

Out-of-sync Schedule Robustness for Time-sensitive Networks

Silviu S. Craciunas, Ramon Serna Oliver TTTech Computertechnik AG 9-11 June 2021

ТГГесһ

Tllech

TTTech Group

founded in 1998, headquartered in Vienna, Austria, with 19 offices in 14 countries worldwide

develops safe networked computing platforms for a more connected, automated and sustainable world

is based on 20+ years of expertise in scheduled data communication and fault-tolerance principles

strong collaboration with academia 36 ongoing research projects

What is a Time-Sensitive Network (TSN)?

Time Sensitive Networking covers a set of Ethernet sub-standards and amendments currently defined in the IEEE 802.1 TSN task group

- Critical traffic guarantees through time synchronization and scheduled frame transmission
- TSN supports the coexistence of critical and non-critical traffic over the same communication backbone.

TSN (Qbv) switch

TSN schedule

The TSN (Qbv) schedule defines open and close events for the **Gate Control List (GCL)** in each output port of every TSN device in the network

The schedule is build **off-line** taking into account the **maximum** possible **clock deviation** (precision) when all clocks are synchronized.

The schedule enforces a **deterministic behaviour** of frame transmission and reception.

Clock drift

T[**r**ech

- Each clock C_i has a drift rate ho_i
- The maximum clock drift in the network is $ho_{\max} = \max_i \{
 ho_i \}$
- Typical values of $\rho_{\rm max}$ are 50 100ppm, i.e., between 50 and 100 µs/sec
- All clocks need to be synchronized with a certain rate synchronization interval (I)
- The envelope, I, and ho_{\max} determine the value of the network precision δ
- The precision is a safe upper bound on the deviation between any two clocks in the network

Time synchronization in TSN

T[[ech

> IEEE 802.1 AS

- clock synchronization protocol that provides a common clock reference for all network devices called GrandMaster (GM)
- each clock is at most δ (precision) away from the GM time
- Best Master Clock Algorithm (**BMCA**) constructs the synchronization spanning tree with the GM as root node
- time is propagated from the root to the leaves
- each bridge corrects the received time by adding the propagation delay and residence time in the bridge and forwards the corrected time to the next nodes in the tree
- if the GM node fails, a new GM has to be **elected**, and the spanning tree has to be recreated via the BCMA

- is an update to 802.1AS
- introduces multiple domains:
 - domains are fully independent
 - separate BMCA
- introduces multiple time scales
- introduces redundancy: configure redundant paths and redundant GMs (hot standby)

Synchronized deterministic network

Copyright © TTTech Computertechnik AG. All rights reserved.

Perfectly synchronized network

Synchronized network

Synchronization loss

Out-of-sync interval

Can we compute an upper bound on the time until the network is resynchronized in 802.1AS-rev?

safe upper bound of I sec per hop

Copyright © TTTech Computertechnik AG. All rights reserved.

candidate nodes

Out-of-sync drift

$$\Delta_s = 2 \times \rho_{max} \times t_{resync}$$

Example:

- N_G =3, $\delta_{\rm t}$ =3s, $\delta_{\rm hop}$ =1s, and $\rho_{\rm max}$ =100ppm
- the upper bound on the deviation between any two clocks following a GM failure at the point of re-synchronization is 1200µs

If we can generate a schedule with an extended precision parameter, we can effectively maintain determinism even when sync is temporarily lost \rightarrow schedule robustness

Schedule robustness

It is trivial to extend the relevant constraints from our previous work* to include the robustness parameter added to the precision when generating the schedule tables.

 $\forall s_i \in \mathcal{S}, \forall (v_a, v_x), (v_x, v_b) \in R_i :$ $\phi_i^{(v_x, v_b)} - (\phi_i^{(v_a, v_x)} + l_i^{(v_a, v_x)}) \ge \delta + \Delta_s.$

$$\forall \alpha \in \left[0, hp_i^j/T_i\right), \forall \beta \in \left[0, hp_i^j/T_j\right): \\ (\phi_j^{(v_y, v_a)} + \beta \times T_j - \phi_i^{(v_a, v_b)} - \alpha \times T_i \ge \delta + \Delta_s) \lor \\ (\phi_i^{(v_x, v_a)} + \alpha \times T_i - \phi_j^{(v_a, v_b)} - \beta \times T_j \ge \delta + \Delta_s).$$

$$\forall s_i \in \mathcal{S} : \phi_i^{dest(s_i)} + l_i^{dest(s_i)} - \phi_i^{src(s_i)} \le D_i - (\delta + \Delta_s).$$

• our previous work:

- S.S. Craciunas, R. Serna Oliver, M. Chmelik, and W. Steiner Scheduling Real-Time Communication in IEEE 802. I Qbv Time Sensitive Networks In Proc. 24th International Conference on Real-Time Networks and Systems (RTNS), pp. 183-192, ACM, 2016.
- R. Serna Oliver, S.S. Craciunas, and W. Steiner IEEE 802. I Qbv Gate Control List Synthesis using Array Theory Encoding In Proc. 24th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pp. 13-24, IEEE, 2018.

Design-space exploration

T[[ech

- we transform the out-of-sync drift Δ_s to be a variable that is computed by the scheduler
- maximizing the out-of-sync drift Δ_s can help mitigate cascading failures
- selecting a value for one parameter will constrain the possible values for the other dimensions
- the easiest parameter to change is the out-of-sync detection bound $\delta_{
 m t}$
- we show the configuration space for different example networks below

Copyright © TTTech Computertechnik AG. All rights reserved.

Schedule tool and experiment setup

Satisfiability

Modulo

Theories

- satisfiability of logical formulas in first-order formulation
- background theories $\mathcal{LA}(\mathbb{Z})$ \mathcal{BV}
- variables x_1, x_2, \ldots, x_n
- logical symbols $\vee, \wedge, \neg, (,)$
- non-logical symbols $+,=,\%,\leq$
- quantifiers
- optimization criteria: Optimization Modulo Theories [Bjørner@TACASI5]

- Z3 SMT/OMT solver v.4.8.10
- 2 dedicated queues for 802.1 Qbv
- macrotick fixed at 1 µs
- a constant link latency of I µs
- homogeneous link speeds of IGbps
- Intel i7-8650U CPU @1.90GHz with I 6GB RAM

Experiments - schedulability

100 100 50 50 ρ_{max} [ppm] 5 5 3 3 3 1 $\delta_t[s]$ 1200 800 600 40 $\Delta_s[\mu s]$ 400 60 5.76 5.76 5.76 5.76 5.76 5.76 Max util. [%] Runtime [ms] 437 359 343 390 389 422 Schedulability true true true true true true 400 $\delta = 1 \ \mu s - \Theta$ e2e e2e min runtime min runtime (left y-axis) (left v-axis) (right y-axis) (right y-axis) maximize Δ 5 min PB519 (defenymentise ft y-axis 30min \odot • 30min ÷ ÷ ÷ P = 5ms· \odot $1 \min^2$ 30₉3 e2e minufeft v-axis) \odot · • 5min 5min runtime [s] (log) 1min 1min · · $\Delta_{\rm s} = 1.42 {\rm ms}$ 5 see-10s the less role streets care be added 10s 5 min 30min P = 5ms500 ms⁻ 003 e2e minuseft 100 1 min 15(min, 20)ms 0) 1min [s] 10s itun **1**s 1s P2 = 50,Scheelulability is reduced 0 \odot 0 <u>O</u> 0 0:₀: . ^[] <u>0</u> .00 0 100ms 5 sec 100ms $0 (\delta = 1 \mu s)$ 60 400 600 1200 40 200 50 Value of the out-of-sync drift Δ_s [µs] 100 500 ms **1**s

Experiments – end-to-end latency

Experiments - schedule synthesis time

ΤΓΓech

ТГГесһ

Thank you!

Email: silviu.craciunas@tttech.com