RT-SCALER: Adaptive Resource Allocation Framework for
Real-Time Containers

Viclav Struhdr!, Silviu S. Craciunas?, Mohammad Ashjaei', Moris Behnam', and Alessandro V. Papadopoulos'
"Milardalen University, Visteras, Sweden; 2TTTech Computertechnik AG, Vienna, Austria

Abstract—Container-based virtualization has emerged as an
advantageous deployment model in fog computing platforms
since it enables the seamless co-location of applications in a
heterogeneous environment with minimal overhead. For some
application domains requiring a certain degree of predictability
in the time domain (e.g., industrial automation), the adoption
of container-based virtualization is not straightforward since the
technology is not built to support real-time properties.

In this paper, we propose RT-SCALER, which is a framework
for adaptive resource allocation and dimensioning for real-
time containers. RT-SCALER dynamically adapts the resource
reservation of real-time enabled containers in order to improve
the temporal predictability of the real-time applications running
within the containers. We discuss the high-level orchestration
approach, relating the different control levels, and give some
practical insights into node-level container adaptation.

I. INTRODUCTION

Container-based virtualization has emerged as a suitable de-
ployment model in fog computing [1] and edge platforms [2],
[3], [4], as it provides near-native performance with low mem-
ory footprints and rapid start-up times. Additionally, containers
provide portability, ensuring that applications will work the
same way regardless of the environment where they are de-
ployed. Moreover, containers eliminate the additional overhead
of dedicated virtualization layers and, thus, use the host’s
available resources more efficiently. The properties mentioned
above make container-based virtualization a suitable tech-
nology for hosting applications in heterogeneous distributed
environments, such as fog and cloud computing platforms.
However, using containers in domains imposing safety and
real-time requirements (e.g., industrial automation), requires
that containers are spatially and temporally isolated and can
offer some form of timing predictability for the underlying
applications. While spatial isolation is a fundamental property
of containers, support for real-time is still under ongoing
research.

In general, real-time properties relate to the ability of
applications to produce not only correct logical results but
also to uphold temporal limits (deadlines) when computing
the results [5]. Such temporal requirements are challenging,
especially in heterogeneous environments with a dynamically
changing number of containers with unpredictable workloads
and access patterns to shared resources. However, only limited
attempts have been made to enable real-time behavior in
container-based virtualization within this research area. For

This work has been performed with the support from the Swedish Knowl-
edge Foundation (KKS) under the SACSys project (#20190021), and from
the Swedish Research Council (VR), under the PSI project (#2020-05094).

instance, the Hierarchical Constant Bandwidth Server (HCBS)
solution by Abeni et al. [6] provides temporal isolation of
containers that share the same physical host. The HCBS
consists of two-level schedulers, the global scheduling policy
for the containers, while the second level is based on fixed-
priority scheduling for software tasks.

Nevertheless, at runtime, container-based virtualization is
prone to resource interference. As the containers share the
operating system kernel of the host, the performance inter-
ference, that is, the performance isolation problem will occur
between the containers due to the resource competition [7].
Resource interference may influence the execution times of the
containerized applications and introduce timing unpredictabil-
ity. Within this context, the HCBS solution [6] specifies CPU
time reservation for RT containers in the form of a certain
percentage of the CPU bandwidth over a specified period. The
reservation is commonly done via reserving a CPU budget
over the period. Choosing the correct amount of the budget
and period is a non-trivial task, as it directly affects the timing
properties of the containers. The reservation problem becomes
even more challenging in heterogeneous and dynamic systems
due to (i) the worst-case execution time (WCET) on the
specific platform being unknown beforehand, (ii) due to the
unpredictable performance interference originating in other co-
located containers, and (iii) due to possible dynamic workload
changes in the RT containers. Therefore, it is not sufficient to
compute the resource reservation in terms of the budget and
period at design time (offline phase), but it is also necessary
to adapt it at runtime to improve the utilization of resources
and the time-predictability of services (online phase).

In order to achieve the goal of time predictability of
container-based virtualization, we propose an orchestration
framework named RT-SCALER in this paper that considers
both the offline and online aspects of the adaptation problem
for real-time containers. Besides an offline phase, in which the
container dimensioning can be done based on an static system
model without considering runtime overhead, we propose
an online phase that is able to respond to changes in the
performance of real-time tasks as well as to changes in the
required workload (e.g., when new applications or containers
join the system), in order to both preserve the timeliness
of applications and to utilize the available resources more
efficiently. We describe the overall design of RT-SCALER
along with its components and highlight the hierarchical
nature of the control problem for runtime container adaptation
(Sec. II). Additionally, we discuss some practical insights and
experimentally show the benefits of controlling the resources

during runtime at the local node level (Sec. III) and draw some
conclusions in Sec. IV.

The nature of container-based virtualization provides a
ground for resources adaptation. Due to rapid start-up times,
it is easy to horizontally scale up the number of containers
and balance the workload between them as shown in [8].
Additionally, it is simple to vertically scale the container’s
resources via cgroups. It is shown in [9] where authors scale
container resources based on CPU utilization of containers.

II. CONTAINER ORCHESTRATION

We present the high-level idea of RT-SCALER, which is
a general orchestration framework for static and dynamic
allocation and dimensioning of real-time containers. Real-
time containers supplement the spatial isolation properties
of containers with real-time capabilities relating to temporal
isolation and deadline fulfillment. Adding real-time properties
to containers has been addressed in [6] by introducing a
hierarchical scheduling patch for Linux-based systems.

The main aim of our container orchestration, called RT-
SCALER, is to manage the deployment and adaptation of
real-time containers in distributed applications featuring het-
erogeneous computing nodes such that individual real-time
task requirements are met. These requirements are not only
related to the real-time behavior but also resource usage such
as memory, I/O, and disk requirements and non-functional
requirements such as fault-tolerance, power consumption, or
resource efficiency.

The input to our RT-SCALER orchestrator is a set of real-
time tasks and containers. The containers can include either
self-suspending real-time tasks with implicit (or constrained)
deadlines, in which case they are labeled as real-time (RT)
containers or non-real-time tasks, in which case we talk about
best-effort (BE) containers. Real-time tasks are additionally
defined using a worst-case execution time (WCET) and a
period specifying an upper bound on the computation of the
task in each period and the rate at which the task is activated.
Both RT and BE containers can coexist on the same core,
but they are spatially and temporally isolated. The real-time
tasks are pre-allocated to containers, but the containers are not
pre-allocated to computing nodes (and cores), although they
can have a certain affinity set constraining the set of nodes
to which they can be allocated to. As defined in [10], each
RT container 7 has additionally an RT interface consisting
of (P, Q) where @y is the CPU quota within an interval
(period) Py, defining that the container m;, cannot use more
than Py time units over an interval of time of (); time units.

We envision our RT-SCALER orchestrator to consist of two
phases, an offline and an online one.

A. Offline phase

Given a set of containers and real-time applications as de-
fined above, in the offline phase, RT-SCALER decides where
to place the containers such that the real-time requirements of
tasks are fulfilled. This decision will be based on two steps.

Computing node

T Containe !
RT Container eT—

1
i

RT Container '
1

Container(s) 1
1

1

1

1

1

1

Node-level
Controller

-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 1. Overview of the system.

The first step is to calculate a set of ideal RT interfaces
for the RT containers, i.e., compute (Pj, Q) for every RT
container 7. This is similar to the non-trivial server design
problem [11], [12]. In this case, the server design problem is to
compute the optimal budget and period of all containers given
the set of real-time tasks and their assignment to containers.
There are several (computationally intensive) methods to com-
pute the optimal server parameters (e.g. [13], [14]) for both
fixed- and dynamic priority schedulers, which rely on a worst-
case schedulability analysis of the tasks within the server.
Since we know the underlying scheduling mechanism (fixed
priority) used to dispatch tasks within a container, we can
employ a response time analysis (e.g. [15]) under the worst-
case service pattern assumption for the given RT interface to
compute the optimal RT interface (Py, Q).

After solving the server design, the allocation of containers
to cores becomes an optimization problem similar to the
bin-packing problem, and thus NP-hard. There are, however,
efficient offline heuristics that can offer near-optimal solutions
in a reasonable time even for larger problem sizes [16].

Finally, BE containers need to be assigned, and this can be
done either in a random or more balanced fashion. A balanced
assignment of BE containers could take into account, e.g.,
the number of BE tasks in the container and the remaining
CPU bandwidth of each node. Once assigned, the remaining
bandwidth on each node can be distributed (uniformly or non-
uniformly) to the respective BE containers.

The offline phase is not sufficient to guarantee the desired
real-time behavior of applications at runtime. It is too complex
(and unrealistic) to build an exact model of the underlying
system and the runtime interactions between the containers
in order to be able to rely solely on the resulting offline
dimensioning of containers. Runtime effects may lead to a
variance in the temporal behavior since the temporal isolation
is not perfect and influenced by runtime artifacts (e.g., cache
effects, interrupts) and system overhead. Hence, the ideal
server dimensioning done at the offline stage may not lead
to the desired behavior in practical deployments. Additionally,
new applications or containers can be released in the system,
requiring a runtime adaptation of existing containers or assign-
ment of new containers to the available (and possible) cores.

B. Online phase

In the online phase, we envision two components interacting
with each other to be able to respond to unforeseen changes
in the temporal behavior of runtime tasks. One component
is online monitoring of the real-time and health aspects of
applications. This aspect is described along with the gen-
eral framework for deploying and implementing an online
container orchestrator module in [10]. In [10], the authors
introduced Container Level Metrics (CLM) to capture and
continuously evaluate: (i) the number of deadline misses, (ii)
the lateness, and (iii) the response-time of real-time tasks.
Additionally, we also monitor Operating System-Level Metrics
(OSLM) that give us a picture of the health of the underlying
system and the containers. In [10] the authors give special
attention to the system overhead, which can affect the temporal
isolation property and system utilization which can be used
to optimize the response time of tasks as well as to detect
overload scenarios or starvation in BE containers.

At runtime, there are several actions that we are able to
take based on the CLM and OLM measurements. The most
straightforward parameter to change is the container budget.
For example, when detecting a deadline miss of a task, we can
increase the budget of the corresponding container, thus giving
the tasks within more CPU bandwidth to resume their correct
behavior. Naturally, the decision of when and how much to
increase the budget is non-trivial as it depends on multiple
aspects like the overall system utilization, the effects on other
RT and non-RT containers, and the implications on the system
overhead. We can also change the period of a container, e.g., to
let it run more frequently. This also has complex implications
on the overall system behavior and may also affect other tasks
running in the same container. Additionally, the implications of
changing the period at runtime on preempted but not finished
tasks need to be considered. A third dimension where we
can enact changes is the container allocation. If we detect
at runtime that the system is becoming overutilized or that we
cannot guarantee the temporal correctness of all RT tasks and
containers, the system may move one or multiple containers
onto another (less congested) node. Here, the complexity
comes from identifying which containers to move and to
which node(s) to move them. Additionally, while the first two
parameters were (somewhat) more continuous in nature since
we have a whole range of possible values to choose from,
the reallocation decision is inherently a binary one. Thus, at
runtime, we need to be very careful when to switch from
slightly adjusting container parameters to deciding that one
or multiple containers need to be moved.

The node-level view is depicted in Fig 1 where RT- and BE-
Containers coexist in a node, and, additionally, there is one RT-
Controller per RT container. The RT-Controller is responsible
for adapting local container-level parameters. We do not detail
the specifics of what type of controller to use since this is
ongoing work, but we envision a runtime adaptation based
on control theory. While the RT-Controllers here are local
to the RT containers (and hence apply changes to local

container values), they need to synchronize and orchestrate
to node-level and system-level controllers. By having this
controller hierarchy, we can ensure that the holistic view of
the distributed system is maintained and the correct overall de-
cisions are made. We envision simple but fast controllers that
interact locally with the budget of a container (within some
predefined bounds) and can react quickly to runtime violations.
Moreover, a node-level controller needs to orchestrate between
the RT-Controllers, e.g., to modify the allowed bounds for
local budget changes and compute correct dimensioning of,
e.g., container periods depending on the overall node-level
system state. On the next hierarchical level, a centralized
controller needs to orchestrate the migration and reallocation
of containers to other nodes.

Another aspect of online redimensioning/reallocation is
resource and task optimization. Even when no real-time re-
quirements are violated, the RT-Controllers may decide that
there are enough free resources in a node to redimension
a particular container (e.g., increasing its budget) to reduce
the task response times. Alternatively, an RT-Controller may
detect that tasks within an RT-Container finish well before
their deadlines and decide to reduce the budget in order to, e.g.,
optimize non-functional properties such as power consumption
or give more bandwidth to BE containers.

III. PRACTICAL INSIGHTS

This section provides a brief insight into the local control
of RT-Containers via a simple PID loop to underscore the
potential of runtime adaptation in real-time containers.

The underlying container system in our work is based on
the HCBS patch! by Abeni et al. [6] that provides temporal
isolation of containers sharing the same physical host. The
patch is consistent with existing real-time analysis (some
results show that it is compatible with the Multiple Periodic
Resource Model analysis). The patch hierarchically chains
two existing scheduling policies (SCHED_DEADLINE and
SCHED_FIFO). The SCHED_DEADLINE scheduling policy
implements the Constant Bandwidth Server (CBS) algorithm
as the root scheduling policy of the scheduling hierarchy.
The second level scheduling policy is fixed-priority scheduling
policy SCHED_FIFO. The scheduler provides an interface to
control the parameters of the scheduling policies via cgroups.
In a cgroups virtual file system, ’cpu.rt_runtime_us’ serves to
control CPU time reservation for each RT container.

We enhance the Linux Kernel with an online RT task
monitoring module and an adaptation module for adapting
local container-level parameters. The task monitoring module
recognizes containerized real-time tasks that run within the
context of HCBS patch, and it continuously collects RT-related
performance metrics [5], [10]. In our experiments, we consider
the response time of the self-suspending periodic task. How-
ever, the module also collects other data consistent with CLM
metrics defined in [10]. The module timestamps scheduler-
related events. The adaptation module aims to continuously

! Available at: https://github.com/lucabe72/LinuxPatches/tree/HCBS

350 T T T T T 1.5x107
Response Time ——
Budget [us]
Target Response Time

4 Laxi0?
4 13x107
300 n 1.2x107

N | \ﬁ
ol | \w‘\[)h ‘u”w W 'ij w‘\ “

|

4 | \
|
i il

200 ‘W ‘H M‘ mv\m ‘HMU

IVY

4 1.1x107

H Mu 1 13107
l 9x10°8
“ 8x10°8

7x108
M
mcws I

\N

Budget [us]

.

Response Time [ms]

17| 6x10°
u“ W“‘\“ m‘ V‘UU o

I

(v

4 4x10®
150 [4 3x10°
4 2x10®

1 1x108

0 50 100 150 200 250 300
Job nr.

Fig. 2. Response time of a dynamically changing containerized task without
online adaptation.

adjust the budget for the real-time containers in a reactive
manner in order to keep the real-time performance stable.
The adaptation module interacts with the monitoring module
to obtain monitoring data (CLM, OSLM) and utilizes a PID
controller to adapt the budget of the RT container.

We perform an experiment to demonstrate the adaptation
process on the Intel i5 computer with 8GB RAM using Debian
Linux (Kernel 5.2.) patched with the Hierarchical Scheduling
Patch, and running Docker v20.10.

An experiment showing the feasibility of our idea is de-
picted in Fig. 2 and Fig. 3. Fig. 2 shows a possible scenario
when the response-time of an RT container is affected by
unforeseen circumstances. We simulated such a change by
changing the workload in the container. At the 60" and
180t" job instances, the workload increases by 30%. At the
120" and 240" job instance the workload returns to its
original level. The RT budget of the RT container is reserved
to fulfill the target response time (200ms). However, any
workload change or system interference may affect the Quality
of Service of the RT container at runtime such that it is not
able to deliver demanded performance.

Fig. 3 shows the same scenario that employs RT-SCALER.
The monitoring module continuously keeps track of the re-
sponse times of the containerized tasks. The adaptation module
changes the RT budget based on the measured response time.
As can be seen, the online adaptation quickly responds to the
changing workload and keeps the response time closer to the
desired value represented by the blue horizontal line.

IV. CONCLUSION

We presented RT-SCALER, a container orchestration frame-
work that introduces a two-phased orchestration approach,
aiming to preserve RT performance in a multi-container en-
vironment. The initial offline phase of the system attempts
to compute the theoretically optimal set of RT parameters
for the RT containers. This phase is based on the theoretical
background of optimal server dimensioning. However, the
computed values may not be ideal in real-world heterogeneous
systems that may suffer from interference artifacts or workload
changes requiring some form of online adaptation. Thus, we
introduced an online phase that adapts the RT container values

300 T T T T 1.6x107

Response Time —— | """
s A Budget [us] 7 15x

280 - A o

260 |-

/ “""rarget Respnnse Time
o] wstnr]

240 | ‘

1.4x107
1.3x107

‘w'
et 126107

| 1.1x107
u

220 ‘ h M m \ﬂ ﬁ paor
9x108

m apty i p WA ‘Aw« \ w‘* M\ rw ‘\N \”\/ 1 Mo Aﬁ 8x106
11 f W” ” T ;‘ ‘u' M I I W] \‘W‘ H”W\‘ ‘u‘ V WW I 708
‘ 4 6x10°

4 5x10°
1 ax108
140 | | 4 3x108

2

S
8

Response Time [ms]
Budget [us]

180 [
|
160 [V “‘

1 2x108

120
1 1x108

0 50 100 150 200 250 300
Job nr.

Fig. 3. Response time of a dynamically changing containerized task with
online adaptation.

at runtime based on a hierarchical approach. We presented
the general RT orchestrator design, proposed the system’s
architecture, and showed an experiment that demonstrates the
feasibility of the idea at the local RT container level.

In future work, we want to investigate different adaptation
strategies of real-time containers. For example, the adaptation
mechanism could predict workload from previous historical
data and proactively dimension the resources. Moreover, we
want to address the control challenge of deciding which server
parameter to change (including the decision to relocate an RT
container to another node) and experimentally evaluate the
complex control loop across different hierarchical levels in
distributed edge computing applications.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proc. MCC, 2012.

[2] W. A. Hanafy, A. E. Mohamed, and S. A. Salem, “A new infrastructure
elasticity control algorithm for containerized cloud,” IEEE Access, 2019.

[3] C. Dupont, R. Giaffreda, and L. Capra, “Edge computing in iot context:
Horizontal and vertical linux container migration,” in Proc. GIoTS, 2017.

[4] R. Morabito, “Virtualization on internet of things edge devices with
container technologies: A performance evaluation,” IEEE Access, 2017.

[5] G. C. Buttazzo, Hard real-time computing systems: predictable schedul-
ing algorithms and applications, 2011.

[6] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time
scheduling in the Linux kernel,” SIGBED Rev., 2019.

[7]1 C. Jiqing, “I/O performance optimization analysis of container on cloud
platform,” in Proc. ICPICS, 2020, pp. 84-86.

[8] H. T. Ciptaningtyas, B. J. Santoso, and M. F. Razi, “Resource elasticity
controller for docker-based web applications,” in Proc. ICTS, 2017.

[91 Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic

vertical elasticity of docker containers with elasticdocker,” in Proc.

CLOUD, 2017.

V. Struhdr, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V.

Papadopoulos, “REACT: enabling real-time container orchestration,” in

Proc. ETFA, 2021.

I. Shin and I. Lee, “Periodic resource model for compositional real-time

guarantees,” in Proc. RTSS. 1EEE, 2003.

——, “Compositional real-time scheduling framework,” in Proc. RTSS,

2004.

G. Lipari and E. Bini, “Resource partitioning among real-time applica-

tions,” in Proc. ECRTS, 2003.

A. Easwaran, M. Anand, and I. Lee, “Compositional analysis framework

using edp resource models,” in Proc. RTSS, 2007.

L. Almeida and P. Pedreiras, “Scheduling within temporal partitions:

Response-time analysis and server design,” in Proc. EMSOFT. ACM,

2004.

E. G. Coffman, M. R. Garey, and D. S. Johnson, Approximation

Algorithms for Bin Packing: A Survey, 1996.

[10]

[11]
[12]
[13]
[14]

[15]

(16]

