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Company Key Facts
TTTech provides highly reliable and 

networked electronic systems with 
solut ions based on t ime-tr iggered 
networking technology and modular 
building blocks for safety controllers 

Globally oriented high-tech company, 
headquartered in Vienna, Austria

Innovation leadership - successful transfer of 
ground breaking research to high-volume 
production

More than 540 employees with offices in 10 
countries (2016)
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R&D Funded Projects at a 
Value of 20 MEUR

Strategic R&D of time-triggered communication platforms,
 prototypes for electronic modules, on-board software and safety platform elements

for relevant future application domains

• EC-funded projects in ARTEMIS, DREAMS, ENABLE-S3, 
ECSEL, ITEA 1&2, Eurostars, Greencars, Cleansky, Marie 
Currie and other R&D Projects directly funded in FP5, 
FP6, FP7, H2020 
• US programs: NASA, DARPA, NSF

• Aerospace: Airbus, Boeing, Diehl, Honeywell, Liebherr, 
Safran, Thales, UTC Aerospace Systems etc.
• Automotive: Audi, AVL, Continental, 

Delphi, Denso, Valeo, Volvo, etc.
• Industrial: Alstom, IBM, Sysgo, Thales Austria, etc.
•Off-Highway: Palfinger, Schwing, etc.
• Semiconductors: ams AG, Infineon, Intel, NXP, ON 

Semiconductor, etc.

• Universities: Vienna University of 
Technology, Berkeley University of 
California, DTU, Chalmers University 
of Technology, KTH, University of 
Siegen, University of Kaiserslautern, etc.
• Research Organizations: Austrian 

Institute of Technology, Barcelona 
Supercomputing Center, CEA, 
Technalia, Fortiss GmbH, Fraunhofer 
Society, SRI, TNO, etc.
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How will the future look like?

$1.9
Trillion

Economic impact of 
near autonomous 
cars by 2025

Autonomous & Near
Autonomous Operations

Real-Time Internet of Things

25+
Billion
Embedded and intelligent 
systems by 2020

Safety & Reliability

Embedded device 
will be safety 
relevant by 2020

Every 2nd
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Time-sensitive domains
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and optimization. This is being described 
as the convergence of OT (Operational 
Technology) and IT (Information Technology). 
In order for this to happen, the network must 
be open and standard to all, however as with 
automotive applications, there are strict 
real-time communication requirements that 
cannot be met by Ethernet in its current form.

In the world that Industrial IoT is set to 
revolutionize, single-purpose control networks 
using proprietary communication protocols are 
becoming islands, connected to one another 
via gateways, and with limited data access and 
usability. 

As new functions and machines are added 
to systems, even more networks are installed, 
leaving industrial systems potentially 
containing tens of different networks using 
incompatible communication protocols. These 
systems are not flexible or reaching their 
maximum potential. In the world of IoT and 
interconnectivity, those who aren’t accessing 
and using valuable data run the risk of being 
left behind. 

Ethernet is the obvious choice for Industrial 
IoT connectivity. It is open, standard and 
already used in enterprise networks, making 
data access much simpler. It is often 
implemented today in industrial environments 
for replacing non-critical bus networks or for 
high bandwidth camera and visualization 
applications. 

Indeed convergence on Ethernet is already 
common for audio, video, and data services, 
and Quality of Service (QoS) solutions can be 
used for critical control over Ethernet. However 
the determinism provided by QoS does not 
scale well to the larger converged networks 
and open infrastructures that are being driven 
by the Industrial Internet of Things.

The Time-Sensitive Networking (TSN) 
extension to IEEE 802 Ethernet enables 
exactly the large scale convergence described 
in Industrial IoT and Industry 4.0. Low latency 
and guarantees for communication of even 
the most critical control traf!c means that 
all applications are able to share a single 
communications network. 

When critical and non-critical applications 
share the same communications infrastructure 
safely and securely, OT (Operational 
Technology) and IT (Information Technology) 
are brought together and data access is 
improved immeasurably. This will enable 
new business models, cut downtime, simplify 
system integration, and reduce the cost of 
maintenance.

As an example; consider a discrete 
automation plant with multiple robots working 
on production lines. Today these robots are 
controlled locally, with limited synchronization 
between them, and bottlenecks for data access 
from beyond the factory "oor. Where there is 
connectivity, it is either done over proprietary 
networks or via gateways. By removing local 

control functions or converging non-critical 
traffic in the same network, one could 
jeopardize the guarantees for communication 
of critical messages. 

Now consider a TSN connection between 
these robots. The controls communication is 
guaranteed across the network even when 
converged with non-critical traf!c, and all 
robots are synchronized to the same global 
time. This means that controls networks can 
be integrated with data networks, and many 
control functions can be centralized away from 
the robot cell, where greater computing power 
can be utilized. 

Importantly, huge amounts of data from 
the robots are now also visible to higher layer 
networks without the need for gateways, 

enabling Machine as a Service (MaaS) type 
business models – simultaneously improving 
service and maintenance from machine 
builders and lowering capital expenditure for 
end user manufacturing companies. 

Use cases for Deterministic Ethernet 
standards like TSN can be found in a wide range 
of application areas beyond manufacturing. 

For example in wind turbines, deploying 
control over Ethernet helps to cut downtime 
and increase production ef!ciency. And in 
railway applications, convergence of critical 
train control networks over Ethernet saves 
space, weight and power, in addition to 
improving system reliability.

Technology article by TTTech.
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A deterministic Ethernet network guarantees latency of critical scheduled communication. Time-scheduled traf!c 
partitioned from other network traf!c is immune from disturbances.
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TSN messages are forwarded as part of scheduled queues (802.1Qbv) which enables guaranteed latency in 
converged networks.
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standards like TSN can be found in a wide range 
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A deterministic Ethernet network guarantees latency of critical scheduled communication. Time-scheduled traf!c 
partitioned from other network traf!c is immune from disturbances.
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TSN messages are forwarded as part of scheduled queues (802.1Qbv) which enables guaranteed latency in 
converged networks.

• Calculable and guaranteed latencies
• Low and bounded jitter
• Low (ideally 0) packet loss
• Fault tolerance
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How?

Assign priorities Analysis Reassign priorities
no

yes

done

Compositionality?
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Alternative
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Sending and receiving of frames is done according to 
a global schedule.

Alternative
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Devices (switches, end systems, etc.) have a 
common understanding of time. 

Sending and receiving of frames is done according to 
a global schedule.

Alternative
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Technologies

TTEthernet

TTP

provides real-time and safety capabilities 
over Ethernet, in a way that is fully 
compatible with IEEE 802 Ethernet 
standards

CAN Profinet

EtherCAT

TSN
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Time-Sensitive Networks
IEEE TSN task group - collection of sub-standards that enhance 802 Ethernet 
with real-time capabilities

Standard Description
802.1ASrev Timing & Synchronization
802.1Qbv Enhancements for Scheduled Traffic (Timed Gates for Egress Queues)
802.1Qbu Frame Preemption
802.1Qca Path Control and Reservation
802.1Qcc Central Configuration Management
802.1Qci Per-Stream Time-based Ingress Filtering and Policing
802.1CB Redundancy, Frame Replication & Elimination
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Network & traffic model

• multi-hop layer 2 switched network via full-duplex multi-speed links
• (multicast) TSN streams with multiple frames per stream 
• synchronised time (<1 usec precision)
• wire and device delays
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• Scheduled 802.1Qbv-compatible devices (Sw + Es)
• Scheduled (mutually exclusive) & priority queues
• Guaranteed delivery of critical traffic with known 

latency, small & bounded jitter
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Functional parameters

Device capabilities Queue configuration 
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Functional parameters

Device capabilities Queue configuration 

Scheduled Es Scheduled Sw Scheduled Es+Sw

• Critical traffic assigned to the scheduled queues
• Non-critical traffic assigned to priority queues (post-analysis through 

network calculus [Frances@ERTS06])
• Isolation: non-critical streams may interfere with each other in priority 

queues, but not with critical streams (isolated in the scheduled queues)
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802.1Qbv configurations
Only critical traffic (serialized similar to bus systems)

Legacy AVB systems that require a few additional high-
criticality flows [Specht@ECRTS16]

Maximize solution space for critical traffic, non-critical 
traffic can be scheduled by inverting the cumulated 
schedule of scheduled queues

High-criticality applications that feature both scheduled 
and non-scheduled traffic, trade-off between 
schedulability of critical traffic and timeliness properties 
and flexibility for non-scheduled traffic

Standard AVB (IEEE 802.1BA) network in which flows 
are serviced according to the priority
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Deterministic Ethernet Constraints

0 8

Frame

Period

�

0 8

Stream

Period

a d

Link

0 4 6 8 12

(1, 4) (1, 6)

see also [Steiner@RTSS10] or [Craciunas@RTNS14]
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Stream and e2e latency constraints

maximum allowed e2e latency

Link 1

0 12

Link 2

0 12

Link 3

0 12

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di↵erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � ⇡ 1µsec [15, p. 186].

8vli 2 VL, 8[va, vx], [vx, vb] 2 vli :

[vx, vb].mt⇥ f
[vx,vb]
i,1 .�� [va, vx].d� � �

[va, vx].mt⇥ (last(F [va,vx]
i ).�+ last(F [va,vx]

i ).L).

The constraint expresses that, for a frame, the di↵erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vli) and dest(vli) denote the CPU links on which

the producer task and, respectively, the consumer task of
virtual link vli are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

8vli 2 VL :

dest(vli).mt⇥ (last(Fdest(vli)
i ).�+ last(Fdest(vli)

i ).L) 

src(vli).mt⇥ f
src(vli)
i,1 .�+ vli.max latency.

In essence, the condition states that the di↵erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o↵set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have

8va 2 V, 8⌧va
i 2 �va :

⇣
f
[va,va]
i,1 .� � ⌧

va
i .�

⌘
^
⇣
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i ).�  ⌧
va
i .D � ⌧

va
i .C

⌘
.

3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di↵erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.

8va 2 V, 8⌧va
i 2 �va

, 8j 2
h
1,
⇣���F [va,va]

i

���� 1
⌘i

:

f
[va,va]
i,j+1 .� � f

[va,va]
i,j .�+ f

[va,va]
i,j .L.

3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task ⌧
va
i and ⌧

vb
j have precedence con-

straints (⌧va
i � ⌧

vb
j ) then ⌧

va
i has to finish executing before

⌧
vb
j starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows

⌧
va
i � ⌧

vb
j ) [vb, vb].mt⇥ f

[vb,vb]
j,1 .� �

[va, va].mt⇥ (last(F [va,va]
i ).�+ last(F [va,va]

i ).L).

Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.

8vli 2 VL, 8[va, vx], [vx, vb] 2 vli :

[vx, vb].mt⇥ f
[vx,vb]
i,1 .�� [va, vx].mt⇥ f

[va,vx]
i,1 .�  [va, vx].b.

Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu↵er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
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network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di↵erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � ⇡ 1µsec [15, p. 186].

8vli 2 VL, 8[va, vx], [vx, vb] 2 vli :

[vx, vb].mt⇥ f
[vx,vb]
i,1 .�� [va, vx].d� � �

[va, vx].mt⇥ (last(F [va,vx]
i ).�+ last(F [va,vx]

i ).L).

The constraint expresses that, for a frame, the di↵erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vli) and dest(vli) denote the CPU links on which

the producer task and, respectively, the consumer task of
virtual link vli are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

8vli 2 VL :

dest(vli).mt⇥ (last(Fdest(vli)
i ).�+ last(Fdest(vli)

i ).L) 

src(vli).mt⇥ f
src(vli)
i,1 .�+ vli.max latency.

In essence, the condition states that the di↵erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
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the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU
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3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di↵erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.
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3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task ⌧
va
i and ⌧

vb
j have precedence con-

straints (⌧va
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vb
j ) then ⌧

va
i has to finish executing before

⌧
vb
j starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows
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Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.
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Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu↵er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

see also [Steiner@RTSS10] or [Craciunas@RTNS14]
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Queue Interleaving

• synchronization errors, frame loss, time-based ingress policing (e.g. IEEE 802.1Qci) 
may lead to non-deterministic placement in queues during runtime

• timed gates control events on the egress port, not the order of frames in the queue
• placing of frames in the scheduled queues at runtime may be non-deterministic

Timely behaviour of streams may oscillate, accumulating jitter for 
the overall end-to-end transmission

expected
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Queue Isolation

Solves the non-determinism problem but 
reduces the solution space

expected
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• Once a flow has arrived, no other flow can arrive in the same queue until the 
first flow has been completely sent

• Better than queue isolation but still restrictive
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• Ensure that there are only frames of one flow in the queue at a time
• Frames from another flow may only enter the queue if the already queued 

frames of the initial flow have been serviced
• Less performant than stream isolation since the solver has to consider at all 

frame interleavings

expected

Frame isolation
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802.1Qbv scheduling constraint

The constraint for minimum jitter scheduling of critical 
traffic for 802.1Qbv networks is:

isolate frames/streams in the time domain
OR 

isolate streams in different queues
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Scheduling problem
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Scheduling problem
Find offsets and queue assignments for individual frames of  
TSN streams along the route that conform to the constraints
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Scheduling problem

Reduces to finding a solution for a set of inequalities resulting from
• frame constraints
• link constraints
• stream constraints
• end-to-end latency constraints
• stream or frame isolation constraints 

Find offsets and queue assignments for individual frames of  
TSN streams along the route that conform to the constraints

802.1Qbv
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Scheduling problem

Reduces to finding a solution for a set of inequalities resulting from
• frame constraints
• link constraints
• stream constraints
• end-to-end latency constraints
• stream or frame isolation constraints 

Find offsets and queue assignments for individual frames of  
TSN streams along the route that conform to the constraints

NP-complete

802.1Qbv
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Satisfiability Modulo Theories

A lot of solvers and a very active community

OpenSMT [Bruttomesso@TACAS10]

CVC4 [Barrett@CAV11]

Yices [Dutertre@CAV14]

Z3 [de Moura@TACAS08]

LA(Z) BV
satisfiability of logical formulas in first-order formulation
background theories
variables
logical symbols
non-logical symbols
quantifiers

x1, x2, . . . , xn

_,^,¬, (, )

9, 8
+,=,%,

optimization (OMT) [Bjørner@TACAS15]
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Optimization

Optimize schedule with respect to certain properties 
of the system (e.g. minimize end-to-end latency of 
selected streams)

802.1Qbv-specific optimizations:
• QoS properties: minimize required scheduled queues in order to 

increase QoS properties of non-critical traffic
• Design space exploration in case of infeasible use-cases, i.e. find the 

minimal number of queues required for scheduled traffic such that a 
schedule is found

Many more optimization opportunities in combination with other TSN 
sub-standards (e.g. frame preemption)
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• Z3 v4.4.1 solver (64bit) (Yices v2.4.2 with quantifier-free linear 
integer arithmetic)

• 64bit 4-core 3.40GHz Intel Core-i7 PC with 4GB memory
• 3 predefined topologies ranging from 3 end-systems connected 

to one switch to 7 end-systems connected through 5 switches 
via 1Gbit/s links with a 1usec macrotick granularity (generate 
high utilization on the links)

• Time-out value for a run to 5 hours
• System configuration: 

Experiments

Scalability and schedulability experiments
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• Frame isolation method (using an incremental backtracking 
algorithm with step size of 1) 

• Vary the problem set in 3 dimensions: 
1. topology size, 
2. number of flows, 
3. flow periods (chosen randomly from 3 sets of 

predefined periods)
• Data size uniformly between 2 and 8 MTU-sized frames
• Senders and receivers are chosen randomly

Scalability Experiments
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Scalability Experiments
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• 381 randomly generated test cases with up to 1000 streams
• 17 reached the time-out 
• Stream isolation was on average 13% faster with a median of 8.03%
• 36.7h for stream isolation and 59h for frame isolation - 30.73% improvement

Frame vs. Stream Isolation
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• Generated inputs that force streams to interleave if scheduled 
in the same egress queue

• Runs w/ and w/o optimization objectives using both stream 
and frame isolation methods

• Minimize accrued sum of the number of queues used per 
egress port

• No incremental steps for optimization runs

Schedulability Experiments
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Schedulability Experiments
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Heuristics (a) Small; G1, G2, G3 (b) Medium; G4, G5 (c) Large; G6

Figure 8: Topologies for experimental evaluation

running time (s) queue usage
ID ILP OMT GRASP K K K KN

T01 0.66 0.81 0.32 2 2 5 0
T04 2.49 2.46 0.21 2 2 5 0
T05 3.73 3.43 0.34 2 2 3 0
T10 4.70 5.12 0.72 4 4 8 0
T11 16.54 12.94 0.84 3 3 7 0
T12 210.03 34.33 0.69 5 5 9 0
T14 39.06 22.87 0.84 2 2 3 0
T18 10.98 7.17 0.56 2 2 5 0
Table 2: Comparison of ILP, OMT, and GRASP

ability of GRASP to �nd solutions in a very limited time for large
test cases.

We consider six topologies of varying size. The topologies are
industrial sized, and are derived from the work presented in [16].
The topologies are grouped into three categories based on their
size. There are three small topologies, two medium, and one large,
shown in Fig. 8. Blue squares illustrate end systems and green
circles illustrate switches. The network precision is assumed to be
� = 5.008 �s. The transmission rate for all links is �xed at 1 Gbps,
and the propagation delay of each link is assumed negligible, i.e., it
is set to zero. Every egress port has eight queues.

The hyperperiod of all �ows de�nes the width of the schedule,
and has a major impact on the complexity of the problem. Thus, the
hyperperiod is an important aspect to consider, when evaluating
performance.We de�ne three hyperperiods of 1ms, 6ms, and 30ms.
For each choice of hyperperiod we de�ne a set of short periods and
a set of long periods as presented in Table 3. Short-period �ows
have a data size of either one, two, or three times the MTU of 1500
bytes. Long-period �ows have data sizes 10, 20, 40, 60, or 100 times
MTU. The choice of periods and data sizes are inspired by [8].

In order to generate �ows, that yield di�cult scheduling prob-
lems in terms of queue usage and end-to-end latencies, the link
utilization should be relatively high. Hence, synthetic applications
are generated by repeatedly adding short-period and long-period
�ows to the set of �ows. The sending and receiving end systems
are chosen at random among the end systems in the topology. This
procedure is repeated until multi-queue scenarios arise. For each
choice of topology and hyperperiod, we generate 30 test cases with
high link utilization. In total we use 540 test cases, 90 for each of
the six topologies.

Table 4 shows the average number of �ows and frames for every
pair of topology class and hyperperiod. Overall, the test instances
range from a few hundred frames to tens of thousands of frames.

We wish to experimentally evaluate GRASP in terms of its ability
to minimize queue usage as well as end-to-end latency. To this end,
we introduce two objective function con�gurations fK (x ) = KN (x )

and f� (x ) = �N (x ) corresponding to c1 = 1, c2 = 0 and c1 = 0, c2 =
1, respectively (see Sect. 7.1).

Fig. 9a and Fig. 9b show a comparison of GRASP and the heuris-
tic approach. For the heuristic approach, each test case is solved
using all heuristic variations (Fig. 7) and then the best schedule is
chosen. Fig. 9a shows normalized values for queue usage (KN ) and
Fig. 9b shows normalized values for end-to-end latency (�N ). The
visualizations are based on average values for all topologies and hy-
perperiods (540 test cases in total). GRASP improves queue usage
as well as end-to-end latency for all topologies and hyperperiods
compared to the heuristic. The average reduction is 40% for KN
and 33% for �N . The heuristic has an average execution time of 28
seconds compared to 15 minutes for GRASP.

Furthermore, we have extended the ILP formulation presented
in [18], which minimizes queue usage, to also feature end-to-end
latency minimization. For the ILP formulation, the Gurobi [2] solver
was given a time limit of 4 hours, after which it returns the best
feasible solution. The ILP approach is intractable for many of the
test instances, especially for larger hyperperiods. The results are
compared with GRASP in Fig. 9c and Fig. 9d for the subset of test
cases solved by ILP. Some data points are missing, because the
ILP approach was unable to �nd feasible solutions within the time
limit. The ILP approach was able to solve 48% of the instances
when minimizing queue usage and 42% when minimizing latency.
On average, the ILP approach produced schedules with 17% lower
queue usage in Fig. 9c and 51% lower end-to-end latency in Fig. 9d,
but had a 15–20 times longer execution time.

GRASP is able to signi�cantly improve execution time compared
to the ILP approach which is intractable for large instances, and is
able to produce better schedules than a pure heuristic approach. Its
ability to minimize the objectives could be improved by increasing
the time limit. Conversely, the time limit can be decreased in or-
der to compute feasible schedules quickly. This �exibility makes

hyperperiod short periods long periods
1ms 100, 200, 500 �s 1ms
6ms 100, 150, 200, 500 �s 1, 2, 6ms
30ms 100, 150, 200, 300, 500 �s 5, 10, 30ms
Table 3: Combinations of periods in test cases

topology size
hyperperiod small medium large
1ms (17, 174) (61, 548) (358, 2078)
6ms (15, 436) (55, 1193) (254, 3682)
30ms (18, 737) (63, 2944) (327, 15167)

Table 4: Average number of (�ows, frames) of test cases

9

Greedy Randomized Adaptive Search Procedure 
(GRASP)-based metaheuristic together with M. 
L. Raagaard and P. Pop (c.f. [2])
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(b) Average end-to-end latency for GRASP and heuristic
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Figure 9: Comparison of GRASP, heuristic and ILP

GRASP well-suited to be used for runtime recon�guration, where
the schedule must adapt to changes in network tra�c.

9 CONCLUSIONS
In this paper, we have addressed the con�guration of TSN networks
in safety-critical real-time systems. We have formulated the prob-
lem of scheduling periodic Time-Triggered (TT) �ows by means of
Gate-Control Lists (GCLs) as de�ned in the IEEE 802.1Qbv standard.
The con�guration of GCLs corresponds to scheduling the temporal

o�set of each frame, and assigning �ows to queues in egress ports
of switches.

We have proposed a GRASP-based optimization strategy for
synthesizing schedules with minimal queue usage and end-to-end
latency. The proposed metaheuristic strategy is capable of sched-
uling very large instances, which are intractable with previously
proposed methods such as ILP and SMT. Furthermore, the strategy
is well-suited for yielding the best possible con�guration within a
strict time limit, e.g., related to runtime recon�guration.
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• use SMT/OMT solvers to create static schedules for 802.1Qbv devices

• optimization directions & system configurations and their trade-offs

• evaluation in terms of scalability and schedulability
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