
Mapping and Scheduling Automotive Applications on
ADAS Platforms using Metaheuristics

Shane D. McLean1, Silviu S. Craciunas2, Emil Alexander Juul Hansen1, Paul Pop1

1Technical University of Denmark, Kongens Lyngby, Denmark
2TTTech Computertechnik AG, Vienna, Austria

Copyright © TTTech Computertechnik AG. All rights reserved.

9/11/20

Autonomous vehicles/Assisted driving

Reduced Emissions due to lower fuel consumptions

Safety – less accidents

Better Health due to less stress through traffic jams

Increased highway capacity

Robot Sense = See Think =
Compute

Act
Brake Actuators
Steering Actuators
Electric Drivetrain

Sensors

September 11, 2020 Copyright © TTTech Computertechnik AG. All rights reserved.

An autonomous vehicle can be understood as a robot

September 11, 2020 Copyright © TTTech Computertechnik AG. All rights reserved.

Modern autonomous vehicles

Source: Ernst et al. - Ethernet as Future Automotive Communication Backbone

Traditional approach based on distributed ECUs and separated domains, interconnected
through different technologies (ETH, CAN, FlexRay)

September 11, 2020 Copyright © TTTech Computertechnik AG. All rights reserved.

Modern autonomous vehicles – issues

• Rapid growth of software functionality and the necessary compute performance
cannot be addressed with current electronics architecture and ECUs

• Too many ECU’s with too little processing power and memory
• Limitation of the domain concept (development cost, replication of basic software

functions, sources of failure, maintenance cost)
• Fail-operational requirement for level 4 autonomous driving:

• The domain concept is not sustainable for L4/L5 autonomous driving.
• Autonomous driving functions require the integration of cross-domain

information and functions.

From distributed, separate ECUs In-car Computing Platform

September 11, 2020

ICCP - Integrated platform

Copyright © TTTech Computertechnik AG. All rights reserved.

Integrated platform:
- from hardware to software
- from distributed to centralized

Infotainment

Gateway

Autonomous driving

September 11, 2020

RazorMotion

Copyright © TTTech Computertechnik AG. All rights reserved.

Processing Resources:
1x Renesas RH850P/1H-C (ASIL D MCU with lockstep cores @
240MHz)
2x Renesas R-Car H3 (ASIL B SoC with 4x Cortex A57, 4x
Cortex A53, 1x Cortex R7, 1x IMP-X5, 1x IMG GX6650 GPU)
Video Interfaces:
12 x camera inputs (GMSL) incl. remote supply (PoC) 2 x display
outputs (FPD-Link III)
Communication Interfaces:
4x OABR 100BASE-T1 2 x FlexRay (A/B channel) – wakeup
capable 2 x HS-CAN – wakeup capable 4 x CAN-FD 2 x LIN
I/O Interfaces 2 x analog/digital inputs 2 x high side outputs 1 x
sensor supply output (5V)

September 11, 2020

Integrated Platform

Copyright © TTTech Computertechnik AG. All rights reserved.

Different multi-core CPUs:
• process the information arriving from a

variety of sensors (radar, ultrasonic
sensors, cameras, LIDAR, etc.)

• run control loops
• run other utility functions (lane

keeping/changing assistant, emergency
braking, logging, etc.)

Heterogeneous multi-core multi-SoC
platform featuring a variety of CPUs and
GPUs running at different speeds, which
are interconnected through either a
deterministic Ethernet backbone (TSN) or
through PCIe

Deterministic Ethernet / PCIe

Task1

Safety
Safety/

Performance Performance

CPU
CPU

CPU
CPU

CPU
CPU

GPU
GPU

CPU
CPU

CPU
CPU

RTOS

Task2 Task3 Task4 Taskn…

Autosar OS Linux / Android

Abstraction Layer / Middleware

Fig. 1. High-level platform model.

guaranteed by the schedule construction. In [14], the authors
present a model-checking based method to compute worst-
case response times and end-to-end latencies of tasks, that
have chain dependency and communication constraints. In the
work presented in [15], the authors introduce a task chain
latency analysis, that does not require information about the
concrete scheduling algorithm.

To the best of our knowledge, this is the first work to
propose a heuristic-based solution to the combined task-to-
core assignment and scheduling problem in ADAS platforms
that generates schedule tables which respect both task and
complex task chain timing constraints.

We start by introducing the platform and application models
in Sections II followed by a description of the scheduling
problem (Section III). We introduce the algorithm in Sec-
tion IV followed by an experimental evaluation in Section V
and conclude the paper in Section VI.

II. PLATFORM AND APPLICATION MODELS

A. System Model

The ADAS hardware platform is a multi-core multi-SoC
embedded ECU featuring a variety of CPUs and Graphics
Processing Units (GPUs) running at different speeds, which
are interconnected through either a deterministic Ethernet
backbone (TSN [16], TTEthernet [17]) or through PCIe. Ra-
zorMotion [18], for example, features a Renesas RH850P/1H-
C ASIL D MCU with lockstep cores running at 240 MHz and
two Renesas R-Car H3 ASIL B SoCs with four Cortex A57,
four Cortex A53, one Cortex R7, one IMP-X5, and one IMG
PowerVR GX6650 GPU.

Figure 1 presents a high-level view of the ADAS platform.
Each host can run a different operating system depending on
the safety and performance requirements. Each such OS can
have a different scheduling policy, ranging from fixed-priority
(AUTOSAR [19]) to table-driven or dynamic priority schedul-
ing (typically in safety RTOSes). However, there is a growing
tendency to use a table-driven static schedule execution due
to the compositionality and isolation properties [20]–[23], i.e.
tasks that are already scheduled are not influenced by new
tasks being added to the system. In order to provide a common
execution environment and hardware abstraction, a middleware
layer, e.g. the MotionWise [18] layer, is running on top of

0 10 20 30 40

Latency 1

Latency 2

!
!
!
!

1

2

3

4

Fig. 2. Task chain example.

each operating system. The middleware layer also ensures
portability of software functions to be located according to
their execution and safety requirements [1]. Moreover, the
middleware layer provides the capability to execute tasks
according to a table-driven pre-computed schedule indepen-
dent of the underlying OS dispatching mechanisms which
ensures temporal isolation [22]. Hence, in this paper we focus
on creating static schedules for the table-driven dispatching
mechanism of such ADAS systems.

We model an ADAS platform as a graph A(V,E), where
each vertex vi ∈ V is a processor and the edges E are the
communication links between the processors. Each processor
vi ∈ V has a list of cores Ci.

B. Application Model

On top of this platform a large number of different soft-
ware functions, implemented by different vendors, must be
integrated and deployed. It is crucial that software functions
(which may be tested independently) can be integrated with
other software functions compositionally. The system is com-
posed of applications (called tasks or runnables), that are either
pre-assigned to cores or must be assigned by the scheduling
algorithm. Tasks have real-time requirements, both in terms of
execution (offset, deadline, jitter) as well as temporal depen-
dencies arising from task chains (defined below). We model
the applications as a set of n periodic tasks, Γ= {τi | 1≤ i≤ n},
similar to the model in [24]. A task τi is defined by the tuple
(σi, ri, φi, Ci, Ti, Di) with σi representing the core, Ci denoting
the computation time, Ti the period, ri the earliest release time,
φi the initial offset/displacement of task arrival times and Di

the relative deadline of the task under the assumption that
Di≤ Ti. Each real-time task τi yields an infinite set of instances
(jobs) τi,k,k = 1,2, . . . [25, p. 80]. Tasks can be preempted
at any time instant on a timeline with macrotick granularity
given by the underlying OS capabilities. If a task τi is pre-
assigned to a core, then its core σi will be given. Otherwise,
we decide their assignment to a specific core, in that the σi of
a task τi can take any value from a finite set of core values Ci.
The assignment of tasks to cores is captured by the mapping
function M : Γ→ Ci.

Currently, tasks cannot migrate at run time, after they
have been assigned to a core, but in the future we envision
that task migration, when done properly with respect to the
deterministic timing behavior, will allow even better resource
utilization. The scheduling allows preemption, i.e., a table can

September 11, 2020

Integrated platform scheduling problem

Copyright © TTTech Computertechnik AG. All rights reserved.

Periodic hard real-time tasks with (WCET, Period) definition
• Are pre-assigned to CPUs (WCET is already scaled to speed)
• Can be pre-assigned to core, if not assigned, assignment will be part of the allocation problem
• Can have deadline, activation, jitter constraints
• Preemption is allowed, migration is not allowed

Result of scheduling is a static table which determines
the exact timely behavior of tasks

Different dimensions to the allocation problem:
• Assignment of tasks to cores/CPUs
• Scheduling of tasks
• Real-time requirements are met end-to-end

NP-complete

September 11, 2020

Real-time requirements – activation, deadline, period

Copyright © TTTech Computertechnik AG. All rights reserved.

time0

WCET
activation deadline

period

September 11, 2020

Real-time requirements – jitter

Copyright © TTTech Computertechnik AG. All rights reserved.

Jitter*

Jitter = Jitter* - WCET

0 5 10

10 15 20

30 35 40

20 25 30

WCET

September 11, 2020

Real-time requirements – dependency chains

Copyright © TTTech Computertechnik AG. All rights reserved.

Characteristic of automotive software – Cause-effect chains:
• provide additional timing and dependency requirements on the execution of tasks
• can span across multiple activation patterns
• include multiple tasks, even the same task multiple times
• have priorities and end-to-end latencies
• include communication latencies

Deterministic Ethernet / PCIe

Task1

Safety
Safety/

Performance Performance

CPU
CPU

CPU
CPU

CPU
CPU

GPU
GPU

CPU
CPU

CPU
CPU

RTOS

Task2 Task3 Task4 Taskn…

Autosar OS Linux / Android

Abstraction Layer / Middleware

Fig. 1. High-level platform model.

guaranteed by the schedule construction. In [14], the authors
present a model-checking based method to compute worst-
case response times and end-to-end latencies of tasks, that
have chain dependency and communication constraints. In the
work presented in [15], the authors introduce a task chain
latency analysis, that does not require information about the
concrete scheduling algorithm.

To the best of our knowledge, this is the first work to
propose a heuristic-based solution to the combined task-to-
core assignment and scheduling problem in ADAS platforms
that generates schedule tables which respect both task and
complex task chain timing constraints.

We start by introducing the platform and application models
in Sections II followed by a description of the scheduling
problem (Section III). We introduce the algorithm in Sec-
tion IV followed by an experimental evaluation in Section V
and conclude the paper in Section VI.

II. PLATFORM AND APPLICATION MODELS

A. System Model

The ADAS hardware platform is a multi-core multi-SoC
embedded ECU featuring a variety of CPUs and Graphics
Processing Units (GPUs) running at different speeds, which
are interconnected through either a deterministic Ethernet
backbone (TSN [16], TTEthernet [17]) or through PCIe. Ra-
zorMotion [18], for example, features a Renesas RH850P/1H-
C ASIL D MCU with lockstep cores running at 240 MHz and
two Renesas R-Car H3 ASIL B SoCs with four Cortex A57,
four Cortex A53, one Cortex R7, one IMP-X5, and one IMG
PowerVR GX6650 GPU.

Figure 1 presents a high-level view of the ADAS platform.
Each host can run a different operating system depending on
the safety and performance requirements. Each such OS can
have a different scheduling policy, ranging from fixed-priority
(AUTOSAR [19]) to table-driven or dynamic priority schedul-
ing (typically in safety RTOSes). However, there is a growing
tendency to use a table-driven static schedule execution due
to the compositionality and isolation properties [20]–[23], i.e.
tasks that are already scheduled are not influenced by new
tasks being added to the system. In order to provide a common
execution environment and hardware abstraction, a middleware
layer, e.g. the MotionWise [18] layer, is running on top of

0 10 20 30 40

Latency 1

Latency 2

!
!
!
!

1

2

3

4

Fig. 2. Task chain example.

each operating system. The middleware layer also ensures
portability of software functions to be located according to
their execution and safety requirements [1]. Moreover, the
middleware layer provides the capability to execute tasks
according to a table-driven pre-computed schedule indepen-
dent of the underlying OS dispatching mechanisms which
ensures temporal isolation [22]. Hence, in this paper we focus
on creating static schedules for the table-driven dispatching
mechanism of such ADAS systems.

We model an ADAS platform as a graph A(V,E), where
each vertex vi ∈ V is a processor and the edges E are the
communication links between the processors. Each processor
vi ∈ V has a list of cores Ci.

B. Application Model

On top of this platform a large number of different soft-
ware functions, implemented by different vendors, must be
integrated and deployed. It is crucial that software functions
(which may be tested independently) can be integrated with
other software functions compositionally. The system is com-
posed of applications (called tasks or runnables), that are either
pre-assigned to cores or must be assigned by the scheduling
algorithm. Tasks have real-time requirements, both in terms of
execution (offset, deadline, jitter) as well as temporal depen-
dencies arising from task chains (defined below). We model
the applications as a set of n periodic tasks, Γ= {τi | 1≤ i≤ n},
similar to the model in [24]. A task τi is defined by the tuple
(σi, ri, φi, Ci, Ti, Di) with σi representing the core, Ci denoting
the computation time, Ti the period, ri the earliest release time,
φi the initial offset/displacement of task arrival times and Di

the relative deadline of the task under the assumption that
Di≤ Ti. Each real-time task τi yields an infinite set of instances
(jobs) τi,k,k = 1,2, . . . [25, p. 80]. Tasks can be preempted
at any time instant on a timeline with macrotick granularity
given by the underlying OS capabilities. If a task τi is pre-
assigned to a core, then its core σi will be given. Otherwise,
we decide their assignment to a specific core, in that the σi of
a task τi can take any value from a finite set of core values Ci.
The assignment of tasks to cores is captured by the mapping
function M : Γ→ Ci.

Currently, tasks cannot migrate at run time, after they
have been assigned to a core, but in the future we envision
that task migration, when done properly with respect to the
deterministic timing behavior, will allow even better resource
utilization. The scheduling allows preemption, i.e., a table can

September 11, 2020

SA algorithm

Copyright © TTTech Computertechnik AG. All rights reserved.

in detail in Section IV-A, tries to modify the mapping of
tasks M, the task offsets (φi ≥ 0) and deadlines D, in order
to find an optimal solution with respect to the end-to-end
latency of chains. The novelty in our approach is that our
proposed Simulated Annealing method makes use of the
different dimensions, that influence task execution, i.e., task
mapping, task offsets and task deadlines in order to converge
to a near-optimal solution faster than traditional approaches.

A. Simulated Annealing

Simulated Annealing is a heuristic method that aims to op-
timize solutions by randomly selecting a candidate solution in
the neighbourhood of the current one [30]. The SA algorithm
is a variant of the neighborhood search technique, where the
local search space is explored by moving from the current
solution to a neighbor solution [31, p.285]. A new solution is
accepted if it is an improvement, however, a worse solution
can also be accepted with a certain probability that depends
on the deterioration of the cost function Cost and on a cooling

scheme captured by the initial temperature, ts and a cooling
rate cr, which is the rate at which the temperature drops with
time [31, p.285].

An essential component of the algorithm is the generation of
a new candidate solution s′ (also called neighbor) starting from
s. The neighbor solutions s′ are generated through performing
design transformations (also called moves) on s.

SA is presented in Alg. 1, and it takes as input: The platform
model A, the applications Γ, the initial solution s0 which acts
as the starting point of the search (s0 is generated by a Greedy
mapping algorithm, where tasks are iteratively assigned to
those cores that have the most available utilization), the
initial temperature ts, the cooling rate cr which controls the

Algorithm 1 SimulatedAnnealing(A,Γ,s0, ts,cr, i)
1: t← ts
2: s← ScheduleSynthesis(A,Γ,s0)
3: s∗ ← s

4: while timeleft do
5: while t > 1.0 do
6: for k← 1 to i do
7: s′ ← GenerateNeighbor(A,Γ,s)
8: if Cost(s′)<Cost(s) then
9: s← s′

10: if Cost(s′)<Cost(s∗) then
11: s∗ ← s′

12: end if
13: else if exp(Cost(s)−Cost(s′)

t)> random[0,1] then
14: s← s′

15: end if
16: t← t · (1− cr)
17: end for
18: end while
19: end while
20: return s∗

temperature decay, and the number of iterations to maintain a
static temperature i.

We denote with s′ the neighboring candidate solution gen-
erated from the currently accepted solution s, line 7. Also, s′

is accepted if it improves on s, line 9. The cost function Cost

used to evaluate a solution is detailed in Section IV-B. We
record the best so far solution s∗ at line 11. SA returns s∗ (at
line 20) when it terminates, that is when the allotted time has
expired (line 4). As mentioned, the main feature of a SA is
that we also accept worse solutions, with a certain probability,
see line 13 in Alg. 1.

The GenerateNeighbor procedure functions as a simple state
machine, allowing different moves to be chosen randomly.
We use three moves, described in the following, SwapTask,
AdjustOffset and AdjustDeadline. Various probability assign-
ments for these moves were tried, and, based on observations
from performed experiments a uniform distribution has been
chosen for all actions.

AdjustDeadline adjusts the deadline of a single randomly
selected task. Only tasks that failed at complying to the jitter
constraints, are potential candidates for this move. Note that
the deadlines in D are used to control the resulting EDF
schedule. We do not change the relative deadline Di of the
task, which is one of its timing constraints. For a task τi,
AdjustDeadline will modify the deadline used by EDF to
schedule τi, such that it is lower or equal to Di. We check for
each resulted schedule that all timing constraints are satisfied.

SwapTasks swaps the core mapping of two randomly
selected tasks, considering the imposed mapping constraints.
For example, if the task has a processor affinity, the swapping
is done within the cores of the particular processor. Only tasks
that are allowed to swap, are considered, meaning only tasks
without a predefined core assignment. Offset and Deadline
adjustments are reset to zero for both tasks when performing
this action. Finally, the utilization/core load is not considered,
and as such this action might overload one of the cores.

AdjustOffset changes the offset of a randomly selected
task. This action has two modes. (1) It will select tasks from
a specific processor, if deadline/jitter constraints are violated.
The target is determined by the processor with the highest
number of accumulated violations. Initially, the specific core
were also included as part of the selected, however it decreased
the performance. (2) If no deadline/jitter violations occur, then
the task is chosen randomly from the complete task set.

B. Cost Function

The cost function (Cost), defined in Eq. 2, captures both a
minimization objective with respect to the end-to-end latency
of task chains and penalties representing constraint violations
given by the application. We introduce ρℵ as a weighted
average cost of computation chain violations as well as ρD

and ρJ representing deadline and jitter costs (defined below).
The function itself has two cases, (1) a value if the solu-

tion configuration meets all the timing constraints and (2) a
combination of static and dynamic penalties, if one or more

Simulated Annealing (SA)-based metaheuristic
approach which uses an EDF-based heuristic to
solve the task scheduling problem.

The scheduling heuristic allows task preemption by
simulating an Earliest Deadline First (EDF) scheduling
policy parameterized by task offsets and local
deadlines decided by SA

September 11, 2020

EDF simulation

Copyright © TTTech Computertechnik AG. All rights reserved.

EDF is an optimal online scheduling algorithm which at each time instant prioritizes the task with the
earliest deadline
We can use it to generate a static schedule table – simulate EDF until 2*Hyperperiod + max_offset

Schedulability test:

Two knobs to play around with: offset and deadline of each task

September 11, 2020 TTTech Confidential and Proprietary Information

Simulated Annealing + EDF simulation

Copyright © TTTech Computertechnik AG. All rights reserved.

Simple Algorithm:
Generate initial candidate:
• task offsets = 0
• task deadlines = Period
• task to core assignment based on

best-fit/first-fit (load balancing)
timing constraints are violated, i.e.,

Cost(s) =











∑
ℵi∈Lℵ

li
Li
·pi

|Lℵ| ·w1 if χ(s) = true

w1 +ρℵ +ρD +ρJ if χ(s) = false

(2)

where χ(s) is a test defined by χ(s) = ρℵ +ρD +ρJ "> 0.
The minimization objective is the average weighted distance

of the measured end-to-end latency li over the imposed con-
straint Li, of all task chains. The static penalty w1 in Eq. 2
for χ(s) = false ensures, that any invalid solution will be
rated worse relative to that of any valid solution. That is,
it adjusts the score such that the minimal penalty value is
higher than that of any feasible solution, thereby preventing the
annealing process from accepting any invalid candidate over
a valid one, as the currently best. Furthermore, the penalty
function incurs an increased cost, if any end-to-end, deadline
or jitter constraints are violated, as also evident from Eq. 2.
Here ρℵ, listed in Eq. 3, measures the weighted average of
end-to-end violation. The violation of a chain ℵi is defined
as the difference between its highest observed chain latency li
and its end-to-end constraint Li.

ρℵ =

∑
ℵi∈Lℵ

min(Li,max(0,li−Li))
Li

|Lℵ|
·w2 (3)

Also, from Eq. 3 we see that the observable violation range
is clamped in the interval [0,Li], whereas the penalty itself is
bounded by [0,w2] and grows proportionally with the number
of violations.

Likewise, the additional deadline and jitter costs (ρD and ρJ)
is listed by Eq. 4 and Eq. 5, respectively. Here ρD measures
the weighted average of deadline violations with a violation
range clamped in the interval [0,Di]. The deadline violation
of a task τi is denoted as the difference between the maximal
relative finishing time of all τi’s instances fi and the relative
deadline Di.

ρD =

∑
τi∈Γ

min(Di,max(0, fi−Di))
Di

|Γ|
·w3. (4)

Finally, ρJ measures the weighted average of jitter violations.
We define the jitter violation of a task τi as the difference
between the maximal observed jitter ji and the threshold Ji.
The violation range is then clamped in the interval [0,Ji].

ρJ =

∑
τi∈Γ

min(Ji,max(0, ji−Ji))
Ji

|Γ|
·w4, (5)

In Eq.2-Eq.5, we list w1,w2,w3 and w4 as static weights
designed to capture the importance of the respective violation
with the following constraints: w2 ≥ w1, w3 ≥ w1, w4 ≥ w1.
The constants were determined based on manual experimen-
tation and observations, with w1 through w4 set to 10,000,
40,000, 10,000 and 60,000, respectively. Please note that there
are no optimal values for the weights, since they have to be
adapted to the application domain, criticality definitions and
design goals of the respective use-case.

Algorithm 2 ScheduleSynthesis(A,Γ,s)

1: Initialize(s)
2: l← 2 ·hyperperiod +MaxOffset

3: for each vi ∈ V ∈A do
4: for each σk ∈ vi do
5: Enqueue(Qσ ,σk)
6: end for
7: end for
8: while Empty(Qσ) is false do
9: σ ← Dequeue(Qσ)

10: cycle←NextCycle(σ)
11: if cycle < l then
12: next← EDFSimulation(σ ,cycle)
13: SetNext(σ , next)
14: Enqueue(Qσ ,σ)
15: end if
16: end while
17: return s

The penalty function has been devised such that small
improvements, with respect to violations, will reduce the
weighted penalties, ideally leading to gradual improvements.
If a course-grained penalty function is used, it would result in
a lot of equal values between candidates with respect to their
fitness. Using the fine grained approach, the penalty is thus
a tighter approximation of the true distance from achieving a
valid solution.

C. EDF Simulation for Schedule Synthesis

Scheduling of tasks to processors is a well researched
topic [32]. In our case, it is intractable to generate optimal
schedules, hence we use a heuristic algorithm. In order to
include task preemption in a simplified manner, we propose
a schedule synthesis heuristic (Alg. 2) based on simulating

Earliest Deadline First (EDF) scheduling, similar to [11], [28],
[29]. EDF is a scheduling algorithm [25] which prioritizes
tasks at each time instant depending on their deadlines, i.e.,
the one with the earliest deadline will get control of the CPU.
Given the task WCETs, offsets and deadlines, the schedule
table S is generated by simulating how EDF would execute
tasks until the hyperperiod. For a given mapping, offsets and
deadlines, EDF will always produce the same schedule. We
vary the output schedule produced by the EDF simulation
by allowing the Simulated Annealing to change the mapping
M, offsets φi of each task τi and deadlines D via the moves
presented earlier.

ScheduleSynthesis receives as input the architecture A,
applications Γ and the the solution s to be simulated by EDF
(containing the mapping M, offsets φ and deadlines D). Due to
the nature of task chains and their temporal dependencies, the
simulation of each core cannot be executed separately. That
is, each schedule produced by the individual EDF simulations
must take every other task execution into account.

We start by assigning all tasks to their respective cores
(line 1 in Alg.2). All tasks without a task mapping will

Simulated Annealing Loop:
• EDF schedulability test/EDF simulator
• Generate new candidate through performing

design transformations
• SwapTask, AdjustOffset and AdjustDeadline

• Evaluate a solution based on the cost metric

0 10 20 30 40
Latency 1

Latency 2

!
!
!

1

2

3

(a) End-to-end task chain latencies not satisfied

0 10 20 30 40
Latency 1

Latency 2
!
!
!

1

2

3

!

!

1

3

(b) End-to-end task chains latencies satisfied

Fig. 3. Unoptimized (a) vs. optimized (b) schedules.

be mapped according to a best-fit strategy with respect to
utilization, i.e., balancing the processor and core utilization.
We run the simulation for a length l (set in line 2), af-
ter which the schedule will repeat itself. l is defined by
2 ·hyperperiod+MaxOffset, where hyperperiod is determined
as the Least Common Multiple of all tasks in Γ and the
MaxOffset is the maximum over all offsets φi [33].

The iteration over the simulation length l is done in the
while-loop in ScheduleSynthesis (lines 8–16). The current time
is captured by cycle, and we advance the time to the next event,
that needs to be simulated.

The EDF simulation is performed per core σ (line 12) and
we use a queue Qσ , containing all cores from all processors,
ordered by the earliest event that needs to be simulated. To
start the simulation, lines 3–7 add cores to the queue Qσ , by
visiting all the cores in the architecture A.

The next event to be simulated is determined by taking the
head of the queue Qσ (Dequeue) and calling NextCycle. We
add cores to be simulated in Qσ only if we are still within
the simulation length l. The while loop stops, when there are
no cores to be simulated (Qσ is empty). The EDF simulation
logic is taking place in the EDFSimulation function , called
at line 12, which simulates up to the next event, which is
returned. The product of ScheduleSythesis is then a recording
of all occurred events, from which we can derive the schedule
table S of the current solution s.

Our EDFSimulation implementation is able to skip unneces-
sary cycles. It does so by progressing towards the nearest event
defined by either releasing a tasks from the waiting queue,
choosing the task with the earliest deadline first from the ready
queue, completing a task or allowing preemption to occur on
certain break point defined by a parameter called macrotick for
each core. The macrotick defines the preemption granularity.
The macrotick is set such that it allows preemption, under the
constraint that the overhead due to context switches, on each
processor, should be low, see [11], [34], [35] for a discussion.

We illustrate the EDF approach via the example in Figure 3,
consisting of an architecture with a single processor with
two cores, σ1 and σ2, both of which having a macro tick
of 1 ms. The depicted application is modelled by the task

set Γ = {τ1,τ2,τ3}, which is constrained by zero jitter for
all tasks. The tasks are defined as τ1 = (σ0,0,φ1,4,10,10),
τ2 = (σ0,0,φ2,1,4,4) and τ3 = (σ1,0,φ3,4,20,20). Further-
more, the set of task chains is defined by Lℵ = {ℵ1}, with
ℵ1 = ({τ1 ≺ τ2 ≺ τ3},20,1.0). Please note, that given Eq. 1,
only two chain instances are necessary to validate as the
hyperperiod of ℵ1 is 20 ms, and the period of τ1 is 10 ms.

Figure 3a depicts a solution, where the jitter and the task
chain end-to-end constraints are violated, whereas Figure 3b
shows a valid solution. As seen from Figure 3a, τ1 violates its
jitter constraints, as the start (and end) of execution within its
periods varies. This is detected, when TriggerTaskEvent raises
the events for the respective tasks instances. For example, the
event triggering the start of execution with respect to τ1,1 and
τ1,2 differs by 1 ms. While the initial offset φi for all tasks is 0,
resulting in τ2,1 and τ3,1 starting their execution first, neither
are source tasks with respect to ℵ1. Moving forward, τ1,1 is
started at cycle 1, causing the event to trigger the registration
of a task chain instance ℵ1,1. At cycle 4, τ1,1 is preempted
by τ2,2 while τ3,1 completes is execution. Although τ3,1 is
a sink task, and a chain instance has been registered, the
instance has yet to receive the completion of τ1,1 and τ2,k

before it is accepted. That is, the presence of an event from
τ2,k that happens after τ1,1 must be registered. Subsequently,
τ1,1 completes at cycle 5, allowing the ℵ1,1 to advance its
state, waiting for τ2,3. Lastly, τ3,2 finalizes its execution at
cycle 23, thus completing ℵ1,1 with a resulting latency of 23,
which incidentally violates the given constraints. The chain
instance ℵ1,2 is registered at cycle 10, and also finalizes at
cycle 23, yielding a latency of 14. Given that both latency
and jitter constraints have been violated, the product of the
ScheduleSynthesis is not feasible.

However, in an optimized solution, solving the associated
violations can be achieved by manipulating the initial offsets
φi for the tasks, as depicted in Figure 3b. Here, the schedule
has been altered such that all executions of τ1 and τ3 have been
deferred by φ1 and φ3. For τ1, the displacement φ1 solves the
jitters, because all jobs τ1,i now start (and end) at the same
cycle relative to its period. Finally, τ3 has been displaced by
9 cycles, such that its initial execution allows τ3,1 to catch
the events from τ2,3 (and by extension τ1,1), thus reducing the
latency of ℵ1,1. Likewise, by introducing φ1 for τ1 the latency
of ℵ1,1 was reduced even further. The combined effect of φ1

and φ3 is full compliance of all constraints with the resulting
latency’s of 10 ms and 20 ms for ℵ1,1 and ℵ1,2, respectively.

V. EXPERIMENTAL RESULTS

As a first experiment, we were interested to determine the
ability of our proposed SA to find near-optimal solutions. We
have implemented an exhaustive search that finds the optimal
solution; however, we were able to do that only for small task
sets of less than 10 tasks considering an architecture with two
cores. Our SA was able to find the same optimal solution in
less than 10 s. In the next sets of experiments, determining
the efficacy of SA was achieved through a combination of
synthetic and realistic test scenarios, benchmarked against two

September 11, 2020 TTTech Confidential and Proprietary Information

Experimental evaluation

Copyright © TTTech Computertechnik AG. All rights reserved.

TABLE I
EVALUATION RESULTS ON SYNTHETIC TEST CASES

Test case Time Greedy SA GA
Chains Jitter Sched. Chains Jitter Sched. Chains Jitter Sched.

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max
ADAS1x100% 1 hour 0.97 0.98 1.00 0.58 0.61 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ADAS1x200% 2 hours 0.97 0.99 1.00 0.55 0.67 0.75 1.00 0.98 1.00 1.00 0.94 1.00 1.00 1.00 0.98 1.00 1.00 0.71 0.95 1.00 1.00
ADAS1x300% 3 hours 0.97 0.99 1.00 0.52 0.64 0.72 1.00 0.97 0.99 1.00 0.70 0.87 1.00 1.00 0.97 0.99 1.00 0.70 0.88 1.00 1.00
ADAS1x400% 4 hours 0.97 0.97 0.98 0.52 0.64 0.73 1.00 0.97 0.99 1.00 0.69 0.80 0.88 1.00 0.94 0.99 1.00 0.70 0.81 0.92 1.00
ADAS1x500% 5 hours 0.97 0.98 0.98 0.51 0.62 0.70 1.00 0.95 0.98 0.99 0.63 0.78 0.86 1.00 0.95 0.98 1.00 0.64 0.79 0.87 1.00

other heuristics: Greedy and Genetic Algorithm (GA). Greedy
decides the mapping of tasks to cores aiming to distribute
the workload such that no core overloads. Thus, iterating
through tasks, Greedy allocates a task to the core with the
least utilization available. For the Greedy-based heuristic, we
use the same EDF simulation technique (with preemption),
considering zero offsets and the deadlines of the tasks (i.e.,
these parameters are not optimized).

GA is a multi-objective optimization heuristic inspired
from evolutionary theory [36]. We (i) encode each solution
(chromosome) as an array where each entry (gene) contains
information on the mapping, offset and deadline of a task and
(ii) randomly initialize N individuals. We then (iii) evolve
some selected candidates by using (iv) recombination and
(v) mutation. Finally, (vi) the evolved candidates with better
fitness will replace the parent population. The fitness of a
solution is evaluated using the same cost function as for
SA, however the cost for each task deadline, task jitter, and
chain is its own objective. The cost for the GA is the vector
of each of these objectives. Steps (iii) to (vi) are repeated
until the allotted time is exhausted. We employ a standard
uniform crossover, and for mutation we do as follows: for each
gene in the chromosome, we compare a randomly generated
number with a “probability of mutation” and if this number is
smaller, then this position is mutated. To select parents we sort
the “population” using the “non-dominated” sorting method
from [36]. Half the population are kept as parents, and to
create new individuals, two random parents are picked until
all individuals have been created.

All experiments were conducted on a High Performance
Computing (HPC) cluster, with each node configured with
2xIntel Xeon Processor 2660v3 (10 cores, 2.60GHz) and 128
GB memory. Both SA and GA run on one node at a time.

Synthetic Test Cases. The synthetic task sets were gener-
ated using a tool developed for this purpose [7], which derives
the desired task properties from the realistic task set presented
in the next subsection. We are interested to determine if using
an SA meta-heuristic combined with EDF-simulation is a
viable solution for finding feasible schedules, when confronted
with very large task sets.

Thus, we have used five test cases, ranging from 100% to
500% in scale, i.e., for ADAS1x100% the application contains
151 tasks and 31 chains using a model of the architecture
discussed in section II, whereas with ADAS1x200% the ar-
chitecture would double the number of processors, tasks and
task chains. The results are presented in Table I, with each

TABLE II
EVALUATION RESULTS ON REALISTIC TEST CASES

Test case Time Greedy SA
Chains Jitter Sched. Chains Jitter Sched.

Min Avg Max Min Avg Max
ADAS1 3.20 0.81 0.37 1.00 0.97 0.99 1.00 0.95 0.99 1.00 1.00
ADAS2 6.40 0.65 0.21 1.00 0.94 0.99 1.00 0.84 0.99 1.0 1.00
ADAS3 13.20 0.48 0.21 1.00 0.84 0.99 1.00 0.74 0.97 1.0 1.00

row representing the results of a task case. A test case is
a scenario consisting of 30 synthetically generated task sets,
with each undergoing 30 trials (runs of SA and GA on the
same test case). Thus a single test case, e.g. ADAS1x100%,
would conduct 900 trials for each algorithm. As the experiment
progresses through each case, the algorithms were given
additional time due to an inherent increased complexity of
the problem (see the Time column).

For each algorithm (Greedy, SA and GA), we show in the
table, under the Sched. columns, the percentage of cases (out
of the 30 trials) for which the algorithms determine schedu-
lable solutions (all deadline constraints are satisfied; 1 means
100%). The columns labelled Chains have the percentage of
chains out of the total chains, for which the respective algo-
rithm was able to satisfy the end-to-end constraints. Similarly,
Jitter denotes the percentage of jitter constraints satisfied.
These values are presented for in terms of minimum, average
and maximum considering the 30 runs. Note that the Greedy
algorithm is not stochastic and always outputs the same result.

As we can see from Table I, the Greedy approach has
comparatively the worst performance in terms of complying
with the constraints. We also see that SA is able to find
schedulable solutions (in terms of deadlines, chains and jitter
constraints) within the allotted time, even when the problem
size increases. We see that SA has a drop in finding feasible
schedules (from 100% in column Chains. for ADAS1x100%,
to 63% for ADAS1x500%, and cannot meet the jitter con-
straints for some of the two largest test cases). We estimate
that this is caused by a combination of increased difficulty of
the task sets and their constraints, as well the crude method
for estimating the time allotted. We observed that both SA and
GA obtain similar quality results, with SA being slightly better
for smaller test cases and GA doing slightly better for larger
test cases. Reflecting on the results, we expect that SA would
be able to find an increased percentage of feasible solutions
given more time. However, both metaheuristics (SA and GA)
are clearly superior to the mapping heuristic such as Greedy,
when presented with very large task sets.

TABLE I
EVALUATION RESULTS ON SYNTHETIC TEST CASES

Test case Time Greedy SA GA
Chains Jitter Sched. Chains Jitter Sched. Chains Jitter Sched.

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max
ADAS1x100% 1 hour 0.97 0.98 1.00 0.58 0.61 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ADAS1x200% 2 hours 0.97 0.99 1.00 0.55 0.67 0.75 1.00 0.98 1.00 1.00 0.94 1.00 1.00 1.00 0.98 1.00 1.00 0.71 0.95 1.00 1.00
ADAS1x300% 3 hours 0.97 0.99 1.00 0.52 0.64 0.72 1.00 0.97 0.99 1.00 0.70 0.87 1.00 1.00 0.97 0.99 1.00 0.70 0.88 1.00 1.00
ADAS1x400% 4 hours 0.97 0.97 0.98 0.52 0.64 0.73 1.00 0.97 0.99 1.00 0.69 0.80 0.88 1.00 0.94 0.99 1.00 0.70 0.81 0.92 1.00
ADAS1x500% 5 hours 0.97 0.98 0.98 0.51 0.62 0.70 1.00 0.95 0.98 0.99 0.63 0.78 0.86 1.00 0.95 0.98 1.00 0.64 0.79 0.87 1.00

other heuristics: Greedy and Genetic Algorithm (GA). Greedy
decides the mapping of tasks to cores aiming to distribute
the workload such that no core overloads. Thus, iterating
through tasks, Greedy allocates a task to the core with the
least utilization available. For the Greedy-based heuristic, we
use the same EDF simulation technique (with preemption),
considering zero offsets and the deadlines of the tasks (i.e.,
these parameters are not optimized).

GA is a multi-objective optimization heuristic inspired
from evolutionary theory [36]. We (i) encode each solution
(chromosome) as an array where each entry (gene) contains
information on the mapping, offset and deadline of a task and
(ii) randomly initialize N individuals. We then (iii) evolve
some selected candidates by using (iv) recombination and
(v) mutation. Finally, (vi) the evolved candidates with better
fitness will replace the parent population. The fitness of a
solution is evaluated using the same cost function as for
SA, however the cost for each task deadline, task jitter, and
chain is its own objective. The cost for the GA is the vector
of each of these objectives. Steps (iii) to (vi) are repeated
until the allotted time is exhausted. We employ a standard
uniform crossover, and for mutation we do as follows: for each
gene in the chromosome, we compare a randomly generated
number with a “probability of mutation” and if this number is
smaller, then this position is mutated. To select parents we sort
the “population” using the “non-dominated” sorting method
from [36]. Half the population are kept as parents, and to
create new individuals, two random parents are picked until
all individuals have been created.

All experiments were conducted on a High Performance
Computing (HPC) cluster, with each node configured with
2xIntel Xeon Processor 2660v3 (10 cores, 2.60GHz) and 128
GB memory. Both SA and GA run on one node at a time.

Synthetic Test Cases. The synthetic task sets were gener-
ated using a tool developed for this purpose [7], which derives
the desired task properties from the realistic task set presented
in the next subsection. We are interested to determine if using
an SA meta-heuristic combined with EDF-simulation is a
viable solution for finding feasible schedules, when confronted
with very large task sets.

Thus, we have used five test cases, ranging from 100% to
500% in scale, i.e., for ADAS1x100% the application contains
151 tasks and 31 chains using a model of the architecture
discussed in section II, whereas with ADAS1x200% the ar-
chitecture would double the number of processors, tasks and
task chains. The results are presented in Table I, with each

TABLE II
EVALUATION RESULTS ON REALISTIC TEST CASES

Test case Time Greedy SA
Chains Jitter Sched. Chains Jitter Sched.

Min Avg Max Min Avg Max
ADAS1 3.20 0.81 0.37 1.00 0.97 0.99 1.00 0.95 0.99 1.00 1.00
ADAS2 6.40 0.65 0.21 1.00 0.94 0.99 1.00 0.84 0.99 1.0 1.00
ADAS3 13.20 0.48 0.21 1.00 0.84 0.99 1.00 0.74 0.97 1.0 1.00

row representing the results of a task case. A test case is
a scenario consisting of 30 synthetically generated task sets,
with each undergoing 30 trials (runs of SA and GA on the
same test case). Thus a single test case, e.g. ADAS1x100%,
would conduct 900 trials for each algorithm. As the experiment
progresses through each case, the algorithms were given
additional time due to an inherent increased complexity of
the problem (see the Time column).

For each algorithm (Greedy, SA and GA), we show in the
table, under the Sched. columns, the percentage of cases (out
of the 30 trials) for which the algorithms determine schedu-
lable solutions (all deadline constraints are satisfied; 1 means
100%). The columns labelled Chains have the percentage of
chains out of the total chains, for which the respective algo-
rithm was able to satisfy the end-to-end constraints. Similarly,
Jitter denotes the percentage of jitter constraints satisfied.
These values are presented for in terms of minimum, average
and maximum considering the 30 runs. Note that the Greedy
algorithm is not stochastic and always outputs the same result.

As we can see from Table I, the Greedy approach has
comparatively the worst performance in terms of complying
with the constraints. We also see that SA is able to find
schedulable solutions (in terms of deadlines, chains and jitter
constraints) within the allotted time, even when the problem
size increases. We see that SA has a drop in finding feasible
schedules (from 100% in column Chains. for ADAS1x100%,
to 63% for ADAS1x500%, and cannot meet the jitter con-
straints for some of the two largest test cases). We estimate
that this is caused by a combination of increased difficulty of
the task sets and their constraints, as well the crude method
for estimating the time allotted. We observed that both SA and
GA obtain similar quality results, with SA being slightly better
for smaller test cases and GA doing slightly better for larger
test cases. Reflecting on the results, we expect that SA would
be able to find an increased percentage of feasible solutions
given more time. However, both metaheuristics (SA and GA)
are clearly superior to the mapping heuristic such as Greedy,
when presented with very large task sets.

Five test cases, ranging from 100% to 500% in scale, i.e., for ADAS1x100% the application
contains 151 tasks and 31 chains using a model of the architecture
A test case is a scenario consisting of 30 synthetically generated task sets, with each
undergoing 30 trials (900 trials for each algorithm)

Real-world test-cases with 151 tasks and
31 chains

Vienna, Austria
(Headquarters)

USA Japan China

Phone +43 1 585 34 34-0
office@tttech.com

Phone +1 978 933 7979
usa@tttech.com

Phone +81 52 485 5898
office@tttech.jp

Phone +86 21 501529250
china@tttech.com

www.tttech.com

Copyright © TTTech Computertechnik AG. All rights reserved.September 11, 2020 TTTech Confidential and Proprietary Information

