latency of streams. We have
instrumented our scheduler to minimize the end-to-end latency
of each stream, combining the individual objectives as Pareto
fronts (c.f. [18]). Fig. 6 depicts the accrued end-to-end latency
of all streams, with and without out-of-sync robustness, for the

• we transform the out-of-sync drift      to be a variable that is computed by the scheduler
• maximizing the out-of-sync drift      can help mitigate cascading failures
• selecting a value for one parameter will constrain the possible values for the other dimensions
• the easiest parameter to change is the out-of-sync detection bound 𝛿t
• we show the configuration space for different example networks below

for a stream si is computed at design-time and formalized as
an ordered sequence of links, e.g., the communication route
from a sender v1 to a receiver vn is represented via the set
Ri = {(v1, v2), ..., (vn�1, vn)}. We formalize, similar to [4],
[8], the frame of a stream si on a link (va, vb) as f (va,vb)

i with
�(va,vb)
i and l(va,vb)i representing the transmission time from

node va through link (va, vb) and the duration of the frame on
the respective link, respectively. The set of all frames which
are sent on a link (va, vb) is denoted by F (va,vb).

For the sake of brevity, we will not repeat all of the
constraints and refer the reader to [4], [8] for the complete
formalism. We only adapt the constraints in which the preci-
sion of the network is included and extend them to account
for the out-of-sync drift �s over the out-of-sync interval.

Flow Transmission Constraint. The constraint ensures that
a frame can only be forwarded from a device once it has been
received on that device. Since the reception of a frame on a
device is defined by the sending time on the previous hop,
the constraint relates the transmission times in two different
devices and hence needs to take into account the network
precision, denoted with �. We extend this constraint from [4]
to include not only the precision but also the out-of-sync drift

�s over the out-of-sync interval:

8si 2 S, 8(va, vx), (vx, vb) 2 Ri :

�(vx,vb)
i � (�(va,vx)

i + l(va,vx)i ) � � +�s.

By including the maximum drift �s, we ensure that the
sending time of the frame instance of a stream from node
vx is placed at a safe distance from the sending time of the
predecessor frame instance in node va. By safe, we mean that
if there is a loss of sync and the two involved clocks drift
further apart from the network’s precision, the frame will still
be forwarded by node vx only after it has been received. The
upper bound on the out-of-sync drift ensures that the interval
is safe since by the time the drift reaches �+�s, the network
will be re-synchronized with a precision below �.

End-to-End Latency. The deadline of a stream, denoted by
si.D, captures the requirement that the time from the sending
of a stream at the sender until the stream’s reception at the
receiver is less than or equal to the desired bound. We use
src(si) 2 Ri and dest(si) 2 Ri to represent the sender link
and the last link before the receiving node, respectively. The
maximum end-to-end latency constraint (extended from [4]) is

8si 2 S : �dest(si)
i + ldest(si)i � �src(si)

i  Di � (� +�s).

Here we have to consider that the clocks of the sender and
receiver nodes can drift beyond the precision of the network in
case of a loss of synchronization. Again, the condition is safe
since in the worst case, by the time the drift exceeds � +�s,
the network will be re-synchronized. This constraint clearly
shows that the solution space is constrained by the additional
term subtracted from the deadline in order to achieve a safe
bound in case of synchronization loss.

802.1Qbv Flow/Frame Isolation. The frame/flow isolation
constraint imposes a deterministic state of the queues. We refer

the reader to [4] for an in-depth explanation of the queue
determinism problem and the complete formalization. Let
f (va,vb)
i and f (va,vb)

j be the frame instances of streams si 2 S
and sj 2 S on link (va, vb), respectively. The frames are
both sent on link (va, vb) of device va. Stream si arrives from
device vx connected to va via link (vx, va) 2 Ri and stream
fj arrives from device vy connected to va via (vy, va) 2 Rj .
For any link (va, vb) and any such frame pair f (va,vb)

i and
f (va,vb)
j , we extend the stream isolation constraint from [4] to

include the out-of-sync drift �s as follows:
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The hyperperiod of the two streams is hpji = lcm(Ti, Tj) and
↵,� 2 N are index to the period instances. The constraint
ensures that once a device receives a stream, no other stream
sharing the same queue can enter the device until the first
stream has been transmitted and the queue is empty. Since
this constraint also relates the sending times of frames on
different devices, we have to consider both the precision and
the maximum drift in order to make the resulting schedule
robust during the re-synchronization interval.

A. Design space exploration

When generating the schedule with the out-of-sync drift �s,
the solution space is reduced, and previously feasible use-cases
may become unschedulable. For example, it may occur that the
utilization on some links or the end-to-end deadline constraints
of some streams is too tight to accommodate the maximum
drift. In such cases, we cannot guarantee that the schedule is
robust during the out-of-sync interval.

We can transform the problem into a design space explo-
ration by configuring the maximum drift to be a variable that
is computed by the scheduler rather than a fixed constant
input. Thus, the scheduling problem becomes an optimization
problem, with the optimization objective being to maximize the
out-of-sync drift �s subject to the constraints defined above
and in [4]. We can use the resulting maximized value of the
out-of-sync drift �s to select the best configuration parameters
in terms of �t1, which is the timeout bound for out-of-sync
detection, the maximum number of hops NG, and the worst-
case clock drift rate ⇢max. Selecting a value for one parameter
will constrain the possible values for the other dimensions in
the configuration space. The easiest parameter to change is
�t since the devices’ clocks cannot be easily changed, and the
topology is often fixed. However, it may be necessary in some
cases to select devices with better clocks or reconfigure the
network such that the maximum number of hops is reduced.

We show the configuration space for different example
networks where the maximized �s is 100, 500, 1000, 1500µs
in Fig. 4. Please note that configuration spaces with smaller
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is computed by the scheduler rather than a fixed constant
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out-of-sync drift �s subject to the constraints defined above
and in [4]. We can use the resulting maximized value of the
out-of-sync drift �s to select the best configuration parameters
in terms of �t1, which is the timeout bound for out-of-sync
detection, the maximum number of hops NG, and the worst-
case clock drift rate ⇢max. Selecting a value for one parameter
will constrain the possible values for the other dimensions in
the configuration space. The easiest parameter to change is
�t since the devices’ clocks cannot be easily changed, and the
topology is often fixed. However, it may be necessary in some
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network such that the maximum number of hops is reduced.
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(a) ⇢max vs. �t when NG = 5. (b) ⇢max vs. NG when �t = 3s. (c) Ng vs. �t when ⇢max = 30ppm.

Figure 4. Different configuration space dependencies for example networks where �s 2 {100, 500, 1000, 1500}µs.

and �t when NG = 5. We can see that, for high values of
�s, the timeout bound for out-of-sync detection �t can be as
high as 5s (for typical values of ⇢max between 50ppm and
100ppm), whereas for low values of �s, we either have to
reduce �t or select devices with very accurate clocks (under
10ppm). In Fig. 4(b) we show the dependency between ⇢max

and NG when �s = {100, 500, 1000, 1500}µs and �t is set
to the default value of 3s. We can see that the quality of the
clocks needs to be improved significantly if we have networks
where the maximum number of hops in the spanning tree goes
beyond 5. In Fig. 4(a) we plot the configuration space of �t
as a function of NG for networks with the same �s as above
and with with ⇢max = 30ppm clocks. We can see that if
the resulting out-of-sync drift �s is very low, we can only
guarantee out-of-sync robustness for very small networks with
under 5 hops, while as the out-of-sync drift gets larger, we
can support networks with up to 25 hops depending on the
configured value of the out-of-sync detection interval �t.

Based on our fault model, we can generate robust schedules
against failures of the GM and can tolerate the network being
out of sync for the duration of the out-of-sync interval. After
the out-of-sync interval, the network devices are again syn-
chronized to below the originally configured precision. Hence,
the schedule is again robust to a new loss of synchronization.
However, if a device fails while the corrected time is being
propagated through the spanning tree, i.e., if a failure occurs
while the devices’ clocks are not within the precision envelope,
the robustness property does not hold anymore. In the case
of such cascading failures, the out-of-sync interval may be
longer than the one computed at design time (see Sect. III).
Such types of failures are not fully tolerated by our method.
However, in the design space exploration, we can maximize
the out-of-sync interval by maximizing �s and hence mitigate,
to some degree, the impact of cascading failures. Furthermore,
with the enhancements in IEEE 802.1AS-rev [3] introducing
hot-standby grandmasters, it will be possible to tolerate the
loss of all GMs before entering the re-synchronization phase.

VI. EXPERIMENTS

We have developed a customized scheduler tool computing
optimized GCLs with a configurable precision parameter. The
tool is based on the frame-based scheduler in [4] using the
Z3 [18] SMT/OMT solver v.4.8.10 running on a 64bit Cygwin
environment within Windows 10. Unless otherwise stated, all
experiments assume up to 2 dedicated queues for 802.1Qbv
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Figure 5. Test Topology.

unicast scheduled traffic with the scheduler macrotick fixed at
1µs, a constant link latency of 1µs, and homogeneous link
speeds of 1Gbps. The hardware platform is an Intel i7-8650U
CPU @1.90GHz notebook with 16GB of main memory.

A. Schedulability

We assess the impact of our approach on the network
schedulability by running a set of experiments on a synthetic
scenario with the tree topology depicted in Fig. 5. The test
network consists of 7 switches (SW1 to SW7), of which SW4
to SW7 connect 4 end nodes each, named ESiA, ESiB, ESiC,
and ESiD, where i refers to the SW index (4  i  7).
Each end node from SW4, SW5, and SW6 transmits full-
sized Ethernet messages (i.e., a payload of 1500 byte) with
a periodic data stream to each end node of SW7. Each node
of SW7 transmits a response 100-byte payload message in
opposite streams to all other nodes in SW4, SW5, and SW6.
We adjust the period of communication between 10 ms and
500µs to increase the link utilization, with the stream deadline
being equal to the period. Table I summarizes the configuration
settings for the experiments and the schedulability results
for different configurations. The permutation of these values
result in �s = {1200, 800, 600, 400, 60, 40}. The results show
how the choice of parameters affecting the schedule robust-
ness impacts the schedulability when the utilization increases,
particularly in the bottleneck link (SW3!SW7), where the
utilization increased from 5.76% to 57.6%.

B. End-To-End Latency

We evaluate the impact of adding out-of-sync robustness
on the achievable end-to-end latency of streams. We have
instrumented our scheduler to minimize the end-to-end latency
of each stream, combining the individual objectives as Pareto
fronts (c.f. [18]). Fig. 6 depicts the accrued end-to-end latency
of all streams, with and without out-of-sync robustness, for the
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• optimization criteria: Optimization Modulo Theories [Bjørner@TACAS15]
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• a constant link latency of 1μs
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Table I
SCHEDULABILITY RESULTS FOR DIFFERENT �s CONFIGURATIONS.

⇢max [ppm] 100 100 50 50 5 5 100 100 50 50 5 5 100 100 50 50 5 5
�t[s] 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
�s[µs] 1200 800 600 400 60 40 1200 800 600 400 60 40 1200 800 600 400 60 40
Max util. [%] 57.6 57.6 57.6 57.6 57.6 57.6 11.52 11.52 11.52 11.52 11.52 11.52 5.76 5.76 5.76 5.76 5.76 5.76
Runtime [ms] 218 249 203 234 343 390 219 312 391 407 406 422 437 359 343 390 389 422

Schedulability false false false false true true false false true true true true true true true true true true
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Figure 6. End-to-end latency with and without minimization objectives.

fronts (c.f. [18]). Fig. 6 depicts the accrued end-to-end latency
of all streams, with and without out-of-sync robustness, for the
set of scenarios evaluated in Sect. VI-A. We depict the accrued
end-to-end latency (left y-axis) when we add the minimization
objective (e2e min) as well as without optimization (e2e) for
streams featuring the 3 periods from before and for �s =
{0, 40, 60, 400, 600, 1200}µs (x-axis). Both the non-optimized
and the optimized e2e latencies increase when the out-of-sync
drift increases. For certain period and �s values, the use-
cases were not schedulable (bars are missing in the plot). We
also plot the runtime to schedule each use-case (logarithmic
right y-axis) using circles and squares for the non-optimized
(runtime) and optimized (runtime min) variants, respectively.
As expected, the scheduler runtime increases when adding
optimization objectives and rises from 1min when �s = 0
to 28min for �s = 600µs (16min for �s = 1200µs). For
the non-schedulable cases, the scheduler returns an infeasible
result in under 1s.

C. Schedule Synthesis Time

Maximizing the precision as part of a design space ex-
ploration allows finding a schedule with the highest pos-
sible robustness against out-of-sync intervals. In Fig. 7 we
compare the scheduler run-time of computing a schedule for
3 different period configurations, namely P1 = {10, 20},
P2 = {50, 75, 150}, and P3 = {10, 25, 50, 100} [ms], when
maximizing the precision in contrast to that of finding a
schedule with a constant precision of 1µs. For each run, we
generate a set of 50 streams with randomly chosen end nodes
as sender and receiver, a payload size randomly selected from
the set {500, 1000, 1000} [byte], as well as period, with an
equivalent deadline, randomly selected from the respective set.
Note that the scheduler tool used for these experiments attempt
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Figure 7. Scheduler runtime with and without �s maximization objective.

to schedule all streams at once and does not take advan-
tage of incremental methods described in previous literature
(c.f. [4]). Incremental scheduling algorithms with backtracking
steps significantly improve the schedulability of SMT-based
schedulers (c.f. [4], [19]–[21]. However, we remark that this is
not relevant for comparing the relative difference between the
two evaluated scheduling synthesis objectives (i.e., with vs.
without maximized robustness). The figure shows a penalty
due to the maximization objective. Moreover, we observe that
the increase in run-time due to the precision maximization is
significantly smaller than that of minimizing the end-to-end
latency. We relate this to the complexity of the minimization
objective itself, since in the former case, it relates to a single
variable, the precision, while in the latter, there is a relation
between the offset of two frames for each stream (i.e., the first
sent and the last received). Additionally, each stream adds its
own minimization objective resulting in a multi-optimization
problem. Please note that once the maximized value of �s

has been computed for a scenario, it can be used as a constant
value in certain re-scheduling iterations.

VII. RELATED WORK

Offline scheduling for TSN (or other deterministic net-
works) uses design-time upper bounds on the network’s pre-
cision. Such methods (e.g., [4]–[6], [19], [21], [22]) have
relied on the network never losing synchronization or there
being a fault-tolerant clock synchronization algorithm in order
to guarantee real-time behavior for critical communication.
For TTEthernet networks [10], the upper bound on the syn-
chronization precision has been proven using SMT-based
model checking [23]. No such proof currently exists for IEEE
802.1AS. However, the work in [13] shows via simulations that
a 1µs precision, as requested by the IEEE 802.1AS standard,
is realistic for networks with a maximum spanning tree hop
count of under 30 (NG  30), while in a NG = 100 network
the resulting precision is 2µs. Another simulation result for
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of all streams, with and without out-of-sync robustness, for the
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cases were not schedulable (bars are missing in the plot). We
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schedule with a constant precision of 1µs. For each run, we
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to schedule all streams at once and does not take advan-
tage of incremental methods described in previous literature
(c.f. [4]). Incremental scheduling algorithms with backtracking
steps significantly improve the schedulability of SMT-based
schedulers (c.f. [4], [19]–[21]. However, we remark that this is
not relevant for comparing the relative difference between the
two evaluated scheduling synthesis objectives (i.e., with vs.
without maximized robustness). The figure shows a penalty
due to the maximization objective. Moreover, we observe that
the increase in run-time due to the precision maximization is
significantly smaller than that of minimizing the end-to-end
latency. We relate this to the complexity of the minimization
objective itself, since in the former case, it relates to a single
variable, the precision, while in the latter, there is a relation
between the offset of two frames for each stream (i.e., the first
sent and the last received). Additionally, each stream adds its
own minimization objective resulting in a multi-optimization
problem. Please note that once the maximized value of �s

has been computed for a scenario, it can be used as a constant
value in certain re-scheduling iterations.

VII. RELATED WORK

Offline scheduling for TSN (or other deterministic net-
works) uses design-time upper bounds on the network’s pre-
cision. Such methods (e.g., [4]–[6], [19], [21], [22]) have
relied on the network never losing synchronization or there
being a fault-tolerant clock synchronization algorithm in order
to guarantee real-time behavior for critical communication.
For TTEthernet networks [10], the upper bound on the syn-
chronization precision has been proven using SMT-based
model checking [23]. No such proof currently exists for IEEE
802.1AS. However, the work in [13] shows via simulations that
a 1µs precision, as requested by the IEEE 802.1AS standard,
is realistic for networks with a maximum spanning tree hop
count of under 30 (NG  30), while in a NG = 100 network
the resulting precision is 2µs. Another simulation result for
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fronts (c.f. [18]). Fig. 6 depicts the accrued end-to-end latency
of all streams, with and without out-of-sync robustness, for the
set of scenarios evaluated in Sect. VI-A. We depict the accrued
end-to-end latency (left y-axis) when we add the minimization
objective (e2e min) as well as without optimization (e2e) for
streams featuring the 3 periods from before and for �s =
{0, 40, 60, 400, 600, 1200}µs (x-axis). Both the non-optimized
and the optimized e2e latencies increase when the out-of-sync
drift increases. For certain period and �s values, the use-
cases were not schedulable (bars are missing in the plot). We
also plot the runtime to schedule each use-case (logarithmic
right y-axis) using circles and squares for the non-optimized
(runtime) and optimized (runtime min) variants, respectively.
As expected, the scheduler runtime increases when adding
optimization objectives and rises from 1min when �s = 0
to 28min for �s = 600µs (16min for �s = 1200µs). For
the non-schedulable cases, the scheduler returns an infeasible
result in under 1s.

C. Schedule Synthesis Time

Maximizing the precision as part of a design space ex-
ploration allows finding a schedule with the highest pos-
sible robustness against out-of-sync intervals. In Fig. 7 we
compare the scheduler run-time of computing a schedule for
3 different period configurations, namely P1 = {10, 20},
P2 = {50, 75, 150}, and P3 = {10, 25, 50, 100} [ms], when
maximizing the precision in contrast to that of finding a
schedule with a constant precision of 1µs. For each run, we
generate a set of 50 streams with randomly chosen end nodes
as sender and receiver, a payload size randomly selected from
the set {500, 1000, 1000} [byte], as well as period, with an
equivalent deadline, randomly selected from the respective set.
Note that the scheduler tool used for these experiments attempt
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to schedule all streams at once and does not take advan-
tage of incremental methods described in previous literature
(c.f. [4]). Incremental scheduling algorithms with backtracking
steps significantly improve the schedulability of SMT-based
schedulers (c.f. [4], [19]–[21]. However, we remark that this is
not relevant for comparing the relative difference between the
two evaluated scheduling synthesis objectives (i.e., with vs.
without maximized robustness). The figure shows a penalty
due to the maximization objective. Moreover, we observe that
the increase in run-time due to the precision maximization is
significantly smaller than that of minimizing the end-to-end
latency. We relate this to the complexity of the minimization
objective itself, since in the former case, it relates to a single
variable, the precision, while in the latter, there is a relation
between the offset of two frames for each stream (i.e., the first
sent and the last received). Additionally, each stream adds its
own minimization objective resulting in a multi-optimization
problem. Please note that once the maximized value of �s

has been computed for a scenario, it can be used as a constant
value in certain re-scheduling iterations.

VII. RELATED WORK

Offline scheduling for TSN (or other deterministic net-
works) uses design-time upper bounds on the network’s pre-
cision. Such methods (e.g., [4]–[6], [19], [21], [22]) have
relied on the network never losing synchronization or there
being a fault-tolerant clock synchronization algorithm in order
to guarantee real-time behavior for critical communication.
For TTEthernet networks [10], the upper bound on the syn-
chronization precision has been proven using SMT-based
model checking [23]. No such proof currently exists for IEEE
802.1AS. However, the work in [13] shows via simulations that
a 1µs precision, as requested by the IEEE 802.1AS standard,
is realistic for networks with a maximum spanning tree hop
count of under 30 (NG  30), while in a NG = 100 network
the resulting precision is 2µs. Another simulation result for
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fronts (c.f. [18]). Fig. 6 depicts the accrued end-to-end latency
of all streams, with and without out-of-sync robustness, for the
set of scenarios evaluated in Sect. VI-A. We depict the accrued
end-to-end latency (left y-axis) when we add the minimization
objective (e2e min) as well as without optimization (e2e) for
streams featuring the 3 periods from before and for �s =
{0, 40, 60, 400, 600, 1200}µs (x-axis). Both the non-optimized
and the optimized e2e latencies increase when the out-of-sync
drift increases. For certain period and �s values, the use-
cases were not schedulable (bars are missing in the plot). We
also plot the runtime to schedule each use-case (logarithmic
right y-axis) using circles and squares for the non-optimized
(runtime) and optimized (runtime min) variants, respectively.
As expected, the scheduler runtime increases when adding
optimization objectives and rises from 1min when �s = 0
to 28min for �s = 600µs (16min for �s = 1200µs). For
the non-schedulable cases, the scheduler returns an infeasible
result in under 1s.

C. Schedule Synthesis Time

Maximizing the precision as part of a design space ex-
ploration allows finding a schedule with the highest pos-
sible robustness against out-of-sync intervals. In Fig. 7 we
compare the scheduler run-time of computing a schedule for
3 different period configurations, namely P1 = {10, 20},
P2 = {50, 75, 150}, and P3 = {10, 25, 50, 100} [ms], when
maximizing the precision in contrast to that of finding a
schedule with a constant precision of 1µs. For each run, we
generate a set of 50 streams with randomly chosen end nodes
as sender and receiver, a payload size randomly selected from
the set {500, 1000, 1000} [byte], as well as period, with an
equivalent deadline, randomly selected from the respective set.
Note that the scheduler tool used for these experiments attempt
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to schedule all streams at once and does not take advan-
tage of incremental methods described in previous literature
(c.f. [4]). Incremental scheduling algorithms with backtracking
steps significantly improve the schedulability of SMT-based
schedulers (c.f. [4], [19]–[21]. However, we remark that this is
not relevant for comparing the relative difference between the
two evaluated scheduling synthesis objectives (i.e., with vs.
without maximized robustness). The figure shows a penalty
due to the maximization objective. Moreover, we observe that
the increase in run-time due to the precision maximization is
significantly smaller than that of minimizing the end-to-end
latency. We relate this to the complexity of the minimization
objective itself, since in the former case, it relates to a single
variable, the precision, while in the latter, there is a relation
between the offset of two frames for each stream (i.e., the first
sent and the last received). Additionally, each stream adds its
own minimization objective resulting in a multi-optimization
problem. Please note that once the maximized value of �s

has been computed for a scenario, it can be used as a constant
value in certain re-scheduling iterations.

VII. RELATED WORK

Offline scheduling for TSN (or other deterministic net-
works) uses design-time upper bounds on the network’s pre-
cision. Such methods (e.g., [4]–[6], [19], [21], [22]) have
relied on the network never losing synchronization or there
being a fault-tolerant clock synchronization algorithm in order
to guarantee real-time behavior for critical communication.
For TTEthernet networks [10], the upper bound on the syn-
chronization precision has been proven using SMT-based
model checking [23]. No such proof currently exists for IEEE
802.1AS. However, the work in [13] shows via simulations that
a 1µs precision, as requested by the IEEE 802.1AS standard,
is realistic for networks with a maximum spanning tree hop
count of under 30 (NG  30), while in a NG = 100 network
the resulting precision is 2µs. Another simulation result for

Table I
SCHEDULABILITY RESULTS FOR DIFFERENT �s CONFIGURATIONS.

⇢max [ppm] 100 100 50 50 5 5 100 100 50 50 5 5 100 100 50 50 5 5
�t[s] 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
�s[µs] 1200 800 600 400 60 40 1200 800 600 400 60 40 1200 800 600 400 60 40
Max util. [%] 57.6 57.6 57.6 57.6 57.6 57.6 11.52 11.52 11.52 11.52 11.52 11.52 5.76 5.76 5.76 5.76 5.76 5.76
Runtime [ms] 218 249 203 234 343 390 219 312 391 407 406 422 437 359 343 390 389 422

Schedulability false false false false true true false false true true true true true true true true true true

e2e 
(left y-axis)

e2e min 
(left y-axis)

runtime 
(right y-axis)

runtime min 
(right y-axis)

P = 1ms

P = 5ms

P = 10ms

P1 e2e (left y-axis)P1 e2e min (left y-axis)

P3 e2e min (left y-axis)

Figure 6. End-to-end latency with and without minimization objectives.

fronts (c.f. [18]). Fig. 6 depicts the accrued end-to-end latency
of all streams, with and without out-of-sync robustness, for the
set of scenarios evaluated in Sect. VI-A. We depict the accrued
end-to-end latency (left y-axis) when we add the minimization
objective (e2e min) as well as without optimization (e2e) for
streams featuring the 3 periods from before and for �s =
{0, 40, 60, 400, 600, 1200}µs (x-axis). Both the non-optimized
and the optimized e2e latencies increase when the out-of-sync
drift increases. For certain period and �s values, the use-
cases were not schedulable (bars are missing in the plot). We
also plot the runtime to schedule each use-case (logarithmic
right y-axis) using circles and squares for the non-optimized
(runtime) and optimized (runtime min) variants, respectively.
As expected, the scheduler runtime increases when adding
optimization objectives and rises from 1min when �s = 0
to 28min for �s = 600µs (16min for �s = 1200µs). For
the non-schedulable cases, the scheduler returns an infeasible
result in under 1s.

C. Schedule Synthesis Time

Maximizing the precision as part of a design space ex-
ploration allows finding a schedule with the highest pos-
sible robustness against out-of-sync intervals. In Fig. 7 we
compare the scheduler run-time of computing a schedule for
3 different period configurations, namely P1 = {10, 20},
P2 = {50, 75, 150}, and P3 = {10, 25, 50, 100} [ms], when
maximizing the precision in contrast to that of finding a
schedule with a constant precision of 1µs. For each run, we
generate a set of 50 streams with randomly chosen end nodes
as sender and receiver, a payload size randomly selected from
the set {500, 1000, 1000} [byte], as well as period, with an
equivalent deadline, randomly selected from the respective set.
Note that the scheduler tool used for these experiments attempt
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to schedule all streams at once and does not take advan-
tage of incremental methods described in previous literature
(c.f. [4]). Incremental scheduling algorithms with backtracking
steps significantly improve the schedulability of SMT-based
schedulers (c.f. [4], [19]–[21]. However, we remark that this is
not relevant for comparing the relative difference between the
two evaluated scheduling synthesis objectives (i.e., with vs.
without maximized robustness). The figure shows a penalty
due to the maximization objective. Moreover, we observe that
the increase in run-time due to the precision maximization is
significantly smaller than that of minimizing the end-to-end
latency. We relate this to the complexity of the minimization
objective itself, since in the former case, it relates to a single
variable, the precision, while in the latter, there is a relation
between the offset of two frames for each stream (i.e., the first
sent and the last received). Additionally, each stream adds its
own minimization objective resulting in a multi-optimization
problem. Please note that once the maximized value of �s

has been computed for a scenario, it can be used as a constant
value in certain re-scheduling iterations.

VII. RELATED WORK

Offline scheduling for TSN (or other deterministic net-
works) uses design-time upper bounds on the network’s pre-
cision. Such methods (e.g., [4]–[6], [19], [21], [22]) have
relied on the network never losing synchronization or there
being a fault-tolerant clock synchronization algorithm in order
to guarantee real-time behavior for critical communication.
For TTEthernet networks [10], the upper bound on the syn-
chronization precision has been proven using SMT-based
model checking [23]. No such proof currently exists for IEEE
802.1AS. However, the work in [13] shows via simulations that
a 1µs precision, as requested by the IEEE 802.1AS standard,
is realistic for networks with a maximum spanning tree hop
count of under 30 (NG  30), while in a NG = 100 network
the resulting precision is 2µs. Another simulation result for
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set of scenarios evaluated in Sect. VI-A. We depict the accrued
end-to-end latency (left y-axis) when we add the minimization
objective (e2e min) as well as without optimization (e2e) for
streams featuring the 3 periods from before and for �s =
{0, 40, 60, 400, 600, 1200}µs (x-axis). We can see that both
the non-optimized and the optimized e2e latencies increase
when the out-of-sync drift increases. For certain period and �s

values, the use-cases were not schedulable (bars are missing
in the plot). We also plot the runtime to schedule each use-
case (logarithmic right y-axis) using circles and squares for the
non-optimized (runtime) and optimized (runtime min) variants,
respectively. As expected, the scheduler runtime increases
when adding optimization objectives and rises from ⇡ 1min
when �s = 0 to ⇡ 30min for �s = 1200µs. For the non-
schedulable cases, the scheduler returns an infeasible result in
under 1s, irrespective of the period and �s values.

C. Schedule Synthesis Time

Maximizing the precision as part of a design space ex-
ploration allows finding a schedule with the highest pos-
sible robustness against out-of-sync intervals. In Fig. 7 we
compare the scheduler run-time of computing a schedule for
3 different period configurations, namely P1 = {10, 20},
P2 = {50, 75, 150}, and P3 = {10, 25, 50, 100} [ms], when
maximizing the precision in contrast to that of finding a
schedule with a constant precision of 1µs. For each run, we
generate a set of 50 streams with randomly chosen end nodes
as sender and receiver, a payload size randomly selected from
the set {500, 1000, 1000} [byte], as well as period, with an
equivalent deadline, randomly selected from the respective set.
Note that the scheduler tool used for these experiments attempt
to schedule all streams at once and does not take advan-
tage of incremental methods described in previous literature
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(c.f. [4]). Incremental scheduling algorithms with backtracking
steps significantly improve the schedulability of SMT-based
schedulers (c.f. [4], [19]–[21]. However, we remark that this is
not relevant for comparing the relative difference between the
two evaluated scheduling synthesis objectives (i.e., with vs.
without maximized robustness). The figure shows a penalty
due to the maximization objective. Moreover, we observe that
the increase in run-time due to the precision maximization is
significantly smaller than that of minimizing the end-to-end
latency. We relate this to the complexity of the minimization
objective itself, since in the former case, it relates to a single
variable, the precision, while in the latter, there is a relation
between the offset of two frames for each stream (i.e., the first
sent and the last received). Additionally, each stream adds its
own minimization objective resulting in a multi-optimization
problem. Please note that once the maximized value of �s

has been computed for a scenario, it can be used as a constant
value in certain re-scheduling iterations.

VII. RELATED WORK

Offline scheduling for TSN (or other deterministic net-
works) uses design-time upper bounds on the network’s pre-
cision. Such methods (e.g., [4]–[6], [19], [21], [22]) have
relied on the network never losing synchronization or there
being a fault-tolerant clock synchronization algorithm in order
to guarantee real-time behavior for critical communication.
For TTEthernet networks [9], the upper bound on the syn-
chronization precision has been proven using SMT-based
model checking [23]. No such proof currently exists for IEEE
802.1AS. However, the work in [13] shows via simulations that
a 1µs precision, as requested by the IEEE 802.1AS standard,
is realistic for networks with a maximum spanning tree hop
count of under 30 (NG  30), while in a NG = 100 network
the resulting precision is 2µs. Another simulation result for
measuring the IEEE 802.1AS precision as a function of the
network load in automotive networks is presented in [24].
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set of scenarios evaluated in Sect. VI-A. We depict the accrued
end-to-end latency (left y-axis) when we add the minimization
objective (e2e min) as well as without optimization (e2e) for
streams featuring the 3 periods from before and for �s =
{0, 40, 60, 400, 600, 1200}µs (x-axis). We can see that both
the non-optimized and the optimized e2e latencies increase
when the out-of-sync drift increases. For certain period and �s

values, the use-cases were not schedulable (bars are missing
in the plot). We also plot the runtime to schedule each use-
case (logarithmic right y-axis) using circles and squares for the
non-optimized (runtime) and optimized (runtime min) variants,
respectively. As expected, the scheduler runtime increases
when adding optimization objectives and rises from ⇡ 1min
when �s = 0 to ⇡ 30min for �s = 1200µs. For the non-
schedulable cases, the scheduler returns an infeasible result in
under 1s, irrespective of the period and �s values.

C. Schedule Synthesis Time

Maximizing the precision as part of a design space ex-
ploration allows finding a schedule with the highest pos-
sible robustness against out-of-sync intervals. In Fig. 7 we
compare the scheduler run-time of computing a schedule for
3 different period configurations, namely P1 = {10, 20},
P2 = {50, 75, 150}, and P3 = {10, 25, 50, 100} [ms], when
maximizing the precision in contrast to that of finding a
schedule with a constant precision of 1µs. For each run, we
generate a set of 50 streams with randomly chosen end nodes
as sender and receiver, a payload size randomly selected from
the set {500, 1000, 1000} [byte], as well as period, with an
equivalent deadline, randomly selected from the respective set.
Note that the scheduler tool used for these experiments attempt
to schedule all streams at once and does not take advan-
tage of incremental methods described in previous literature
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(c.f. [4]). Incremental scheduling algorithms with backtracking
steps significantly improve the schedulability of SMT-based
schedulers (c.f. [4], [19]–[21]. However, we remark that this is
not relevant for comparing the relative difference between the
two evaluated scheduling synthesis objectives (i.e., with vs.
without maximized robustness). The figure shows a penalty
due to the maximization objective. Moreover, we observe that
the increase in run-time due to the precision maximization is
significantly smaller than that of minimizing the end-to-end
latency. We relate this to the complexity of the minimization
objective itself, since in the former case, it relates to a single
variable, the precision, while in the latter, there is a relation
between the offset of two frames for each stream (i.e., the first
sent and the last received). Additionally, each stream adds its
own minimization objective resulting in a multi-optimization
problem. Please note that once the maximized value of �s

has been computed for a scenario, it can be used as a constant
value in certain re-scheduling iterations.

VII. RELATED WORK

Offline scheduling for TSN (or other deterministic net-
works) uses design-time upper bounds on the network’s pre-
cision. Such methods (e.g., [4]–[6], [19], [21], [22]) have
relied on the network never losing synchronization or there
being a fault-tolerant clock synchronization algorithm in order
to guarantee real-time behavior for critical communication.
For TTEthernet networks [9], the upper bound on the syn-
chronization precision has been proven using SMT-based
model checking [23]. No such proof currently exists for IEEE
802.1AS. However, the work in [13] shows via simulations that
a 1µs precision, as requested by the IEEE 802.1AS standard,
is realistic for networks with a maximum spanning tree hop
count of under 30 (NG  30), while in a NG = 100 network
the resulting precision is 2µs. Another simulation result for
measuring the IEEE 802.1AS precision as a function of the
network load in automotive networks is presented in [24].
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