
Mapping and Integration of Event- and Time-triggered
Real-time Tasks on Partitioned Multi-core Systems

Carlo Meroni, Silviu S. Craciunas, Anaïs Finzi, Paul Pop
Principal scientist @ TTTech

Safe networked computing platforms

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

TTTech Auto safety and
robustness in series

production

Scalable distributed control
system from TTTech Industrial

into Vestas 2, 4 and 6
Megawatt turbines

Collins Aerospace Power
System and Air Management
for the Boeing 787-8, 787-9,

787-10 family

.TTEthernet is the “nervous
system“ i.e., avionics network
platform of the space craft

6,000
Vestas turbines

1.5 million
cars with MotionWise
on the road

1 billion
flight hours

>2 million
kilometers in
deep space

Time-triggered systems

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

Time-triggered scheduling:
• Tasks are executed based on a static schedule table that is computed at design time (offline)
• The complete scheduling timeline for TT tasks is fixed.
• Simple and complex (e.g., chains) constraints are satisfied by the schedule creation.
• One solution is sufficient, and any solution is a sufficient schedulability test.
• Idle time in the static schedule can be used more dynamically, e.g., for ET tasks.

Time-triggered has many advantages (c.f. [Xu2000] [Locke1992]):
• Complex timing requirements: cause-effect chains, different types of jitter
• Temporal isolation: no starvation possible, temporal isolation between all tasks
• Determinism: increased stability and testability, fewer system states
• Compositionality: adding or modifying tasks can be done incrementally
• Predictability: many system properties become predictable, e.g., locks, task pre-emption
• Schedulability: more correct configurations can be realized

One downside is lack of flexibility wrt. to event-driven execution.

Modern safety-critical systems (e.g., ADAS)

Autosar OS Safety RTOS Linux

Multi-Core MCU
Safety

Performance/
Safety Performance

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

GPU

CPU

CPU

CPU

CPU

• Heterogeneous multi-core multi-SoC platforms featuring a variety of CPUs and GPUs
• Time-Triggered (TT) tasks are periodic and statically scheduled
• Event-triggered (ET) are sporadic but also require timing guarantees
• Partitioned scheduling approach without runtime migration of tasks

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

Modern safety-critical systems benefit most from combining TT and ET, allowing a system to be
flexible enough to respond to sporadic events when needed, i.e., best of both worlds

Copyright © TTTech Computertechnik AG. All rights reserved.

TT and ET integration

TT schedule

Schedule cycle (Hyperperiod)

2nd level
scheduler for
sporadic
events

idle slot

• Time-triggered schedule ensures timing behavior of TT tasks and is calculated offline
• Second-level fixed-priority scheduler that services event-triggered tasks in the idle slots at runtime

Problem 1: How can we ensure that both TT and ET tasks respect their deadlines?

September 14, 2023

Copyright © TTTech Computertechnik AG. All rights reserved.

TT and ET task allocation and interaction

t=0 Time (ms)20 40 60 80 100

Event
Driven

Event
Driven

Time
Driven

Time
Driven

Time
Driven

Sensor 1 Sensor 2 Sensor 3Sensor 3

Sensor 2

Sensor 1
Event
Driven

Time
Driven

Time
Driven

Event
Driven

Event
Driven

Event
Driven

Event
Driven

Event
Driven

Fully Event-triggered

Event
Driven

Event
Driven

Event
Driven

Time
Driven

Time
Driven

Time
Driven

Time
Driven

Time
Driven

Time
Driven

Time
Driven

Time
Driven

Fully Time-triggered

Event
Driven

Event
Driven

Time
Driven

Time
Driven

Time
Driven

Event
Driven

Time
Driven

Time
Driven

• The system is partitioned, i.e., TT and ET tasks need to be allocated to cores at design-time
• The TT and ET task allocation problem is crucial to increase schedulability of the system
• The problem is NP-complete, i.e., optimal algorithms are infeasible in the general case

Problem 2: Find a task to core allocation such that TT+ET tasks are schedulable (optimization).

September 14, 2023

How can we check ET task schedulability?

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

Simulate Fixed-Priority and see if deadlines are met
• We need to do this for every potential correct TT schedule candidate (there are a lot of them)
• …and for every priority ordering (remember the combinatorial explosion of n!)
• …and for every arrival pattern of events (also leads to combinatorial explosion)

TT schedule

Idle slots

Arrival of ET

Highly infeasible!

Oversampling – SPoll

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

Simple polling: Use one periodic polling task per event – oversampling
How long is the sampling period?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a) Strictly periodic

b) Non-strictly-periodic

<latexit sha1_base64="w34IqMXlDhZe8I0nvjdcrdCyC8M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNRDx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bbHe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F9fz+vFK7zuMowhEcwyl4cAk1uIM6NIDBAJ7hFd4c4bw4787HvLXg5DOH8AfO5w8URo2t</latexit>

Di

<latexit sha1_base64="j4yzF3Z0nAF24se1HdzlXmYfZf8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48VmlpoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoduY/PKHSPJFNM04xiOlA8ogzaqzkNx/THu+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBxMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lrYuqd1mt3dcq9Zs8jiKcwCmcgwdXUIc7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fsWGOnw==</latexit>

T p
i

<latexit sha1_base64="w34IqMXlDhZe8I0nvjdcrdCyC8M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNRDx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4bbHe+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F9fz+vFK7zuMowhEcwyl4cAk1uIM6NIDBAJ7hFd4c4bw4787HvLXg5DOH8AfO5w8URo2t</latexit>

Di

<latexit sha1_base64="j4yzF3Z0nAF24se1HdzlXmYfZf8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48VmlpoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoduY/PKHSPJFNM04xiOlA8ogzaqzkNx/THu+VK27VnYOsEi8nFcjR6JW/uv2EZTFKwwTVuuO5qQkmVBnOBE5L3UxjStmIDrBjqaQx6mAyP3ZKzqzSJ1GibElD5urviQmNtR7Hoe2MqRnqZW8m/ud1MhNdBxMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lrYuqd1mt3dcq9Zs8jiKcwCmcgwdXUIc7aIAPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fsWGOnw==</latexit>

T p
i

<latexit sha1_base64="zck39JKFb96pn0rgnLfNp4tPCgs=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaWDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFjd4zjhfkQHSoSCUbRSu4s07YmHpFeuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns3gk5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTJ8nfaE5Qzm2hDIt7K2EDammDG1EJRuCt/jyMmmeVb2L6vndeaV2ncdRhCM4hlPw4BJqcAt1aAADCc/wCm/Oo/PivDsf89aCk88cwh84nz8oOZAP</latexit>

⌧pi

<latexit sha1_base64="zck39JKFb96pn0rgnLfNp4tPCgs=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaWDbbTbt0s4m7E6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFjd4zjhfkQHSoSCUbRSu4s07YmHpFeuuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns3gk5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTJ8nfaE5Qzm2hDIt7K2EDammDG1EJRuCt/jyMmmeVb2L6vndeaV2ncdRhCM4hlPw4BJqcAt1aAADCc/wCm/Oo/PivDsf89aCk88cwh84nz8oOZAP</latexit>

⌧pi

<latexit sha1_base64="wzncyhtfKGRAvnsMFN0xGvk56Wc=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BIvgqeyKqBehqAePFfoF23XJptk2NJssyaxQSn+GFw+KePXXePPfmLZ70NYHA4/3ZpiZF6WCG3Ddb6ewsrq2vlHcLG1t7+zulfcPWkZlmrImVULpTkQME1yyJnAQrJNqRpJIsHY0vJ367SemDVeyAaOUBQnpSx5zSsBKfiPkjym+xnchD8sVt+rOgJeJl5MKylEPy1/dnqJZwiRQQYzxPTeFYEw0cCrYpNTNDEsJHZI+8y2VJGEmGM9OnuATq/RwrLQtCXim/p4Yk8SYURLZzoTAwCx6U/E/z88gvgrGXKYZMEnni+JMYFB4+j/ucc0oiJElhGpub8V0QDShYFMq2RC8xZeXSeus6l1Uzx/OK7WbPI4iOkLH6BR56BLV0D2qoyaiSKFn9IreHHBenHfnY95acPKZQ/QHzucP8SOQZA==</latexit>

T p
i = Di

<latexit sha1_base64="UFlX0JPwJ6R+lfvijtvdYMfbYqI=">AAACHnicbVDLSgMxFM34rPVVdekmWARBKDOlPjZCsS5cVugLOnXIpJk2NDMZkjtCGfolbvwVNy4UEVzp35g+Ftp6IHA451xu7vFjwTXY9re1tLyyurae2chubm3v7Ob29htaJoqyOpVCqpZPNBM8YnXgIFgrVoyEvmBNf1AZ+80HpjSXUQ2GMeuEpBfxgFMCRvJyZzWP38f4CruCBeCKQEip3G6gCE1vPI5PccXjo7Q4chXv9cFVk4CXy9sFewK8SJwZyaMZql7u0+1KmoQsAiqI1m3HjqGTEgWcCjbKuolmMaED0mNtQyMSMt1JJ+eN8LFRujiQyrwI8ET9PZGSUOth6JtkSKCv572x+J/XTiC47KQ8ihNgEZ0uChKBQeJxV7jLFaMghoYQqrj5K6Z9YqoB02jWlODMn7xIGsWCc14o3ZXy5etZHRl0iI7QCXLQBSqjW1RFdUTRI3pGr+jNerJerHfrYxpdsmYzB+gPrK8fHo+iiA==</latexit>

T p
i =

�
Di + Ci

2

⌫

Can be quite inefficient!
Think of an event with C = 2 ms, D = 20 ms, and T = 100ms. (2% utilization)

We have to reserve a slot every 9 ms, consuming 22,2 % of CPU bandwidth.

Response-time analysis on a partitioned resource

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

Dedicated resource: available all the time at full capacity

Fractional resource: available all the time at reduced capacity

Partitioned resource: available some of the time at full capacity

Available supply over time of a partitioned resource R

<latexit sha1_base64="HkQqyiO0Ud6S2KFvLvCnNideDFs=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXinosevFYxX7AdinZNNuGZjchmRWW0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhUpwA6777RTW1jc2t4rbpZ3dvf2D8uFR28hUU9aiUkjdDYlhgiesBRwE6yrNSBwK1gnHtzO/88S04TJ5hEyxICbDhEecErCSb1KlRNZ/qMJ5v1xxa+4ceJV4OamgHM1++as3kDSNWQJUEGN8z1UQTIgGTgWblnqpYYrQMRky39KExMwEk/nJU3xmlQGOpLaVAJ6rvycmJDYmi0PbGRMYmWVvJv7n+SlE18GEJyoFltDFoigVGCSe/Y8HXDMKIrOEUM3trZiOiCYUbEolG4K3/PIqaV/UvMta/b5eadzkcRTRCTpFVeShK9RAd6iJWogiiZ7RK3pzwHlx3p2PRWvByWeO0R84nz8BU5EU</latexit>

supplyR(t)resource
supply

Response-time analysis on a partitioned resource

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

resource
demand

A. Finzi, S.S. Craciunas, M. Boyer 7

For sporadic ET tasks with arbitrary deadlines, we need to consider how many previous
job releases there can be within any polling period. Hence we have C

p

i
= Á

T
p
i

Ti
Ë · Ci. This

approach can be very pessimistic for tasks with a short deadline and long MIT/period or a
long deadline and short period/MIT, leading to a reduced schedulability. Consider a similar
example to the one from [72], where a sporadic event with a computation time of Ci = 2
ms and a deadline of Di = 20 ms needs to be handled. The event can occur at most once
every Ti = 100 ms, thereby having a 2% CPU utilization. However, because the exact arrival
is not known, we would have to reserve a slot every 9 ms (assuming a 2 ms slot size) if we
want to finish the execution within 20 ms of any possible event arrival. This would consume
22, 2% of the CPU bandwidth. If the deadline is much larger than the period, e.g., Di = 100
ms, Ti = 10 ms, and Ci = 2 ms, the period and the computation time of the polling task
are 49 and 10, respectively, which results in a utilization of 20, 4%. We see that, except in
very simple systems, this approach results in a large over-utilization and will most likely not
result in any feasible TT schedule creation. Both strictly periodic and non-strictly periodic
approaches have the downside of reduced schedulability, either from oversampling or from
the strictly periodic nature of ET slot placement.

A more precise approach, which we call advanced polling (AdvPoll), is a simplified version
of the hierarchical scheduling paradigm [61, 62, 42] with 2 levels, a 2nd-level fixed-priority
(FP) dispatcher for ET tasks, and a time-triggered dispatcher on the lowest level, similar
to [1]. Our reference method for the advanced polling is [1] where the schedulability of a
set of constrained deadline sporadic tasks is verified under a server with a given capacity
and period. Similar to [1], we define a periodic resource abstraction (basically a budget and
period) for each polling task such that the sporadic ET tasks are still schedulable if the
polling task gets the desired budget in the given period. The o�ine schedule synthesis step
for TT tasks can then readily include the polling task(s) when generating the schedule table
as another periodic (set of) TT task(s), e.g., using exact methods or heuristics (c.f. [60]).
Naturally, there can be more than one polling task, each of them handling a disjoint subset
of the ET tasks. To ease the notation, we assume for now that there is only one polling
task ·p handling the entire set T

ET of ET tasks for which Cp and Tp have to be determined.
While in [1] the polling task (periodic resource) is defined by a budget Cp and a period Tp,
a more general model called Explicit Deadline Periodic (EDP) [16, 2, 42] can be used in
which the server also has a deadline Dp 6 Tp. While this extension may increase the search
space for possible TT schedules (and therefore schedulability), it will also result in a more
complex server design problem (see below). We hence use the more simple model from [1] to
define the lower supply bound function slbf(t) of a polling task ·

p in any time window of
length t > 0. The exact expression of slbf(t) can be found in [1], based on the characteristic
function from [42]. To reduce complexity, the slbf(t) is usually bound linearly from below
by the so-called linear supply lower bound function lslbf(t) (c.f. [42]) defined in [1] using
a = Cp

Tp
and � = 2 · (Tp ≠ Cp), as

lslbf(t) = max{0, (t ≠ �) · a}. (4)

Following the method in [1], we compute for each ET task ·i œ T
ET and for each instant

t the maximum load of task ·i and all higher and equal priority tasks (maximum load of
level-i) Hi(t). We can use the classical definition of the maxium load of level-i from [39] for
constrained deadline tasks, namely

demand(·i, t) = Ci +
ÿ

’·jœHP (·i)

9
t

Tj

:
· Cj . (5)

<latexit sha1_base64="RlYHUywOfGebAv5uKEaTyYvUt/Y=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJUkJJIUY9FLx4r2A9oQ9hsNu3SzSbsTgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5QSq4Bsf5ttbWNza3tks75d29/YND++i4rZNMUdaiiUhUNyCaCS5ZCzgI1k0VI3EgWCcY3c/8zpgpzRP5BJOUeTEZSB5xSsBIvm2HLCYyrPaBZD6/hAvfrjg1Zw68StyCVFCBpm9/9cOEZjGTQAXRuuc6KXg5UcCpYNNyP9MsJXREBqxnqCQx014+v3yKz40S4ihRpiTgufp7Iiex1pM4MJ0xgaFe9mbif14vg+jWy7lMM2CSLhZFmcCQ4FkMOOSKURATQwhV3NyK6ZAoQsGEVTYhuMsvr5L2Vc29rtUf65XGXRFHCZ2iM1RFLrpBDfSAmqiFKBqjZ/SK3qzcerHerY9F65pVzJygP7A+fwDGrZMc</latexit>

demand(⌧i, t)

Response-time analysis on a partitioned resource

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

<latexit sha1_base64="HkQqyiO0Ud6S2KFvLvCnNideDFs=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXinosevFYxX7AdinZNNuGZjchmRWW0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhUpwA6777RTW1jc2t4rbpZ3dvf2D8uFR28hUU9aiUkjdDYlhgiesBRwE6yrNSBwK1gnHtzO/88S04TJ5hEyxICbDhEecErCSb1KlRNZ/qMJ5v1xxa+4ceJV4OamgHM1++as3kDSNWQJUEGN8z1UQTIgGTgWblnqpYYrQMRky39KExMwEk/nJU3xmlQGOpLaVAJ6rvycmJDYmi0PbGRMYmWVvJv7n+SlE18GEJyoFltDFoigVGCSe/Y8HXDMKIrOEUM3trZiOiCYUbEolG4K3/PIqaV/UvMta/b5eadzkcRTRCTpFVeShK9RAd6iJWogiiZ7RK3pzwHlx3p2PRWvByWeO0R84nz8BU5EU</latexit>

supplyR(t)
<latexit sha1_base64="C++ZK90LG8q8dq/WvWFHjKiXVF8=">AAAB83icbVBNSwMxEM36WetX1aOXYBEqSNmVoh6LXjzW0i/oLiWbZtvQbHZJJkIp/RtePCji1T/jzX9j2u5BWx8MPN6bYWZemAquwXW/nbX1jc2t7dxOfndv/+CwcHTc0olRlDVpIhLVCYlmgkvWBA6CdVLFSBwK1g5H9zO//cSU5olswDhlQUwGkkecErCSX2+UfCCmxy/rF71C0S27c+BV4mWkiDLUeoUvv59QEzMJVBCtu56bQjAhCjgVbJr3jWYpoSMyYF1LJYmZDibzm6f43Cp9HCXKlgQ8V39PTEis9TgObWdMYKiXvZn4n9c1EN0GEy5TA0zSxaLICAwJngWA+1wxCmJsCaGK21sxHRJFKNiY8jYEb/nlVdK6KnvX5cpjpVi9y+LIoVN0hkrIQzeoih5QDTURRSl6Rq/ozTHOi/PufCxa15xs5gT9gfP5A8QokN4=</latexit>

RT (⌧i, R)

<latexit sha1_base64="RlYHUywOfGebAv5uKEaTyYvUt/Y=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJUkJJIUY9FLx4r2A9oQ9hsNu3SzSbsTgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5QSq4Bsf5ttbWNza3tks75d29/YND++i4rZNMUdaiiUhUNyCaCS5ZCzgI1k0VI3EgWCcY3c/8zpgpzRP5BJOUeTEZSB5xSsBIvm2HLCYyrPaBZD6/hAvfrjg1Zw68StyCVFCBpm9/9cOEZjGTQAXRuuc6KXg5UcCpYNNyP9MsJXREBqxnqCQx014+v3yKz40S4ihRpiTgufp7Iiex1pM4MJ0xgaFe9mbif14vg+jWy7lMM2CSLhZFmcCQ4FkMOOSKURATQwhV3NyK6ZAoQsGEVTYhuMsvr5L2Vc29rtUf65XGXRFHCZ2iM1RFLrpBDfSAmqiFKBqjZ/SK3qzcerHerY9F65pVzJygP7A+fwDGrZMc</latexit>

demand(⌧i, t)

<latexit sha1_base64="As5IYCXqYn1yM5ifz6KwGdVxIIE=">AAACJXicbVBdSxtBFJ31u6nVtH3sy2AoJFDCroiW0oLoSx9jSEwgCcvd2ZtkyOzsMnO3EIL9Mb70r/TFhwYp+ORfcfIhqPHAwOGcc7lzT5Qpacn377y19Y3Nre2dN4W3u+/29ovvP1zaNDcCmyJVqWlHYFFJjU2SpLCdGYQkUtiKRuczv/ULjZWpbtA4w14CAy37UgA5KSx+rzfKXYI8lF94vcJ/cASjJFr6Td+4zbNMjcN6mSq8O0AeYwI6fsxTJSyW/Ko/B18lwZKU2BK1sDjtxqnIE9QkFFjbCfyMehMwJIXCq0I3t5iBGMEAO45qSND2JvMrr/hnp8S8nxr3NPG5+nRiAom14yRyyQRoaF96M/E1r5NT/2tvInWWE2qxWNTPFaeUzyrjsTQoSI0dAWGk+ysXQzAgyBVbcCUEL09eJZeH1eC4enRxVDo9W9axwz6xA1ZmATthp+wnq7EmE+ya/WX/2NT74914t97/RXTNW858ZM/g3T8AmCWjhA==</latexit>

RT (⌧i, R) = earliest t : supplyR(t) � demand(⌧i, t)

Solution using response-time analysis

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

Holistic scheduling [Pop2003]
1. Generate TT schedule such that TT tasks are fulfilled.
2. Check schedulability over resulting idle slots using the response-time method over partitioned

resources for every event-based task.
3. Recompute TT schedule if ET tasks not feasible

Slot-shifting [Isovic2009] is a similar method with a different schedulability test that does not
assume FP scheduling.

<latexit sha1_base64="HkQqyiO0Ud6S2KFvLvCnNideDFs=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXinosevFYxX7AdinZNNuGZjchmRWW0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhUpwA6777RTW1jc2t4rbpZ3dvf2D8uFR28hUU9aiUkjdDYlhgiesBRwE6yrNSBwK1gnHtzO/88S04TJ5hEyxICbDhEecErCSb1KlRNZ/qMJ5v1xxa+4ceJV4OamgHM1++as3kDSNWQJUEGN8z1UQTIgGTgWblnqpYYrQMRky39KExMwEk/nJU3xmlQGOpLaVAJ6rvycmJDYmi0PbGRMYmWVvJv7n+SlE18GEJyoFltDFoigVGCSe/Y8HXDMKIrOEUM3trZiOiCYUbEolG4K3/PIqaV/UvMta/b5eadzkcRTRCTpFVeShK9RAd6iJWogiiZ7RK3pzwHlx3p2PRWvByWeO0R84nz8BU5EU</latexit>

supplyR(t)
<latexit sha1_base64="C++ZK90LG8q8dq/WvWFHjKiXVF8=">AAAB83icbVBNSwMxEM36WetX1aOXYBEqSNmVoh6LXjzW0i/oLiWbZtvQbHZJJkIp/RtePCji1T/jzX9j2u5BWx8MPN6bYWZemAquwXW/nbX1jc2t7dxOfndv/+CwcHTc0olRlDVpIhLVCYlmgkvWBA6CdVLFSBwK1g5H9zO//cSU5olswDhlQUwGkkecErCSX2+UfCCmxy/rF71C0S27c+BV4mWkiDLUeoUvv59QEzMJVBCtu56bQjAhCjgVbJr3jWYpoSMyYF1LJYmZDibzm6f43Cp9HCXKlgQ8V39PTEis9TgObWdMYKiXvZn4n9c1EN0GEy5TA0zSxaLICAwJngWA+1wxCmJsCaGK21sxHRJFKNiY8jYEb/nlVdK6KnvX5cpjpVi9y+LIoVN0hkrIQzeoih5QDTURRSl6Rq/ozTHOi/PufCxa15xs5gT9gfP5A8QokN4=</latexit>

RT (⌧i, R)

<latexit sha1_base64="RlYHUywOfGebAv5uKEaTyYvUt/Y=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJUkJJIUY9FLx4r2A9oQ9hsNu3SzSbsTgol9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5QSq4Bsf5ttbWNza3tks75d29/YND++i4rZNMUdaiiUhUNyCaCS5ZCzgI1k0VI3EgWCcY3c/8zpgpzRP5BJOUeTEZSB5xSsBIvm2HLCYyrPaBZD6/hAvfrjg1Zw68StyCVFCBpm9/9cOEZjGTQAXRuuc6KXg5UcCpYNNyP9MsJXREBqxnqCQx014+v3yKz40S4ihRpiTgufp7Iiex1pM4MJ0xgaFe9mbif14vg+jWy7lMM2CSLhZFmcCQ4FkMOOSKURATQwhV3NyK6ZAoQsGEVTYhuMsvr5L2Vc29rtUf65XGXRFHCZ2iM1RFLrpBDfSAmqiFKBqjZ/SK3qzcerHerY9F65pVzJygP7A+fwDGrZMc</latexit>

demand(⌧i, t)
Can be very time-consuming!

No guidance on how to place idle slots.

Can we do better?

Periodic resource abstraction

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

Dedicated resource:
• available all the time at full capacity

Fractional resource:
• available all the time at reduced capacity

Partitioned resource:
• available some of the time at full capacity

Periodic resource:
• available periodically at full capacity (e.g., R(2,3,3))

Periodic resource abstraction - AdvPoll

Explicit Deadline Periodic: R(C,D,T)
• we do not care when the supply C is given, as long as it is given in every period T until the deadline D
• we can use the worst-case linear supply bound and schedulability test defined below [Almeida2004]

[Shin2008]

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

supply

<latexit sha1_base64="LQxUP5vN33bpXHfjKZ3JmROFUHE=">AAAB7XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNRDx4r2A9oQ9lsJ+3aTTbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNCrVHBpcSaXbATMgRQwNFCihnWhgUSChFYxupn7rCbQRKn7AcQJ+xAaxCAVnaKVm9xYksl654lbdGegy8XJSITnqvfJXt694GkGMXDJjOp6boJ8xjYJLmJS6qYGE8REbQMfSmEVg/Gx27YSeWKVPQ6VtxUhn6u+JjEXGjKPAdkYMh2bRm4r/eZ0Uwys/E3GSIsR8vihMJUVFp6/TvtDAUY4tYVwLeyvlQ6YZRxtQyYbgLb68TJpnVe+ien5/Xqld53EUyRE5JqfEI5ekRu5InTQIJ4/kmbySN0c5L8678zFvLTj5zCH5A+fzB2N6jwU=</latexit>

�

<latexit sha1_base64="wEI8JztgPf6N92x6CusVkC/0LZg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJ66LqXVZr97VK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AI5vjyE=</latexit>↵

<latexit sha1_base64="ny9NIdrIRk8udHR/rkM/sKHYEAE=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoiRd0IxW5cVugLmlAmk0k7dPJgZiKUEPBX3LhQxK3f4c6/cdpmoa0HLhzOuZd77/ESzqSyrG+jtLa+sblV3q7s7O7tH5iHR10Zp4LQDol5LPoelpSziHYUU5z2E0Fx6HHa8ybNmd97pEKyOGqraULdEI8iFjCClZaG5omDeTLG6BY5fiAwyZp51s6HZtWqWXOgVWIXpAoFWkPzy/FjkoY0UoRjKQe2lSg3w0IxwmlecVJJE0wmeEQHmkY4pNLN5ufn6FwrPgpioStSaK7+nshwKOU09HRniNVYLnsz8T9vkKrgxs1YlKSKRmSxKEg5UjGaZYF8JihRfKoJJoLpWxEZY52C0olVdAj28surpHtZs69q9Yd6tXFXxFGGUziDC7DhGhpwDy3oAIEMnuEV3own48V4Nz4WrSWjmDmGPzA+fwCcDZVI</latexit>

↵ =
C

T
<latexit sha1_base64="9O0rt0BgNAjOy78gVivG92grVEQ=">AAAB/HicbVDLSgNBEOz1GeNrNUcvg0EQxLAbgnoRgsnBY4S8IFnC7GQ2GTL7YGZWWJb4K148KOLVD/Hm3zhJ9qCJBQ1FVTfdXW7EmVSW9W2srW9sbm3ndvK7e/sHh+bRcVuGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23Elt5nceqZAsDJoqiajj41HAPEaw0tLALPTrlCuMblETXaA6ukTl2sAsWiVrDrRK7IwUIUNjYH71hyGJfRoowrGUPduKlJNioRjhdJrvx5JGmEzwiPY0DbBPpZPOj5+iM60MkRcKXYFCc/X3RIp9KRPf1Z0+VmO57M3E/7xerLwbJ2VBFCsakMUiL+ZIhWiWBBoyQYniiSaYCKZvRWSMBSZK55XXIdjLL6+SdrlkX5UqD5Vi9S6LIwcncArnYMM1VOEeGtACAgk8wyu8GU/Gi/FufCxa14xspgB/YHz+AITakho=</latexit>

� = T +D � 2C
<latexit sha1_base64="rI3JP8DEURpIVGBfZAITbSJmq2M=">AAACFXicbVDLSgNBEJz1GeMr6tHLYBASiGFXgnoRgnrwGMHEQDaE3smsGTL7YKZXDEt+wou/4sWDIl4Fb/6Nk8dBjQUNRVU33V1eLIVG2/6y5uYXFpeWMyvZ1bX1jc3c1nZDR4livM4iGammB5pLEfI6CpS8GSsOgSf5jdc/H/k3d1xpEYXXOIh5O4DbUPiCARqpkytJLT2/gEV6SgO4d1O7RAt44F5wiVCkLutGSF2QcQ/cYSeXt8v2GHSWOFOSJ1PUOrlPtxuxJOAhMglatxw7xnYKCgWTfJh1E81jYH245S1DQwi4bqfjr4Z03yhd6kfKVIh0rP6cSCHQehB4pjMA7Om/3kj8z2sl6J+0UxHGCfKQTRb5iaQY0VFEtCsUZygHhgBTwtxKWQ8UMDRBZk0Izt+XZ0njsOwclStXlXz1bBpHhuySPVIgDjkmVXJJaqROGHkgT+SFvFqP1rP1Zr1PWues6cwO+QXr4xtO0p0T</latexit>

lslbf(t) = max{0, (t��) · ↵}

<latexit sha1_base64="ii2qK226CEo+JR0hNfukoh+1BrA=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEYwTwgWcLsZDYZMju7zvQKIeQnvHhQxKu/482/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVA44T7kd0oEQoGEUrtaWRQVjG816x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/M752SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrPnSV9ozlCOLaFMC3srYUOqKUMbUcGG4C2/vEqaFxXvslK9r5ZqN1kceTiBUyiDB1dQgzuoQwMYSHiGV3hzHp0X5935WLTmnGzmGP7A+fwBkJiPqw==</latexit>

lslbf(t)

<latexit sha1_base64="xbguifXB+5wal2qh5OZMopxdwTA=">AAACL3icbVBdSxtBFJ3122ht2j76cmkQlJZ0t4iVgiAq0kcVo0I2hLuzN8ng7Owyc1cIwf6ivvSv+CLSIr72X3QSI/h1YOBwzj3cuScptHIchjfBxOTU9Mzs3HxlYfHN0tvqu/cnLi+tpIbMdW7PEnSklaEGK9Z0VljCLNF0mpzvDv3TC7JO5eaY+wW1Muwa1VES2Uvt6v7R8WrMWLbVZzhagy0gtFqR45/8HeIYGOIuQbxHmhE+QUoZmvQhwWtfYtRFD6FdrYX1cAR4SaIxqYkxDtrVqzjNZZmRYanRuWYUFtwaoGUlNV1W4tJRgfIcu9T01GBGrjUY3XsJK15JoZNb/wzDSH2cGGDmXD9L/GSG3HPPvaH4mtcsubPZGihTlExG3i/qlBo4h2F5kCpLknXfE5RW+b+C7KFFyb7iii8hen7yS3LytR5t1NcP12vbO+M65sSy+ChWRSS+iW3xQxyIhpDil7gSf8Tf4HdwHdwGd/ejE8E480E8QfDvP6ebpnM=</latexit>

RT (⌧i, R) = earliest t :

t � �+ demand(⌧i, t)/↵

<latexit sha1_base64="ZdXe5MPM8NgXunYBHxbyDFussfY=">AAACjnicbVHbattAEF2pt9TpxWkf+zLUFGxSjFVCGlJCQ90HP7rBTgJeI1arkbzJ6sLuqGCE+jf9ob71b7q29dAmHVg4nDNzZmcmKrWyNBr99vwHDx89frL3tLP/7PmLl92DV5e2qIzEuSx0Ya4jYVGrHOekSON1aVBkkcar6Ha80a++o7GqyGe0LnGZiTRXiZKCHBV2f17M+pxEFar3cDGAM0BhtEJLP+gUCHiKwL+iJgGHwDnwODFC1kFTc6HLlWh4pNK0Pw7VIbdVFtY8KYzQGraeN1zlMJm2DQYNcI2JM9USlUvZWlFTz8IbJxmVrpxmdpqMC4Kxc9j4D8JubzQcbQPug6AFPdbGNOz+4nEhqwxzklpYuwhGJS1rYUhJjU2HVxZLIW9FigsHc5GhXdbbdTbwzjExuEHcywm27N8VtcisXWeRy8wErexdbUP+T1tUlJwsa5WXFWEud42SSgMVsLkNxMqgJL12QEij3F9BroTbErkLdtwSgrsj3weXH4bB8fDo21Hv/Eu7jj32hr1lfRawj+ycTdiUzZn09r3AO/U++V3/2D/zP+9Sfa+tec3+CX/yB+lLxOI=</latexit>

RT (⌧i, R) = earliest t : t � �+

1

↵

✓
Ci +

X

8⌧j2HP (⌧i)

⇠
t

Tj

⇡
· Cj

◆

Periodic resource abstraction - AdvPoll

Explicit Deadline Periodic: R(C,D,T)
• we do not care when the supply C is given, as long as it is given in every period T until the deadline D
• we can use the worst-case linear supply bound and schedulability test defined below [Almeida2004]

[Shin2008]

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

supply

<latexit sha1_base64="LQxUP5vN33bpXHfjKZ3JmROFUHE=">AAAB7XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GNRDx4r2A9oQ9lsJ+3aTTbsToQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNCrVHBpcSaXbATMgRQwNFCihnWhgUSChFYxupn7rCbQRKn7AcQJ+xAaxCAVnaKVm9xYksl654lbdGegy8XJSITnqvfJXt694GkGMXDJjOp6boJ8xjYJLmJS6qYGE8REbQMfSmEVg/Gx27YSeWKVPQ6VtxUhn6u+JjEXGjKPAdkYMh2bRm4r/eZ0Uwys/E3GSIsR8vihMJUVFp6/TvtDAUY4tYVwLeyvlQ6YZRxtQyYbgLb68TJpnVe+ien5/Xqld53EUyRE5JqfEI5ekRu5InTQIJ4/kmbySN0c5L8678zFvLTj5zCH5A+fzB2N6jwU=</latexit>

�

<latexit sha1_base64="wEI8JztgPf6N92x6CusVkC/0LZg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oUy2m3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5YCYJ8yMcSh5yisZKrR6KZIT9csWtunOQVeLlpAI5Gv3yV28Q0zRi0lCBWnc9NzF+hspwKti01Es1S5COcci6lkqMmPaz+bVTcmaVAQljZUsaMld/T2QYaT2JAtsZoRnpZW8m/ud1UxNe+xmXSWqYpItFYSqIicnsdTLgilEjJpYgVdzeSugIFVJjAyrZELzll1dJ66LqXVZr97VK/SaPowgncArn4MEV1OEOGtAECo/wDK/w5sTOi/PufCxaC04+cwx/4Hz+AI5vjyE=</latexit>↵

<latexit sha1_base64="ny9NIdrIRk8udHR/rkM/sKHYEAE=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoiRd0IxW5cVugLmlAmk0k7dPJgZiKUEPBX3LhQxK3f4c6/cdpmoa0HLhzOuZd77/ESzqSyrG+jtLa+sblV3q7s7O7tH5iHR10Zp4LQDol5LPoelpSziHYUU5z2E0Fx6HHa8ybNmd97pEKyOGqraULdEI8iFjCClZaG5omDeTLG6BY5fiAwyZp51s6HZtWqWXOgVWIXpAoFWkPzy/FjkoY0UoRjKQe2lSg3w0IxwmlecVJJE0wmeEQHmkY4pNLN5ufn6FwrPgpioStSaK7+nshwKOU09HRniNVYLnsz8T9vkKrgxs1YlKSKRmSxKEg5UjGaZYF8JihRfKoJJoLpWxEZY52C0olVdAj28surpHtZs69q9Yd6tXFXxFGGUziDC7DhGhpwDy3oAIEMnuEV3own48V4Nz4WrSWjmDmGPzA+fwCcDZVI</latexit>

↵ =
C

T
<latexit sha1_base64="9O0rt0BgNAjOy78gVivG92grVEQ=">AAAB/HicbVDLSgNBEOz1GeNrNUcvg0EQxLAbgnoRgsnBY4S8IFnC7GQ2GTL7YGZWWJb4K148KOLVD/Hm3zhJ9qCJBQ1FVTfdXW7EmVSW9W2srW9sbm3ndvK7e/sHh+bRcVuGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23Elt5nceqZAsDJoqiajj41HAPEaw0tLALPTrlCuMblETXaA6ukTl2sAsWiVrDrRK7IwUIUNjYH71hyGJfRoowrGUPduKlJNioRjhdJrvx5JGmEzwiPY0DbBPpZPOj5+iM60MkRcKXYFCc/X3RIp9KRPf1Z0+VmO57M3E/7xerLwbJ2VBFCsakMUiL+ZIhWiWBBoyQYniiSaYCKZvRWSMBSZK55XXIdjLL6+SdrlkX5UqD5Vi9S6LIwcncArnYMM1VOEeGtACAgk8wyu8GU/Gi/FufCxa14xspgB/YHz+AITakho=</latexit>

� = T +D � 2C
<latexit sha1_base64="rI3JP8DEURpIVGBfZAITbSJmq2M=">AAACFXicbVDLSgNBEJz1GeMr6tHLYBASiGFXgnoRgnrwGMHEQDaE3smsGTL7YKZXDEt+wou/4sWDIl4Fb/6Nk8dBjQUNRVU33V1eLIVG2/6y5uYXFpeWMyvZ1bX1jc3c1nZDR4livM4iGammB5pLEfI6CpS8GSsOgSf5jdc/H/k3d1xpEYXXOIh5O4DbUPiCARqpkytJLT2/gEV6SgO4d1O7RAt44F5wiVCkLutGSF2QcQ/cYSeXt8v2GHSWOFOSJ1PUOrlPtxuxJOAhMglatxw7xnYKCgWTfJh1E81jYH245S1DQwi4bqfjr4Z03yhd6kfKVIh0rP6cSCHQehB4pjMA7Om/3kj8z2sl6J+0UxHGCfKQTRb5iaQY0VFEtCsUZygHhgBTwtxKWQ8UMDRBZk0Izt+XZ0njsOwclStXlXz1bBpHhuySPVIgDjkmVXJJaqROGHkgT+SFvFqP1rP1Zr1PWues6cwO+QXr4xtO0p0T</latexit>

lslbf(t) = max{0, (t��) · ↵}

<latexit sha1_base64="ii2qK226CEo+JR0hNfukoh+1BrA=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEYwTwgWcLsZDYZMju7zvQKIeQnvHhQxKu/482/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwup35rSeujYjVA44T7kd0oEQoGEUrtaWRQVjG816x5FbcOcgq8TJSggz1XvGr249ZGnGFTFJjOp6boD+hGgWTfFropoYnlI3ogHcsVTTixp/M752SM6v0SRhrWwrJXP09MaGRMeMosJ0RxaFZ9mbif14nxfDanwiVpMgVWywKU0kwJrPnSV9ozlCOLaFMC3srYUOqKUMbUcGG4C2/vEqaFxXvslK9r5ZqN1kceTiBUyiDB1dQgzuoQwMYSHiGV3hzHp0X5935WLTmnGzmGP7A+fwBkJiPqw==</latexit>

lslbf(t)

<latexit sha1_base64="xbguifXB+5wal2qh5OZMopxdwTA=">AAACL3icbVBdSxtBFJ3122ht2j76cmkQlJZ0t4iVgiAq0kcVo0I2hLuzN8ng7Owyc1cIwf6ivvSv+CLSIr72X3QSI/h1YOBwzj3cuScptHIchjfBxOTU9Mzs3HxlYfHN0tvqu/cnLi+tpIbMdW7PEnSklaEGK9Z0VljCLNF0mpzvDv3TC7JO5eaY+wW1Muwa1VES2Uvt6v7R8WrMWLbVZzhagy0gtFqR45/8HeIYGOIuQbxHmhE+QUoZmvQhwWtfYtRFD6FdrYX1cAR4SaIxqYkxDtrVqzjNZZmRYanRuWYUFtwaoGUlNV1W4tJRgfIcu9T01GBGrjUY3XsJK15JoZNb/wzDSH2cGGDmXD9L/GSG3HPPvaH4mtcsubPZGihTlExG3i/qlBo4h2F5kCpLknXfE5RW+b+C7KFFyb7iii8hen7yS3LytR5t1NcP12vbO+M65sSy+ChWRSS+iW3xQxyIhpDil7gSf8Tf4HdwHdwGd/ejE8E480E8QfDvP6ebpnM=</latexit>

RT (⌧i, R) = earliest t :

t � �+ demand(⌧i, t)/↵

<latexit sha1_base64="ZdXe5MPM8NgXunYBHxbyDFussfY=">AAACjnicbVHbattAEF2pt9TpxWkf+zLUFGxSjFVCGlJCQ90HP7rBTgJeI1arkbzJ6sLuqGCE+jf9ob71b7q29dAmHVg4nDNzZmcmKrWyNBr99vwHDx89frL3tLP/7PmLl92DV5e2qIzEuSx0Ya4jYVGrHOekSON1aVBkkcar6Ha80a++o7GqyGe0LnGZiTRXiZKCHBV2f17M+pxEFar3cDGAM0BhtEJLP+gUCHiKwL+iJgGHwDnwODFC1kFTc6HLlWh4pNK0Pw7VIbdVFtY8KYzQGraeN1zlMJm2DQYNcI2JM9USlUvZWlFTz8IbJxmVrpxmdpqMC4Kxc9j4D8JubzQcbQPug6AFPdbGNOz+4nEhqwxzklpYuwhGJS1rYUhJjU2HVxZLIW9FigsHc5GhXdbbdTbwzjExuEHcywm27N8VtcisXWeRy8wErexdbUP+T1tUlJwsa5WXFWEud42SSgMVsLkNxMqgJL12QEij3F9BroTbErkLdtwSgrsj3weXH4bB8fDo21Hv/Eu7jj32hr1lfRawj+ycTdiUzZn09r3AO/U++V3/2D/zP+9Sfa+tec3+CX/yB+lLxOI=</latexit>

RT (⌧i, R) = earliest t : t � �+

1

↵

✓
Ci +

X

8⌧j2HP (⌧i)

⇠
t

Tj

⇡
· Cj

◆

• Schedulability analysis for ET is independent of the TT schedule
• The polling tasks (periodic resources) can be scheduled as normal TT tasks

Tradeoff – schedulabiliy for runtime

Task allocation problem

NP-complete and heavily influences TT and ET schedulability and optimality of e.g., response times

Our solution:
• Genetic algorithm with k-tournament selection, good mix between exploration and exploitation,

good scalability, and a suitable degree of parallelization [Goldberg1991]
• Algorithm begins with an initial task-to-core mapping, we introduce 4 different methods:

Random, Laxity round-robin, Load balancing, Delay minimizing
• Chromosomes include task allocation & parameters for AdvPoll (budget, period, deadline)
• Each solution is evaluated based on a fitness function that tries to minimize response times and

maximize schedulability

• Mutation step to avoid local optima and encourage search space exploration
• Terminate when a solution meets a fitness threshold or after predefined iteration count

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

B. Fitness function

The fitness value indicates how well the individual solves
the problem at hand and is usually problem-specific. Here,
the optimization goal is to find a solution where the task set is
schedulable and the response time of all tasks is minimized.
In particular, the objective is to minimize the average worst-
case response time of both Time-triggered and Event-triggered
tasks. The fitness function proposed is comprised of two parts:
f1(x) evaluates the worst-case response time of all tasks, while
f2(x) evaluates the schedulability of TT and ET tasks on each
core. Given the set of tasks T TT and T ET , R

TT
i (x) and

R
ET
i (x) the worst case response time of the i-th task given

the solution x, DTT
i and D

ET
i the deadline of the i-th task,

!
TT and !

ET the weight factor for TT tasks and ET tasks,
then f1(x) is defined as follow:

f1(x) =
!
TT

|T TT | ⇥
|T TT |X

i=1

R
TT
i (x)

D
TT
i (x)

+
!
ET

|T ET | ⇥
|T ET |X

i=1

R
ET
i (x)

D
ET
i (x)

The goal of f1(x) is to let the meta-heuristic algorithm
minimize the worst-case response time of all tasks while also
shifting the priority of responsiveness more towards either TT
or ET tasks. For e.g., when !

TT = !
ET = 1 both TT and

ET tasks are optimized to have a smaller response time, while
when !

TT = 1 and !
ET = 0 only the TT tasks are optimized.

The function f2(x) is used to penalize solutions that are
not schedulable. The schedulability of time-triggered (TT)
tasks and event-triggered (ET) tasks mapped on each core and
polling server, respectively, are represented by ui(x) and vi(x)
for a given solution x. The penalty factors for unschedulable
TT and ET tasks are denoted by �

TT and �
ET , respectively.

Specifically, a penalty of �TT is added for each core where one
or more TT tasks are not schedulable, and a penalty of �

ET

is added for each core where one or more ET tasks are not
schedulable. This penalty scheme incentivizes the optimization
process to converge quickly toward schedulable solutions. In
this context and given K the number of cores in the target
system, the expression for f2(x) is given by:

f2(x) = �
TT ⇥

KX

j=1

uj(x) + �
ET ⇥

KX

k=1

vk(x)

Genetic algorithms are designed to maximize the fitness
of chromosomes. In the case of minimizing both f1(x) and
f2(x), it becomes necessary to convert the problem from
a minimization problem to a maximization one. This can
be achieved by negating both expressions. The final fitness
function with both terms combined is the following:

f(x) = � [f1(x) + f2(x)] (4)

C. Mutation and crossover functions

A mutation function is a genetic operator that introduces
random changes to an individual’s genetic material (i.e., the
chromosomes) in a population. The mutation function works
by randomly selecting one or more parameters within an indi-
vidual’s chromosome and changing their value in some way.

In the proposed algorithm, mutations are applied to different
task-to-core mappings but can also be applied to, e.g., different
server parameters for the AdvPolling method. Optionally, ET
task priorities can be mutated. The tasks mapping to cores are
mutated with a probability of 1

|⌧TT | for TT tasks and 1
|⌧ET |

for ET tasks, so that, on average, the mapping of one TT task
and one ET tasks are mutated for each iteration. To mutate the
mapping of a single task, a different core is randomly picked
amongst the cores the fulfill the mapping constraints. For the
Advanced Polling solution, polling servers are mutated with a
probability of 1

K where K is the number of cores in the system.
The mutation involves either adding a random number picked
from a uniform distribution in the range of (�1� 9µ, 1+9µ)
or multiplying for a random number in the range of (0.5, 1.5),
either the budget or the period.

Crossover is a fundamental genetic operator that combines
genetic information from two parent solutions to create a
new offspring solution. The choice of crossover function
can significantly impact the convergence speed, diversity of
the population, and ultimately the quality of the solutions
obtained. The proposed crossover function combines different
task-to-core mappings by selecting the core ID of each task
from either one of the parent solutions, with equal probability.
Additionally, for the Advanced Polling approach, each Polling
Server parameter of the offspring solution is picked from one
of the parent solutions, with equal probability.

D. Generating initial mappings

Four different methods of task-to-core mapping initializa-
tion are considered to generate initial task-to-core mappings
for both TT and ET tasks. These methods are as follows:

1) Random mapping: Task-to-core mappings are generated
randomly without regard to the current workload on each
core. This method is not recommended as it may result
in imbalanced workloads on the cores and produce many
solutions that are not schedulable. On the other hand, it creates
an initial population that has high diversity, which might help
the optimization algorithm to find better solutions.

2) Laxity round-robin mapping: In this method, task-to-
core mappings are generated using a round-robin approach
where tasks are assigned to cores in a cyclic manner. The
laxity (or slack time) of a task is defined as the difference
between its deadline and its cost (or duration): Li = Di�Ci.
The task with the highest laxity is selected from the set of
tasks that can be executed on the core. This method is simple
to implement and can result in a good initial workload balance.
However, it does not take into account the utilization of the
tasks, which may result in sub-optimal performance.

3) Load balancing mapping: In this method, task-to-core
mappings are generated to balance the core utilization. This
method can result in a good workload balance between the
system cores, but it may not take into account the deadlines
of the tasks, which could result in missed deadlines.

4) Delay minimizing mapping: The delay-minimizing task-
to-core mapping initialization algorithm sorts all tasks in
decreasing order of duration and then assigns each task to the

B. Fitness function

The fitness value indicates how well the individual solves
the problem at hand and is usually problem-specific. Here,
the optimization goal is to find a solution where the task set is
schedulable and the response time of all tasks is minimized.
In particular, the objective is to minimize the average worst-
case response time of both Time-triggered and Event-triggered
tasks. The fitness function proposed is comprised of two parts:
f1(x) evaluates the worst-case response time of all tasks, while
f2(x) evaluates the schedulability of TT and ET tasks on each
core. Given the set of tasks T TT and T ET , R

TT
i (x) and

R
ET
i (x) the worst case response time of the i-th task given

the solution x, DTT
i and D

ET
i the deadline of the i-th task,

!
TT and !

ET the weight factor for TT tasks and ET tasks,
then f1(x) is defined as follow:

f1(x) =
!
TT

|T TT | ⇥
|T TT |X

i=1

R
TT
i (x)

D
TT
i (x)

+
!
ET

|T ET | ⇥
|T ET |X

i=1

R
ET
i (x)

D
ET
i (x)

The goal of f1(x) is to let the meta-heuristic algorithm
minimize the worst-case response time of all tasks while also
shifting the priority of responsiveness more towards either TT
or ET tasks. For e.g., when !

TT = !
ET = 1 both TT and

ET tasks are optimized to have a smaller response time, while
when !

TT = 1 and !
ET = 0 only the TT tasks are optimized.

The function f2(x) is used to penalize solutions that are
not schedulable. The schedulability of time-triggered (TT)
tasks and event-triggered (ET) tasks mapped on each core and
polling server, respectively, are represented by ui(x) and vi(x)
for a given solution x. The penalty factors for unschedulable
TT and ET tasks are denoted by �

TT and �
ET , respectively.

Specifically, a penalty of �TT is added for each core where one
or more TT tasks are not schedulable, and a penalty of �

ET

is added for each core where one or more ET tasks are not
schedulable. This penalty scheme incentivizes the optimization
process to converge quickly toward schedulable solutions. In
this context and given K the number of cores in the target
system, the expression for f2(x) is given by:

f2(x) = �
TT ⇥

KX

j=1

uj(x) + �
ET ⇥

KX

k=1

vk(x)

Genetic algorithms are designed to maximize the fitness
of chromosomes. In the case of minimizing both f1(x) and
f2(x), it becomes necessary to convert the problem from
a minimization problem to a maximization one. This can
be achieved by negating both expressions. The final fitness
function with both terms combined is the following:

f(x) = � [f1(x) + f2(x)] (4)

C. Mutation and crossover functions

A mutation function is a genetic operator that introduces
random changes to an individual’s genetic material (i.e., the
chromosomes) in a population. The mutation function works
by randomly selecting one or more parameters within an indi-
vidual’s chromosome and changing their value in some way.

In the proposed algorithm, mutations are applied to different
task-to-core mappings but can also be applied to, e.g., different
server parameters for the AdvPolling method. Optionally, ET
task priorities can be mutated. The tasks mapping to cores are
mutated with a probability of 1

|⌧TT | for TT tasks and 1
|⌧ET |

for ET tasks, so that, on average, the mapping of one TT task
and one ET tasks are mutated for each iteration. To mutate the
mapping of a single task, a different core is randomly picked
amongst the cores the fulfill the mapping constraints. For the
Advanced Polling solution, polling servers are mutated with a
probability of 1

K where K is the number of cores in the system.
The mutation involves either adding a random number picked
from a uniform distribution in the range of (�1� 9µ, 1+9µ)
or multiplying for a random number in the range of (0.5, 1.5),
either the budget or the period.

Crossover is a fundamental genetic operator that combines
genetic information from two parent solutions to create a
new offspring solution. The choice of crossover function
can significantly impact the convergence speed, diversity of
the population, and ultimately the quality of the solutions
obtained. The proposed crossover function combines different
task-to-core mappings by selecting the core ID of each task
from either one of the parent solutions, with equal probability.
Additionally, for the Advanced Polling approach, each Polling
Server parameter of the offspring solution is picked from one
of the parent solutions, with equal probability.

D. Generating initial mappings

Four different methods of task-to-core mapping initializa-
tion are considered to generate initial task-to-core mappings
for both TT and ET tasks. These methods are as follows:

1) Random mapping: Task-to-core mappings are generated
randomly without regard to the current workload on each
core. This method is not recommended as it may result
in imbalanced workloads on the cores and produce many
solutions that are not schedulable. On the other hand, it creates
an initial population that has high diversity, which might help
the optimization algorithm to find better solutions.

2) Laxity round-robin mapping: In this method, task-to-
core mappings are generated using a round-robin approach
where tasks are assigned to cores in a cyclic manner. The
laxity (or slack time) of a task is defined as the difference
between its deadline and its cost (or duration): Li = Di�Ci.
The task with the highest laxity is selected from the set of
tasks that can be executed on the core. This method is simple
to implement and can result in a good initial workload balance.
However, it does not take into account the utilization of the
tasks, which may result in sub-optimal performance.

3) Load balancing mapping: In this method, task-to-core
mappings are generated to balance the core utilization. This
method can result in a good workload balance between the
system cores, but it may not take into account the deadlines
of the tasks, which could result in missed deadlines.

4) Delay minimizing mapping: The delay-minimizing task-
to-core mapping initialization algorithm sorts all tasks in
decreasing order of duration and then assigns each task to the

B. Fitness function

The fitness value indicates how well the individual solves
the problem at hand and is usually problem-specific. Here,
the optimization goal is to find a solution where the task set is
schedulable and the response time of all tasks is minimized.
In particular, the objective is to minimize the average worst-
case response time of both Time-triggered and Event-triggered
tasks. The fitness function proposed is comprised of two parts:
f1(x) evaluates the worst-case response time of all tasks, while
f2(x) evaluates the schedulability of TT and ET tasks on each
core. Given the set of tasks T TT and T ET , R

TT
i (x) and

R
ET
i (x) the worst case response time of the i-th task given

the solution x, DTT
i and D

ET
i the deadline of the i-th task,

!
TT and !

ET the weight factor for TT tasks and ET tasks,
then f1(x) is defined as follow:

f1(x) =
!
TT

|T TT | ⇥
|T TT |X

i=1

R
TT
i (x)

D
TT
i (x)

+
!
ET

|T ET | ⇥
|T ET |X

i=1

R
ET
i (x)

D
ET
i (x)

The goal of f1(x) is to let the meta-heuristic algorithm
minimize the worst-case response time of all tasks while also
shifting the priority of responsiveness more towards either TT
or ET tasks. For e.g., when !

TT = !
ET = 1 both TT and

ET tasks are optimized to have a smaller response time, while
when !

TT = 1 and !
ET = 0 only the TT tasks are optimized.

The function f2(x) is used to penalize solutions that are
not schedulable. The schedulability of time-triggered (TT)
tasks and event-triggered (ET) tasks mapped on each core and
polling server, respectively, are represented by ui(x) and vi(x)
for a given solution x. The penalty factors for unschedulable
TT and ET tasks are denoted by �

TT and �
ET , respectively.

Specifically, a penalty of �TT is added for each core where one
or more TT tasks are not schedulable, and a penalty of �

ET

is added for each core where one or more ET tasks are not
schedulable. This penalty scheme incentivizes the optimization
process to converge quickly toward schedulable solutions. In
this context and given K the number of cores in the target
system, the expression for f2(x) is given by:

f2(x) = �
TT ⇥

KX

j=1

uj(x) + �
ET ⇥

KX

k=1

vk(x)

Genetic algorithms are designed to maximize the fitness
of chromosomes. In the case of minimizing both f1(x) and
f2(x), it becomes necessary to convert the problem from
a minimization problem to a maximization one. This can
be achieved by negating both expressions. The final fitness
function with both terms combined is the following:

f(x) = � [f1(x) + f2(x)] (4)

C. Mutation and crossover functions

A mutation function is a genetic operator that introduces
random changes to an individual’s genetic material (i.e., the
chromosomes) in a population. The mutation function works
by randomly selecting one or more parameters within an indi-
vidual’s chromosome and changing their value in some way.

In the proposed algorithm, mutations are applied to different
task-to-core mappings but can also be applied to, e.g., different
server parameters for the AdvPolling method. Optionally, ET
task priorities can be mutated. The tasks mapping to cores are
mutated with a probability of 1

|⌧TT | for TT tasks and 1
|⌧ET |

for ET tasks, so that, on average, the mapping of one TT task
and one ET tasks are mutated for each iteration. To mutate the
mapping of a single task, a different core is randomly picked
amongst the cores the fulfill the mapping constraints. For the
Advanced Polling solution, polling servers are mutated with a
probability of 1

K where K is the number of cores in the system.
The mutation involves either adding a random number picked
from a uniform distribution in the range of (�1� 9µ, 1+9µ)
or multiplying for a random number in the range of (0.5, 1.5),
either the budget or the period.

Crossover is a fundamental genetic operator that combines
genetic information from two parent solutions to create a
new offspring solution. The choice of crossover function
can significantly impact the convergence speed, diversity of
the population, and ultimately the quality of the solutions
obtained. The proposed crossover function combines different
task-to-core mappings by selecting the core ID of each task
from either one of the parent solutions, with equal probability.
Additionally, for the Advanced Polling approach, each Polling
Server parameter of the offspring solution is picked from one
of the parent solutions, with equal probability.

D. Generating initial mappings

Four different methods of task-to-core mapping initializa-
tion are considered to generate initial task-to-core mappings
for both TT and ET tasks. These methods are as follows:

1) Random mapping: Task-to-core mappings are generated
randomly without regard to the current workload on each
core. This method is not recommended as it may result
in imbalanced workloads on the cores and produce many
solutions that are not schedulable. On the other hand, it creates
an initial population that has high diversity, which might help
the optimization algorithm to find better solutions.

2) Laxity round-robin mapping: In this method, task-to-
core mappings are generated using a round-robin approach
where tasks are assigned to cores in a cyclic manner. The
laxity (or slack time) of a task is defined as the difference
between its deadline and its cost (or duration): Li = Di�Ci.
The task with the highest laxity is selected from the set of
tasks that can be executed on the core. This method is simple
to implement and can result in a good initial workload balance.
However, it does not take into account the utilization of the
tasks, which may result in sub-optimal performance.

3) Load balancing mapping: In this method, task-to-core
mappings are generated to balance the core utilization. This
method can result in a good workload balance between the
system cores, but it may not take into account the deadlines
of the tasks, which could result in missed deadlines.

4) Delay minimizing mapping: The delay-minimizing task-
to-core mapping initialization algorithm sorts all tasks in
decreasing order of duration and then assigns each task to the

Single-core experiments

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

20

40

60

80

100

10 20 30 40 50 60 70 10 20 30 40 50 60 70

1 ms

10 ms

100 ms

1 sec

10 sec

S
ch

ed
u
la

b
il

it
y
 [

%
]

A
v
g
.
ru

n
ti

m
e/

ta
sk

 s
et

Utilization ET tasks (U
ET

) [%]

sched. SlotShift
sched. Holistic

sched. SPoll
sched. greedy AdvPoll

runtime SlotShift
runtime Holistic

runtime SPoll
runtime greedy AdvPoll

• 30 TT and 20 ET tasks per task set
• Periods ∈ {5, 10, 20, 40, 80} ms
• Microtick of 250μs

• Constrained Deadline: Di is
uniformly selected in upper
half of [Ci,Ti]

• Arbitrary Deadline: Di ∈ [Ci,5 · Ti]

• 20% TT task utilization
• Increasing ET utilization
• 100 task sets per configuration

SPoll is quickest and can be used for low utilization
Holistic has better schedulability at high utilization but takes much longer time
AdvPoll has the best overall trade-off between runtime and schedulability

Task to core allocation experiments

Copyright © TTTech Computertechnik AG. All rights reserved.

Schedulability after 2500 iterations of optimization
on different task sets with 8 cores

Comparison of greedy AdvPoll vs. optimized AdvPoll
vs. Holistic scheduling.

September 14, 2023

Initial mapping and scalability experiments

September 14, 2023 Copyright © TTTech Computertechnik AG. All rights reserved.

Fitness value while optimizing solutions using
different mapping initializations (higher is better).

Thank you!

https://www.tttech.com/jobs-career/

September 14, 2023
Copyright © TTTech Computertechnik AG. All rights reserved.

We are hiring

[Xu2000] Xu, Parnas - Priority Scheduling Versus Pre-Run-Time Scheduling. Real-Time Syst, 2000
[Locke1992] C. D. Locke - Software architecture for hard real-time applications: Cyclic executives
vs. fixed priority. Real-Time Syst., 1992
[Pop2003] T. Pop, P. Eles, Z. Peng, Schedulability analysis for distributed heterogeneous time/
event triggered real-time systems, ECRTS 2003.
[Isovic2009] D. Isovic, G. Fohler, Handling mixed sets of tasks in combined offline and online
scheduled real-time systems, Real-Time Syst, 2009.
[Shin2008] I. Shin et al.- Hierarchical Scheduling Framework for Virtual Clustering of
Multiprocessors. ECRTS, 2008
[Almeida2004] L. Almeida, P. Pedreiras, Scheduling within temporal partitions: Response-
time analysis and server design. EMSOFT, 2004.

