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Abstract—Time-Sensitive Networking (TSN) introduces stan-
dardized mechanisms that add real-time capabilities to IEEE
802.1 Ethernet networks. In particular, the Time-Aware Shaper
(TAS) can be used to send frames in a deterministic fashion
according to a predefined global schedule. Existing methods for
generating the global communication schedule enforce isolation
either in the time or in the space domain. This extended
abstract presents a novel, more flexible window-based schedul-
ing algorithm which removes the previously required isolation
constraints for Scheduled Traffic (ST) by integrating worst-case
delay analysis to guarantee bounded latency.

I. INTRODUCTION

Time Sensitive Networking (TSN) is a set of amendments
to IEEE 802.1 designed to bring real-time capabilities into
Ethernet-based networks. The network-wide clock synchro-
nisation protocol (802.1ASrev [1]) together with the Time-
Aware Shaper (TAS) mechanism (802.1Qbv [2]) allow real-
time scheduled traffic (ST) to coexist with standard best-effort
(BE) within the same multi-hop switched Ethernet network [3].
The TAS defines a timed gate for each queue (traffic class) at
the egress ports of network devices that enables or disables the
transmission of frames according to a global communication
schedule implemented in so-called Gate Control Lists (GCL).

The GCL schedule synthesis [3], [4], [S5] aims at enforcing
end-to-end latency guarantees for ST streams through strict
temporal isolation not only from BE streams but also from
other ST streams. More specifically, [3] introduces an Satis-
fiability Modulo Theories (SMT)-based method that creates
schedules with O-jitter and defined end-to-end latencies for
individual ST flows. The method enforces a complete isolation
of critical flows from each other either by not allowing them
to be in the same queue at the same time or scheduling them
in different queues (i.e., temporal or spatial isolation). This
results in a strictly-periodic communication model with O-
jitter transmission which may significantly reduce the solution
space and may, additionally, generate a large number of GCL
events exceeding the hardware capabilities of existing TSN
devices. In [4] the O-jitter assumption is relaxed by allowing
a bounded interference between ST frames scheduled in the
same queue at the same time. However, both approaches
enforce that gates of different scheduled queues are opened
and closed in a mutually exclusive fashion, i.e., the priority
mechanism is essentially circumvented, eliminating potential
delays due to higher priority ST frames. The main reason
for the mutually exclusive behavior is that the worst-case
delay analysis required ST flow interference cannot be easily
expressed in SMT-formulation. The isolation may however
over-constrain the schedule generation for certain applications.
Moreover, both papers require that end-systems have TSN
capabilities which restricts the application domain significantly
since a lot of use-cases rely on off-the shelf end-nodes without
TSN mechanisms (e.g. those providing sensor data).

In this extended abstract we present a novel heuristic
window-based approach for GCL synthesis that relaxes the
mutually exclusive gate opening requirement of prior work and

allows two or more ST gates to be enabled at the same time.
Hence, our method does not individually schedule ST frames
and flows but rather schedules open gate windows for indi-
vidual scheduled queues, and does not impose that scheduled
queues are opened and closed in a mutually exclusive fashion.
In order to still provide real-time guarantees and calculate
the ensuing delays between ST frames of different priorities
we incorporate the worst-case delay analysis presented in [6].
Furthermore, this new approach also works for networks in
which end-systems do not have TSN capabilities. We define
the analysis-driven window optimization problem resulting
from our more flexible approach with the goal to increase the
porosity of the schedule, a metric introduced by Steiner [7],
expressing the degree by which a schedule has empty intervals
that allow lower priority traffic to be transmitted. We evaluate
the proposed approach on both synthetic and real-world test
cases, validating the correctness and the scalability of our
implementation and compare it to existing solutions for TSN
schedule generation.

We introduce the system model in Sect. II and outline the
problem formulation in Sect. III. In Sect. IV we present the
novel scheduling mechanism and the optimization strategy fol-
lowed by an experimental evaluation in Sect. V. We conclude
the paper in Sect. VL

II. SYSTEM MODEL

Network Model. We model the network as a directed graph
G, where the vertices are end systems (ES) and switches
(SW)—also called nodes, and edges are bi-directional full-
duplex physical links. Fig. 1 shows an example.

In order to reduce the network equipment and configuration
requirements, we relax the constraint that ESs are also part of
the synchronization. Hence, ESs are allowed to transmit un-
synchronized traffic according to a strict priority (SP) scheme.
SW are assumed to have 802.1Qbv capability (explained in
detail below) and are synchronized via 802.1ASrev.

Fig. 2 depicts a simplified TSN switch. The switching fabric
decides to which egress port(s) an incoming frame is routed.
According to the 802.1Q standard [8], each output port has
eight priority queues, which store the received frames in FIFO
order. A subset of the queues is used for ST traffic while the
rest are used for other, less critical, communication.

802.1Qbv specifies that there is a timed gate associated to
each traffic class (queue), which can be either opened or closed
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Figure 1. TSN network topology example
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Figure 2. TSN Switch Internals

according to a predefined Gate Control List (GCL). Traffic is
sent from the respective queue only if the gate is in the open
state. When multiple gates are open at the same time, the
highest priority queue can transmit frames, blocking others
until it is empty or the corresponding gate is closed.

The 802.1Qbv standard defines a lookahead mechanism for
each traffic class to check whether there is enough time to
send the entire frame before the closing time of the gate. If
not, the frame cannot be forwarded until the next open window,
and there will be an idle time (guard band) at the end of the
current open window. We assume a non-preemption policy (no
802.1Qbu support) if two or more are gates open at the same
time, which means that an ST frame already in transmission
cannot be interrupted by a higher priority ST frame.

The transmission approach advocated in this paper is
“window”-based, as it controls traffic based on the open
windows defined in the GCLs and not by individual frames
as in previous work, e.g., [3]. Hence, the GCL configuration
is defined as a tuple containing, for each queue in an output
port, the window offset, window length, and window period.

Application Model. The traffic class we focus on in this
paper is scheduled traffic (ST) also called time-sensitive traffic.
ST traffic can have requirements on bounded end-to-end
latency and/or minimal jitter. Communication requirements
of ST traffic itself are modeled with the concept of flows
(also called streams). An application is modeled as a set
of ST flows. A flow is characterized by its frame size, the
period in the source ES, the priority, and the deadline, i.e. the
maximum allowed end-to-end latency. The route for each flow
is statically defined (for example the dot-dash green arrows in
Fig. 1) as an ordered sequence of directed links.

III. PROBLEM FORMULATION

The problem addressed in this paper can be formulated as
follows. Given a set of flows F with fixed routes, priorities
and deadlines, determine the offset, length and period for each
window in each priority queue on the routes of all flows, such
that the overall still available bandwidth of all ports in the
network is maximized and the ST flows are schedulable, i.e.,
the worst-case delay (WCD) of each ST flow is smaller than
or equal to the respective deadline.

In order to evaluate and validate a solution, we need to
know the upper bounds of WCDs for the ST flows. In previous
work, the WCD of each ST flow did not depend on other ST
flows with different priority due to the opening of gates being
mutually exclusive. Since we want to remove this assumption,
the fully-deterministic pattern for each ST flow no longer
exists. Thus it is necessary to perform a schedulability analysis

Table 1
STREAM DEFINITION
Size | D (us) | T (us) | P Route
ttl | 1500 3000 200 1 ES1-SW1-SW4-SW6-ES9
tt2 | 2500 3000 200 1 ES1-SWI1-SW2-ES4
tt3 | 1500 3000 200 2 ES4-SW2-SW1-ES10
tt4 | 4200 3000 200 2 ES5-SW4-SW2-SW3-ES3
ttS | 3000 3000 200 1 ES5-SW4-SW6-ES9
tt6 | 1500 3000 200 3 ES5-SW4-SW5-ES6
tt7 | 1000 3000 200 1 ES7-SW5-SW4-ES8
tt8 | 1500 3000 200 3 | ES8-SW6-SW4-SW2-SW3-ES2
tt9 | 2763 3000 200 2 ES10-SW1-SW2-SW3-ES2
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Figure 3. Example configuration solution with optimized windows

for ST traffic when multiple gates are open simultaneously [6].

ST flows passing through output ports of switches are
shaped by the GCL which is modeled by windows assigned for
the corresponding priority queue. According to the overlapping
window-based network calculus model [6], the upper bounds
of worst-case end-to-end delay of a ST flow is the sum of all
queue delays on its route.

In the following example we have given the nine flows in
Table I. A solution that maximizes the available bandwidth
for lower-priority traffic is shown in Fig. 3(a). Such a solution
could be obtained using the initial solution algorithm that
will be presented later. Ports are denoted as [v1,v2] and their
queues are shown below them. The colored boxes represent the
windows, with the dotted line showing their periods. Initially,
a lot of free space is available in every port (low cost) and the
periods of all ports are very uniform.

However, this schedule does not fulfill the deadline con-
straint, as three flows (tt4, 8 and 9) will miss their deadlines.
An optimization algorithm should refine the solution such that
all of these deadlines are fulfilled while not sacrificing too
much free bandwidth. A possible solution, generated with the
iterative optimization algorithm from Sect. IV, is presented in
Fig. 3(b). In this solution several queue periods have been
shorted, for example in the highly frequented port [SW4,
SW2], to reduce the worst-case delay, at the expense of a
higher cost for that port. We now meet all the deadlines, while
on average there is only 4.1% less time available in the ports
to send lower-priority traffic.

IV. OPTIMIZATION STRATEGY

We propose a solution based on an iterative optimization
algorithm, which, starting from an initial solution, determines
the windows such that the cost function (defined in Sect. IV-A)
is optimized. The impact of windows of the schedulability



of flows is determined with the analysis from [6], which is
not exact as it is fit for the analysis for a single window-
based node but not sensitive to relative positions of windows
on consecutive nodes. Fig. 4 depicts the components of our
optimization strategy and their interaction. In the following,
we will explain each component.

Initial Solution. We developed a constructive heuristic to
find an initial solution which minimizes the cost, the box
“Generate initial solution” in the figure. Note that we can look
at ports individually because changes in one port do not have
any impact on the possible window configurations of other
ports, i.e., decreasing the cost of one port will always have
a positive impact on the overall cost. Although changes in a
port impact the WCDs, we do not consider this in the initial
solution. If the initial solution does not fulfill the deadline
constraints, the optimization algorithm from the box “Optimize
ports of flow” will take over, taking the global impact of ports
on worst-case delay into consideration.

Looking at an individual port, the goal is to create cost-
optimal windows. For each queue, the first step is to determine
the necessary length of the window. That length can be
deduced from the flows passing through the queue. We can
then determine the lower bound on the window length as the
longest sending time of any flow plus the guard band. If the
window would be smaller than that, the largest flow could not
be transmitted.

Based on a given window length without guard band, we
can then calculate the period of the window. The goal is to
find the maximum period of the window for which no flow
has an infinite worst-case delay. This maximum period can be
deduced from the period percentages pp of the flows, i.e., the
proportion of the flows sending time to the flows period. The
cumulative period percentage of all flows in the queue then
give us the proportion of the windows length, excluding the
guard band gb, to its maximum period. That means with a
given length w we can determine the maximum period for a
queuve g as ¢.T = (q.w—q.gb)/q.pp.

Such a solution is not sufficient because the periods of
different queues are not aligned. Hence, the initial solution
algorithm also scales up all window periods, and proportion-
ally the window lengths, to the highest existing period in the
port. Based on those new window lengths it then calculates
offsets such that windows start right after a previous window
has ended, with the highest priority window starting at offset
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Figure 4. Overview of our optimization strategy

0 and the other windows following in order of priority.

Optimizing Windows. We define a solution to be valid
if no flow has an infinite worst-case delay, i.e. the windows
are appropriately chosen. If a solution also fulfills the deadline
constraint it is said to be feasible. It is possible to find an initial
solution that is near-optimal in terms of cost, but which may
not meet the deadlines of every flow, thus further optimization
becomes necessary. The window optimization algorithm, as
presented, starts from an initial solution and then it checks
the feasibility of the solution with the deadline of all flows. If
the initial solution is feasible already, there no need to further
optimize it, see Fig. 4.

If the solution is not feasible we have to optimize it. For that
we first determine the subset of infeasible flows, which we sort
by exceeding percentage in descending order. The exceeding
percentage of a flow f; is defined as ep(f;) = WCD(f;)/Di—1,
capturing how much a flow exceeds its deadline. The rationale
is to improve the windows of the worst flows first, as by doing
that, other flows might improve as well.

Optimizing a flow is done iteratively, in a loop: it either
increases or decreases the period of all ports on the route
of the flow. Increasing/decreasing the period of a port means
increasing/decreasing the period of every window in the port
by the same amount. It does that for as long as at least one
period of any port changed. The goal is to approximate the
maximum period in each port for which the flow is barely
feasible. If feasibility is not yet reached, the periods get
decreased in every port along the flow route. Otherwise, they
are increased until the solution is infeasible again or the period
did not change in any port.

A. Cost Function

Inspired by [7], we want to evaluate the porosity of our
window schedule. We say that an egress port has high porosity
if the windows are evenly spaced allowing long and frequent
intervals for lower priority traffic. To measure the porosity
we calculate the occupation percentage of the hyperperiod:
the percentage of the hyperperiod that at least one window is
active. A low occupation percentage means high porosity.

Determining the cost is challenging because windows may
overlap. Each time interval where overlap occurs means a
reduction of occupation percentage. Thus, simply taking the
sum of all window lengths would lead to a higher occupation
than in reality. Thus, for each output port p, the problem of
finding the occupation of a hyperperiod through windows can
be solved mathematically by calculating the sum of a set of
intervals, which is formally defined as follows,

I(p-I)

COSt(p) l(Ovp-Thyper) 7 (1)
where the function /(x) helps determine the length of an
interval or a set of intervals, [([a,b]) = b — a. The union
operation makes sure overlapping intervals are merged into
one. Calculating the union of intervals is solved using a
line sweep algorithm [9]. Then we define the overall cost
function Cost(P) as the sum of all port costs Cost(p), i.e.,
Cost(P) = ¥, Cost(p).

V. EVALUATION

A good solution is determined by a low value of the cost
function and by worst-case delays that fulfill the respective
deadline requirements. We evaluated our proposed flexible



Table II
COMPARISON OF WND TO RELATED WORK: 0GCL, SP AND AVB

Mean e2e Delay (us) Mean Cost (%) Calculation Time (s) Infeasible Flows

0GCL | WND SP AVB 0GCL [ WND SP AVB | OGCL [ WND SP AVB | OGCL [ WND SP AVB
TCl1 821 4382 2520 6834 47.8 100 44.1 | 44.1 600 8.2 0.46 0.2 0 713 4/13 | 8/13
TC2 190 1914 597 1890 46 75.7 425 | 425 600 5.6 044 | 0.22 0 1/15 0 4/15
TC3 124 1265 419 1798 39.5 74.8 36.5 | 36.5 600 7.5 0.22 | 021 0 1/16 0 4/16
TC4 126 1589 318 1877 32.8 44.1 30,3 | 30.3 600 3 0.41 0.21 0 1/14 0 1/14
TC5 125 1421 367 2239 22.3 63.5 20.6 | 20.6 600 7.5 0.21 0.21 0 0 0 2/8
TC6 1277 7420 2499 | 14286 23.2 48.6 634 | 215 600 17.8 0.2 0.2 0 4/14 2/14 | 9/14
TC7 338 5910 1534 8723 24.4 91.2 22.6 | 22.6 600 10.52 | 0.21 0.2 0 0 5/11 4/11

window-based GCL scheduling method (called WND) on
7 synthetic test cases inspired from industrial application
requirements.

Several scheduling methods have already been proposed [3],
[4], [5]. The choice of which scheduling approach to use
is highly dependent on the specific use-case and application
domain as well as by the TSN hardware mechanisms available
in the devices.

Table II shows the compared results from four aspects, the
mean upper bounds of end-to-end latency (WCDs of flows),
mean cost, calculation time and number of infeasible flows. In
order to compare our method to previous work, we first need
to harmonize the test-cases proposed in [10], which miss two
crucial parameters: the stream priority and deadline. Hence,
we first run the scheduling algorithm from [10] and extract the
priorities from the resulting schedule. We then set the deadline
to 10 times the period for each stream. The comparison was
made with the greedy randomized adaptive search procedure
(GRASP) metaheuristic from [10]. The results from [10] are
presented in the columns named “OGCL” while the results
for our method are presented in the columns named “WND”.
In addition, we are interested in comparing the results with
strict priority (SP) traffic and audio video bridging (AVB)
traffic. The classes for AVB traffic correspond to previously
mentioned flow priorities. The results for the SP and AVB
algorithms are shown in the columns named “SP” and “AVB”.

0GCL, i.e. deriving schedules for individual flows that
are separated, has the best performance in supplying ultra-
low latency, and is able to make all flows schedulable (no
infeasible flows). The schedule synthesis problem of O0GCL is
intractable, and requires exponential time to find a solution.
Similar to [10], we have used a time limit, 10 minutes
in our case. In addition, OGLC will have a lower fault-
tolerance and higher complexity in implementation for online
configuration or reconfiguration problems. The SP scheduling
policy performs better in the end-to-end delay compared with
the scheduling for AVB traffic, as well the flexible window-
based WND method proposed in this paper, and with the
similar mean cost with the 0GCL method. Nevertheless, with
SP it is difficult to protect against babbling-idiot faults thus
leading to starvation for lower priority traffic. Moreover, the
SP policy causes highly uncertain delays on all classes except
the highest. AVB has the policy of bandwidth reservation

allocation, thus avoids starvation for lower priority traffic, but
it leads to larger worst-case delays compared with SP. Both
SP and AVB have a comparable cost to 0GCL.

VI. CONCLUSION

We have presented a novel heuristic scheduler for TSN

networks which uses a window-based approach where the
previously required isolation of open gate windows is not

necessary anymore. In order to still provide real-time guaran-
tees, we combine the scheduling step with a worst-case delay
analysis method based on previous work. We have evaluated
our approach using both synthetic and real-world test cases
and conducted a comparison with related work.

We are currently working on improving the analysis
from [6] to make it sensitive to relative window positions
on the whole network. Based on such an analysis, we will
update the optimization approach presented in this paper. Our
preliminary work indicates improvements in WCDs of over
50%, compared to the WND results in Table II. With these
improvements, WND can be a promising alternative to the
other methods of time-sensitive message transmission in TSN.
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