
Breaking vs. Solving: Analysis and Routing of Real-time
Networks with Cyclic Dependencies using Network Calculus∗

Anaïs Finzi
anais.�nzi@tttech.com

TTTech Computertechnik AG

Silviu S. Craciunas
silviu.craciunas@tttech.com
TTTech Computertechnik AG

ABSTRACT
Distributed real-time systems in the aerospace domain require
worst-case end-to-end latency analysis methods to provide cer-
ti�cation evidence of the correct temporal behavior of critical traf-
�c classes. One such analysis method is the Network Calculus
framework. While the Network Calculus analysis is mature enough
to be allowed in certi�cation artefacts, it is only applied in net-
works where there are no cyclic dependencies between communica-
tion �ows (so-called feed-forward networks). In general topologies,
�ows can form cyclic dependencies, making it di�cult to prove the
determinism of a network. There are two approaches to solve this
problem: 1) breaking the dependencies in the routing algorithm
to study a feed-forward network; 2) solving, i.e., computing the
bounds, in the dependency. In this paper, we review the recent
improvements of both methods and do a performance analysis of
AFDX and TTEthernet networks to compare their impact on the
worst-case delay and backlog bounds. Results show that the best
method depends on a number of parameters, such as load and de-
pendency length. Using these results, we propose a new routing
methodology resulting in the lowest bounds for networks with
cyclic dependencies.

KEYWORDS
Formal timing analysis, Cyclic dependencies, Network Calculus,
AFDX, TTEthernet, Routing
ACM Reference Format:
Anaïs Finzi and Silviu S. Craciunas. 2019. Breaking vs. Solving: Analysis and
Routing of Real-time Networks with Cyclic Dependencies using Network
Calculus. In 27th International Conference on Real-Time Networks and Systems
(RTNS 2019), November 6–8, 2019, Toulouse, France. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3356401.3356418

1 INTRODUCTION
Distributed real-time systems, like those found in aerospace sys-
tems, require a certi�cation process (i.e. proof of determinism) that
proves the correct temporal behavior of critical communication
∗This project has received funding from the Clean Sky 2 Joint Undertaking under the
European Union’s Horizon 2020 research and innovation programme under grant
agreement no 807081.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
RTNS 2019, November 6–8, 2019, Toulouse, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7223-7/19/11. . . $15.00
https://doi.org/10.1145/3356401.3356418

�ows in terms of end-to-end latency (delay) and backlog constraints.
Due to the increasing communication requirements, Airbus has
developed a new standard in 2007, the ARINC 664 speci�cation
part 7 [1], known as Avionics Full DupleX (AFDX), to be used as a
backbone in its latest aircraft systems (e.g. the A380 and A350). Sev-
eral technologies, like TTEthernet [29], and TSN [18], have been
introduced to address more stringent real-time communication
requirements over standard Ethernet.

The worst-case end-to-end delay requirements for these kind
of networks have been guaranteed through methods like Network
Calculus [13, 16, 17] or the more recent Compositional Performance
Analysis [31]. The Network Calculus method [17] is a well-known
mathematical framework that uses min-plus algebra in order to
derive worst-case bounds for individual communication �ow la-
tency and on the backlog in individual output ports. For example, in
TTEthernet networks, a rate-constrained (RC) tra�c class analysis
which takes into account the time-triggered (TT) tra�c class has
been introduced in [7, 32, 33].

While the Network Calculus analysis is mature enough to be
allowed in certi�cation artefacts, it is only applied in feed-forward
networks, i.e. network where the paths of interfering communica-
tion �ows do not form cycles (so-called cyclic dependencies). How-
ever, most networks in production systems have the possibility of
having cyclic dependencies. The most common mitigation method
for the problem of cyclic dependencies in the analysis is to break the
dependencies. Breaking the dependencies can be done in the routing
process to obtain easy-to-study feed-forward networks. A conse-
quence of this approach is an increase of the end-to-end delay and
backlog bounds due to the potential unbalancing of the RC/AFDX
tra�c necessary to avoid cyclic dependencies. Nonetheless, until
now, this has been deemed a better alternative than solving the
dependencies, which has an increased complexity and may often
lead to pessimistic solutions. However, the introduction of new ar-
chitectures based on rings [3] has lead to signi�cant improvements
in cyclic dependency solving methods. When analyzing the recent
results in the Network Calculus theory on cyclic dependencies
(e.g. [2], [4]) and results in feed-forward networks (e.g. [8], [22]), it
is not clear whether breaking cyclic dependencies in the routing
process still provides the lowest delay and backlog bounds or not.
Finally, the question is whether the higher real RC/AFDX bounds
in feed-forward networks with tight bounds are better or worse
than lower real RC/AFDX bounds in cyclic dependency networks
with pessimistic bounds. In other words, is it more bene�cial for
the analysis to solve or to break dependencies in such networks?

In this paper, we address this question in AFDX and TTEth-
ernet networks and propose an analysis of the two methods: 1)
cycle breaking in the routing, associated to computations for feed-
forward networks; 2) computations within networks containing

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record is available at https://doi.org/10.1145/3356401.3356418

RTNS 2019, November 6–8, 2019, Toulouse, France Anaïs Finzi and Silviu S. Craciunas

cyclic dependencies. In both cases, we conduct a performance anal-
ysis based on the Network Calculus framework which considers
ring topologies. Hence, this is the �rst work about the trade-o�s
between solving and breaking cyclic dependencies in AFDX and
TTEthernet networks. We consider four main constraints:

1) the analysis is done in the avionics context, i.e. for the AFDX
and TTEthernet standards;

2) the analysis considers general topology networks, i.e., not
restricted to ring topologies;

3) the tra�c load must be analyzed up to 100%;
4) the runtime complexity of the solution must be preferably

linear, or polynomial.
There are two reasons justifying this last constraint. First, to ob-

tain the needed certi�cation in avionics, software must ful�ll many
criteria. Hence, complex solutions make the certi�cation process
more di�cult and costlier. Secondly, in networks mixing RC and
TT frames, the computation of RC bounds within the routing and
scheduling of TT frames is necessary to enforce the RC deadlines
(cf. [30]). As a result, low computation time (i.e. linear complexity)
is needed to make the process end in a feasible amount of time.

Currently, the AFDX is a fully asynchronous network. However,
extensions that add synchronization to AFDX networks have been
proposed [6]. Hence, in addition to the AFDX network, we consider
a second type of real-time Ethernet network that we study in this
work, namely TTEthernet [29]. This will enable us to also study
the impact of the Time Triggered higher priority frames within a
time synchronized network.

In particular, we study so-called tipping points, i.e., the point
where the best performance tips from one method to the other. We
consider the impact of the length of cyclic dependencies, the length
of the �ow path in this cycle, and the impact of higher priority
tra�c, e.g., TT frames. This enables us to de�ne di�erent areas
depending on the best solution. Using this analysis, we are then
able to propose a method to select the best variant based on the
tipping points and de�ne a new routing approach that outperforms
classical methods.

Therefore, our main contributions are: 1) the overview and com-
parison of the recent results with Network Calculus on dealing
with cyclic dependencies in networks with arbitrary topologies, in
Section 3; 2) a performance analysis done on rings, to determine
the best solution depending on multiple parameters, such as load
and cycle length, in Section 4; 3) a new routing method to obtain
the lowest Network Calculus bounds, in Section 5.

2 BACKGROUND
Here we give an overview of the Network Calculus framework and
present two reference network technologies that we apply our study
on, namely AFDX and TTEthernet networks. Finally, we illustrate
the challenges of the current A380 and A350 AFDX architecture.
The main notations used in this paper are de�ned in Table 1.

2.1 Network Calculus
The timing analyses detailed in this paper are based on the Net-
work Calculus framework [20]. It is used to compute upper delay
and backlog bounds. These bounds depend on the tra�c arrival
described by the so-called arrival curve � , which represents the

Cn
I ,in sum of the capacities Cin of the input links of node n crossed by

tra�c of class I
MFSi Maximum Frame Size of �ow i
BAGi Bandwidth Allocation Gap of �ow i
bni , ri burst, rate of the input arrival curve of �ow i in node n
Rni , T

n
i rate, initial latency of the minimum service curve o�ered to �ow i in

node n
WCDni Worst-Case Delay of �ow i in node n
WCBni Worst-Case Backlog of �ow i in node n
WCDnf wd Worst-Case forwarding Delay in node n
BCDnf wd Best-Case forwarding Delay in node n
boundk maximum bound of bound 2 {delay, backlog } of method k 2

{solve, break}
N , L number of switches in the ring and �ow path length
UCk use-case k 2 {1, 2}
RCrelative

LOW relative load of RCLOW class with regard to the remaining capacity
left by RCHIGH class

RCprim RC load on the primary path, i.e., default path with the solving
method

RCsec RC load on the secondary path, i.e., after using the breaking method

Table 1: Notations

maximum amount of data that can arrive in any time interval, and
on the availability of the crossed node described by the so-called
minimum service curve � , which represents the minimum amount
of data that can be sent in any time interval. The de�nitions of
these curves are detailed below.

D��������� 1 (A������ C����). [20] A function �(t) is an arrival
curve for a data �ow with an input cumulative function A(t),i.e., the
number of bits received until time t , i�: 8t,A(t)  A ⌦ 1�(t)

D��������� 2 (S����� ������� ������� �����). [20] The func-
tion � is a minimum strict service curve for a data �ow with an
output cumulative function A⇤, if for any backlogged period]s, t]2:
A⇤(t) �A⇤(s) � �(t � s)

To compute the main performance metrics, we need the follow-
ing results:

T������ 1 (P���������� B�����). [20] Consider a �ow F con-
strained by an arrival curve � crossing a system S that o�ers a
minimum service curve � and a maximum service curve � . The per-
formance bounds obtained at any time t are:
Backlog3 : 8 t : q(t)  �(�, �), Delay4: 8 t : d(t)  h(�, �),
Output arrival curve5: �⇤(t) = (� ↵ �) (t)

T������ 2 (C�������������P�� B����� O��� O���). [20]
Assume a �ow crossing two servers with respective service curves �1
and �2. The system composed of the concatenation of the two servers
o�ers a service curve �1 ⌦ �2.

T������ 3 (L�������� ������� ����� �N�� ���������� S�����
P������� (NP�SP) M�����������). [5] Consider a system with the
strict service curve � andm �ows crossing it, f1,f2,..,fm . The maxi-
mum packet length of fi is li ,max and fi is �i -constrained. The �ows
are scheduled by the NP-SP policy, where priority of fi > priority of
fj , i < j. For each i 2 {1, ..,m}, the strict service curve of fi is
given by6: (� �Õ

j<i � j �maxk�i lk ,max)"
1f ⌦ �(t) = inf0st {f (t � s) + �(s)}
2]s , t] is called backlogged period if A(�) � A⇤(�) > 0, 8� 2]s , t]
3v: maximal vertical distance
4h: maximal horizontal distance
5f ↵ �(t) = sups�0 {f (t + s) � �(s)}
6�"(t) =

�
sup0st �(s)

�+ , with (x)+ = max(0, x)

Breaking vs. Solving cyclic dependencies in real-time networks RTNS 2019, November 6–8, 2019, Toulouse, France

The tra�c contracts are generally enforced using a leaky-bucket
shaper, i.e., the tra�c �ow is (r ,b)-constrained where r and b are
the maximum rate and burst, and the arrival curve is �(t) = r · t +b.
A common model of the minimum service curve is the rate-latency
curve, de�ned as �R,T (t) = R · (t � T)+, where R is the output
transmission capacity, T is the system latency, and (x)+ denotes
the maximum between x and 0.

2.2 AFDX and TTEthernet
The AFDX [1] standard manages exchanged data through the Vir-
tual Link (VL) concept. The VL represents a multicast communi-
cation from one sender End-System to one or more receiver End-
Systems. This concept provides a way to reserve a guaranteed
bandwidth for each tra�c �ow. Each VL is characterized by: (i)
BAG (Bandwidth Allocation Gap), ranging in powers of 2 from 1 to
128 milliseconds, which represents the minimal inter-arrival time
between two consecutive frames; (ii) MFS (Maximal Frame Size),
ranging from 64 to 1518 bytes, which represents the size of the
largest frame sent during each BAG. The AFDX standard speci�es a
Non preemptive Static Priority scheduler based on two priority lev-
els, LOW and HIGH within nodes. These Rate-Constrained tra�c
classes are denoted by RCHIGH and RCLOW .

Currently, the backbone network on the A380 contains two inde-
pendent AFDX networks, a primary and a secondary live-backup,
each containing 9 switches forming a partial-mesh network [10],
as illustrated in Fig. 1. Within this mesh, we can identify several
rings, for example {A,B,C,D}, or the ring using all 9 switches. Within
these rings, it is possible for �ows to form cyclic dependencies, as
illustrated in Fig. 2(a).

Figure 1: Structure of AFDX on the A380

The TTEthernet [29] standard is based on the use of global time
synchronization to send Time Triggered (TT) frames at precise,
prede�ned times (encoded in a local event table that is part of a
globally computed schedule) to ensure the lowest contention and
delays. Hence, the TT �ows are de�ned by their size, period, and

o�sets (the times their transmission should start) in each output
port. The synchronization uses speci�c VLs and �ows called Pro-
tocol Control Frames (PCF) to exchange data needed to compute
and communicate the global time to all participants. These PCF
�ows have the highest priority in TTEthernet networks, the next
priority is used by the TT �ows, the two next priorities are used by
the AFDX RCHIGH and RCLOW tra�c, respectively, while the 4
lowest priorities are reserved for Best-E�ort (BE) tra�c (cf. Fig. 3).

3 EXISTING SOLUTIONS AND THEIR
LIMITATIONS

We present existing solutions for breaking and solving cycles. To
avoid cyclic dependencies in Network Calculus equations, reshap-
ing methods [19] or partitioning service policies (e.g. DRR, WRR,
AVB) can be used. Shifting the priority level of a �ow can also be a
solution. In this paper, we focus on standard AFDX and TTEthernet
networks where the priority of the �ow is set as input constraint.
Then, breaking dependencies is done by re-routing.

3.1 Breaking cyclic dependencies

Routing: although there are many methods for breaking cyclic
dependencies, we focus here on methods ful�lling three main crite-
ria: the method must be 1) deterministic (dynamic routing is not ac-
ceptable in avionics); 2) applicable to general topologies, (2D-mesh
speci�c methods, such as XY routing, are out of scope); 3) have a
polynomial complexity and require no modi�cations to an existing
network (methods using virtual channels are out of scope). Among
the remaining solutions, for exampleUp⇤/Down⇤ Routing [26], or
L-Turn [23], many are based on spanning trees. Consequently, the
routing can be unbalanced, with more congestion at the root of the
tree than in the other nodes.Hence, we have discarded solutions
based on spanning trees. To solve this unbalanced routing, other
solutions, based on the prohibition of turns have been developed,
such as turn-prohibition [27] and segment-based [21] routing. A
drawback is the inability to guarantee the shortest path.

Finally, from our overview,we have selected the Turn-prohibition
routing. It is a simple method, with good performances and con-
trary to Segment-based routing, the weight of the links can be taken
into account to improve performance. To obtain the �nal routing
of the di�erent �ows, we use the Turnnet Algorithm [14] in order
to transform a graph of node=output port and edge=link, into a
new graph with node=link and edge=turn. The forbidden turns can
now be removed from the graph. Finally, we apply the well-known
Dijkstra algorithm on this new graph in order to �nd routes.

Network Calculus in feed-forward networks:
in this paper, we used the Serialization E�ect Paradigm (SEP)

proposed in [16], illustrated in [8], and recently compared with
other solutions in [22], under the name of Total Flow Analysis++
(TFA++). The idea is to take into account the link capacity of the
input ports in order to obtain a more accurate input arrival curve
of the �ows. For example, a �ow arriving with a maximum burst
b and rate r , from a link with a capacity Cin , has an input arrival
curve �(t) =min(Cin · t, r · t +b). With this tighter �(t), the bounds
are computed in each output port. For a �ow of interest, the end-
to-end delay is the sum of the delays in each output port along the

RTNS 2019, November 6–8, 2019, Toulouse, France Anaïs Finzi and Silviu S. Craciunas

A

Output port

B

CD

(a) Cyclic dependency

A B

CD

(b) Impossible to use breaking
method

Figure 2: 4-switches ring tra�c examples
route of the �ow. Our current implementation of SEP/TFA++ uses
piecewise linear concave functions, which has a linear complexity
in the number of segments. More complex arrival curve such as
staircase curves (subset of Ultimately Pseudo Periodic [8, 9]) can
improve the results but at the expense of higher complexity and
thus a lower execution time (between 1.4 and 10 times slower).

The analysis in [22] compared SEP/TFA++ to three methods:
1) the Total Flow analysis [24], i.e., iterative computation of

upper bounds in each crossed node for the aggregate �ow, followed
by the computation of the sum of the delays in the crossed nodes. It
is important to note that in [22], the individual �ows are considered,
rather than the aggregate �ows;

2) Separated Flow Analysis [24], i.e., concatenation of left-over
service curves guaranteed to the �ow of interest, based on Th. 2;

3) PayMultiplex Only Once (PMOO) [25], i.e., taking into account
the �ow serialization along the path to compute tighter bounds.

Results showed the delay bounds and computation times with
SEP/TFA++ are largely reduced compared to the other methods [22].

Discussion: the use of turn-prohibition routing associated to
SEP/TFA++ requires simple routing adaptations and is based on
tight bounds. However, such a solution has a few drawbacks. First,
it can increase the load on some of the links, resulting in additional
delays. Secondly, cycles cannot always be broken, especially with
redundant �ows. Let us take for example, the case of 4 switches
A, B, C, and D, forming a ring such as the one in Fig. 1. We consider
the following redundant �ows on the primary network: A ! B !
C and A! D! C, B! A! D and B! C! D, C! B! A and
C ! D ! A, D ! A ! B and D ! C ! B. These �ows form two
cyclic dependencies. One of them is illustrated in Fig. 2(a). Di�erent
�ows are shown in Fig. 2(b), where we can see there are only two
disjoint paths for a redundant �ow, so all the turns are used. Hence,
breaking the cyclic dependency is impossible. A second case where
breaking the cyclic dependency could be impossible can happen if
the load of the RC tra�c becomes higher than the available capacity
due to the unbalance created by the cycle breaking.

3.2 Solving cyclic dependencies method
A second solution consists in keeping paths with cyclic dependen-
cies and obtaining the delay and backlog bounds using speci�c
Network Calculus methods. Four methods have been developed:

1) Backlog-based Method (BbM) [20]: for a tra�c class I , we
compute a single maximum bound for the backlog in any output
port of the cyclic dependency, denotedWCBI for Worst-Case Back-
log. Knowing the minimum service curve o�ered to the considered

tra�c for the aggregate �ow of class I , �kI (t) = RkI · (t � T kI)
+,

(with T kI the initial latency and RkI the transmission capacity), the
Worst-Case Delay (WCD) within a node k for a �ow of class I is
the processing time ofWCBI with RkI :WCDk

I =
WCBI
RkI

.

2) Time StoppingMethod (TSM) [12]: the main idea is to �nd
the equations linking the bursts and the delays in each output port,
for each �ow, then use matrices to solve these equations. We denote
ri the rate of a �ow i of class I , bki the burst of �ow i entering a
node k , b0i the burst entering the cycle dependency, andWCBkI the
worst-case delay of the �ows of class I in node k . First, the burst
of a �ow i exiting a node k is equal to bki + ri ·WCDk

I . Hence, the
output burst of a �ow i in a node n is:

bni = b
0
i + ri ·

’
p2prec(n,i)

WCD
p
I (1)

with prec(n, i) the set of nodes preceding n in the cyclic dependency
in the path of �ow i . Secondly, the worst-case delay of a �ow of
class I in a node k is the sum of the initial latency of the minimum
service curve, T kI and the processing time of all the bursts of the
�ows j 2 I crossing k :

WCDk
I =

Õ
j 3k bkj
RkI

+T kI (2)

Finally, with Eq. (1) and Eq. (2) we can de�ne a matrix system:(
D = A1 · B +C1
B = A2 · D +C2

(3)

with D the vector ofWCDk
I , B the vector of propagated bursts bni ,

C1 andC2 are constant vectors. The resolution of this system gives:
D = (I �A1 · A2)�1 ·C3, with C3 = A1 ·C2 +C1 and I the identity
matrix. This system admits a positive solution only if (I �A1 · A2)
has a strictly positive determinant.

3) PayMultiplexingOnly atConvergence point (PMOC) [2]:
consider the �ow serialization along the path of the �ow of interest
by paying the bursts only at convergence points. Similarly to TSM,
equations are developed to obtain a system of matrix with two
unknown vectors, like Eq. (3).

The di�erence is that they consider individual �ows. As a result,
solving is quite heavy with large matrices. For instance, if we con-
sider the current A380 architecture with 9 switches, there are 26
ports linking the switches, and over a thousand VLs. If we consider
that the length of the path of the VLs is only two, this gives matrices
D and B of size 2 000 ⇥ 1 to represent the unknown propagated
bursts and delay bounds for each �ow in each crossed output port.
Finally, the matricesA1 andA2 describing the equations would have
a size of 2 000 ⇥ 2 000. With TSM, the matrix size would only be
26⇥ 52 forA1 and 52⇥ 26 forA2. Hence, the PMOC method is more
complex and requires a larger amount of computation power than
TSM. Additionally, the authors do not provide a way of computing
the backlog in each output port.

4) Tree decomposition [4]: the stability of networks with
cyclic dependencies is analyzed and a method to decompose the
cycles into trees is proposed. The trees are then analyzed using
feed-forward methods. It is shown that di�erent decompositions
result in di�erent stability and bounds. Hence, a optimization prob-
lem is introduced to �nd the best results. According to [4], the
computational time of the algorithm is polynomial.

Breaking vs. Solving cyclic dependencies in real-time networks RTNS 2019, November 6–8, 2019, Toulouse, France

Port memory

Priority
 filter

PCF

BE

TT

RCHigh

RCLow

Switching
fabric

Port in delay Port out delayForwarding delay

Figure 3: Considered switch architecture [15]
Discussion: The �rst three methods have been compared in [2].

Firstly, the main advantages of BbM is the fact that bounds can be
computed up to a 100% load with good complexity. As a result, the
down-side is its pessimism. Secondly, concerning TSM, the method
also has a polynomial complexity, and bounds are tighter until they
diverge. As a consequence, the bounds cannot be computed after
the divergence point. Thirdly, PMOC is more complex, with tighter
bounds, but does not provide a backlog computation method and
also has a divergence point.

The last method, i.e. tree decomposition, is not compared to the
other solutions (PMOC, TSM and BbM) in [4]. Moreover, the timing
analysis requires an additional step to decompose the network into
trees, using optimization methods of polynomial complexity. Hence,
we discard this method.

Two of our constraints are to obtain a method computing delay
and backlog bounds up to a 100% load, with good complexity. As a
results, even though PMOC has better tightness, we have selected
the �rst two methods: TSM and BbM. The analysis will be done
using both methods and we will keep the minimum value.

4 PERFORMANCE ANALYSIS
In this section, we do a performance analysis to compare the two
selected solutions for breaking or solving cyclic dependencies. First,
we present preliminary assumptions, e.g., the model of the �ow, the
AFDX and TTEthernet switch and network models, and delay and
backlog computations. Then, after presenting our case study, we
do a comparison of the two methods for AFDX and TTEthernet.

4.1 Preliminaries and assumptions
Switch and End-System model: we consider the TTEthernet

switch architecture described in Fig. 3. If the switch is AFDX only,
the two highest priorities will beRCHIGH andRCLOW , respectively.
The input port delay is the amount of time needed for a frame i
to fully arrive at a rate Cin : MFSi

Cin . We consider the delay in the
switch starts after the frame has been fully received. The forwarding
process is de�ned by a minimum (best-case) and maximum (worst-
case) delay, denotedWCDn

f wd and BCDn
f wd , in a switch or end-

system n 2 {sw, es}.
AFDX and TTEthernet output ports: for TTEthernet, the im-

pact of the TT tra�c on RC tra�c is computed using the input
arrival curves proposed in [32]. Then, in both cases, the service
curves are computed using Th. 3.

Tra�cmodel: to compute the delay and backlog bounds within
each node (output port, switch sw or end-system es), we use Th. 1
under the following assumptions:

(i) leaky-bucket arrival curves for the tra�c �ows at the input
of node n. For a �ow i , we de�ne the Maximum Frame SizeMFSi
and the Bandwidth Allocation Gap BAGi (the period and generally
also the deadline), and the initial jitter �i . The initial arrival curve
sent by the tra�c source is �I (t) =

Õ
i 2I (MFSi

BAGi
· (t + �i) +MFSi).

For each class I , the aggregate tra�c has an input arrival curve in
the node n 2 {es, sw}: �nI (t) = min(CnI ,in · t, rI · t + bnI), where the
maximum input rate CnI ,in is the sum of the capacities Cin of the
input links of node n crossed by tra�c of class I . We considered
that in a node es generating class-I tra�c, Ces

I ,in = +1;
(ii) the o�ered service curve by node n to the tra�c class I is a

rate-latency curve: �nI (t) = RnI · (t �TnI)
+.

Backlog computation: we consider that after arriving in the
input port, the frame is stored in a memory until it is ready to be
transmitted. As a consequence, to compute the maximum backlog,
we must take into account the arrival curve entering the node n 2
{es, sw}, i.e. �nI (t) = min(CnI ,in ·t, rI ·t +b

n
I), and the concatenation

(Th. 2) of the minimum service curves of the forwarding process
and output port (Rpor tI and Tpor tI computed with Th. 3), i.e.:

�nI (t) = R
por t
I · (t �T

por t
I �WCDn

f wd)
+ (4)

Delay bound computation with TSM: to compute the delays
and bursts we must take into account the full switch or end-system.
Hence, in Eq. (2), we use �nI (t) described in Eq. (4).

Delay bound computationwith SEP/TFA++:with thismethod,
we can use BCDn

f wd to obtain a tighter input arrival curve in the
output port. The input arrival curve of an aggregate �ow I in the
output port port in a node n 2 {es, sw} is:

�
por t
I (t) = min

✓
CnI ,in · (t + �nf wd) , rI · (t + �

n
f wd) + b

n
I

◆
, with

�nf wd =WCDn
f wd � BCDn

f wd , and b
n
I the burst entering the node.

Then, according to Th. 1, we can compute the worst-case delay
bound as the maximum horizontal distance between �

por t
I (t) and

�
por t
I (t) = R

por t
I · (t � T

por t
I)+. The delay in the node n is then:

WCDn
I =WCD

por t
I +WCDn

f wd .
End-to-end delay bounds: �nally, the end-to-end delay of a

�ow is obtained by summing the delays in the end-systems, input
ports, switches and links along the path of the �ow.

4.2 Case Study
When considering a network with a general topology and cyclic
dependencies, the areas of interest are the rings formed by the
dependent �ows. Outside these rings, the sub-networks are feed-
forward networks and the delays are computed as explained in
Section 3.1, regardless of the method selected to solve the cyclic
dependencies.

Hence, in this case study, we consider rings made of N 100-Mbps
switches, each connected to End-Systems (as illustrated in Fig. 4
for N=6).

The best-case (BCDn
f wd) and worst-case (WCDn

f wd) forwarding
delays are described in Table 2. The forwarding delays of an End-
System refers to the delay between the host and an output port.

RTNS 2019, November 6–8, 2019, Toulouse, France Anaïs Finzi and Silviu S. Craciunas

UC1

sw0 sw1 sw2

sw3sw4sw5

es0 es1 es2

sw0 sw1 sw2

sw3sw4sw5

es1 es2

es4es5

es0

UC2, TT

es3es4es5 es3

Figure 4: Illustration of 1 VL of each end-system connected
to switch sw0, with N=6 and L=2, for use-casesUC1,UC2 and
TT tra�c.

Node n WCDn
f wd (s) BCDn

f wd (s)
End System 1.5 · 10�6 1.1 · 10�6

Switch 12.5 · 10�6 10.3 · 10�6

Table 2: Forwarding delays

The forwarding delays in a Switch refers to the delay between an
input port and an output port.

We consider two uses-cases for the RC tra�c �ows:
• Use-Case 1 (UC1): each switch is linked to one end-system.
Each end-system sends four identical VLs, eachmulti-casting
to 2 destinations, i.e., the end-systems connected to its (L �
1)th and Lth neighboring switches clockwise (see Fig. 4 with
N=6 and L=2);

• Use-Case 2 (UC2): each switch is linked to two end-systems.
Each end-system sends two identical VLs, each multi-casting
to 4 destinations, i.e., end-systems connected to its L-1th and
Lth neighboring switches both clockwise and anticlockwise
(see Fig. 4 with N=6 and L=2).

These two use-cases enable us to assess the di�erence between:
i) when the secondary paths (i.e., the paths used due to the cycle
breaking) are empty (i.e. UC1) or ii) when they already have a load
(i.e.UC2).

Varying the BAG of a �ow only varies the rate of the arrival
curve, whereas by varying the MFS, we vary both the rate and the
burst.

The RC tra�c has �RFC = 0, BAGRC = 1ms and we vary the
MFS from 100 bytes to 1500 bytes to vary the load of the RC load
from 6% to 96%. For instance, with eight VLs in an output port (both
use-cases with L=2), andMFSRC=500 bytes, the RC load in the ring
is loadRC = 8 · MFSRC

BAGRC
= 32Mbps or 32% of the 100-Mbps capacity.

In the case of TTEthernet networks, the routes of PCF �ows
depend on the network topology and assigned synchronization
roles but do not vary at runtime.

For the TT tra�c, we consider that each switch is linked to two
end-systems. The �rst (resp. second) end-system sends one VL,
multi-casting to 2 destinations, i.e., end-systems connected to its
L-1th and Lth neighboring switches clockwise (resp. anticlockwise),
as illustrated in Fig. 4. The TT tra�c has a period of 1ms and is
scheduled with the shu�ing integration method [29], using the
SMT-based approach described in [11, 28]. We vary the MFS from
100 bytes to 1500 bytes to vary the TT load from 1% to 24%. The TT
schedule in each case is computed o�ine and cannot be modi�ed
at runtime. Please note that generally in aerospace projects, once

the TT schedule for the most critical tra�c has been computed, it
cannot be modi�ed without additional certi�cation e�ort.

Finally, we consider best-e�ort tra�c with a MFS of 1518 bytes.
The parameters used throughout the performance analysis are

derived from the current AFDX design illustrated in Fig. 1, with
its N=9 switches, cluster connections, and its load of 30% on only
one class. Then, these parameters are extended to analyze possi-
ble future con�gurations by doing a sensitivity analysis and by
considering an increasing number of classes.

4.3 AFDX network
We start by studying a network with only one RC class, as is cur-
rently the case in the A380 and A350. We notice that L=4 is the
maximum path length between switches on opposite parts of the
network (e.g. A and H in Fig.1). A further analysis of the current
network shows that end-systems inside a cluster, e.g., cockpit or
cabin, are always at most 2 switches from each other. Hence, we
will mainly use L=4 and L=2 for our experiments. We �nish by
considering two RC classes to study the impact of a higher priority.
We compare the two methods after studying them independently.

1) Impact of RC load on solving methods: we have imple-
mented both TSM and BbM and computed the worst-case delay
and backlog. The resulting bounds when varying the RC load are
presented in Fig. 5, with a logarithmic scale for both the delays and
backlogs. Results show the backlog and delay bounds behave in
a similar way, with the TSM bound below the BbM bound until
TSM diverges, at an RC load of 65%. On the contrary, BbM steadily
increases until 100% RC load. Hence, these methods are comple-
mentary, leading us to take the minimum of TSM and BbM bounds.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

d
e
la

y
b
o
u
n
d
 in

 r
in

g
 (

s)

RC load (% capacity)

TSM
BbM

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 0 10 20 30 40 50 60 70 80 90 100

b
a
ck

lo
g
 b

o
u
n
d
 in

 r
in

g
 (

s)

RC load (% capacity)

TSM
BbM

Figure 5: TSM vs BbM forUC1, N=8 and L=4

Next, we vary the length of the ring N from 8 to 24. The results
in Fig. 6 show that in the TSM part of the curve, i.e. below an RC
load of 65%, neither the delays nor the backlogs are impacted by
the variations of N. This is because the tra�c in each output port
does not vary when N varies, as we add an end-system for each
additional switch, keeping the RC load constant. But, with BbM,
the computation of the backlog takes into account the total load of
the ring. Thus the delay and backlog bounds increase with N.

2) Impact of RC load on breaking methods: contrary to the
solving method, with the breaking method, the delay and backlog
bounds increase with both RC load and N, without diverging, as
illustrated in Fig. 7. This is because the secondary path, i.e. the path
taken to avoid the prohibited turn, also increases with N.

Now that we have studied the behavior of both methods inde-
pendently, we can now compare them.

3) Comparing the two methods: in Fig. 8, we compare the
delay and backlog bounds for L=4 and N=18. We can see there is

Breaking vs. Solving cyclic dependencies in real-time networks RTNS 2019, November 6–8, 2019, Toulouse, France

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

e
n
d
 t
o
 e

n
d
 d

e
la

y
b
o
u
n
d
 (

s)

RC load (% capacity)

N=24
N=18
N=12

N=8

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 0 10 20 30 40 50 60 70 80 90 100

b
a
ck

lo
g
 b

o
u
n
d
 in

 r
in

g
 (

b
its

)

RC load (% capacity)

N=24
N=18
N=12

N=8

Figure 6: Solvingmethod: varyingRC load,withUC1 and L=4

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

e
n
d
 t
o
 e

n
d
 d

e
la

y
b
o
u
n
d
 (

s)

RC load (% capacity)

N=24
N=18
N=12

N=8
 1000

 10000

 100000

 1x106

 1x107

 1x108

 0 10 20 30 40 50 60 70 80 90 100

b
a
ck

lo
g
 b

o
u
n
d
 in

 r
in

g
 (

b
its

)

RC load (% capacity)

N=24
N=18
N=12

N=8

Figure 7: Breaking method: varying RC load, with UC1 and
L=4

no strict order between the methods: for an RC load below 28%,
solving has the lower bounds for both the delay and backlog. For
an RC load over 28%, breaking the dependency is better due to the
divergence of TSM and pessimism of BbM. We call the point where
both methods have the same bounds the tipping point.

The importance of the tipping point is illustrated in Fig. 9. The
delay and backlog bounds computed respectively with breaking
and solving are denoted boundk , with bound 2 {dela�,backlo�},
and k 2 {sol�e,break}.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

e
n
d
 t
o
 e

n
d
 d

e
la

y
b
o
u
n
d
 (

s)

RC load (% capacity)

breaking
solving

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 0 10 20 30 40 50 60 70 80 90 100

b
a
ck

lo
g
 b

o
u
n
d
 in

 r
in

g
 (

b
its

)

RC load (% capacity)

breaking
solving

Figure 8: Comparing methods: varying RC load, with UC1,
N=18 and L=4

The improvement of selecting the best method is:
max(boundsol�e ,boundbreak) �min(boundsol�e ,boundbreak)

max(boundsol�e ,boundbreak)
We can see that the selection of the best solution is important

and can carry sizable bound improvements.
For instance, at RC=20%, the delay (resp. backlog) improves by

28% (resp. 20%) if the solving method is selected over the breaking
method. Hence, a good characterization of the tipping point (where
the improvement is null in Fig. 9) will help select the best method
and largely improve the bound computation. For N=18, the tipping
point is roughly the same for the delay and backlog, but this is not
always the case. Nevertheless, for the remainder of the paper, we
will focus mainly on the delay bounds.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

im
p
ro

ve
m

e
n
t
(%

)

RC load (% capacity)

delay
backlog

Figure 9: Improvement when selecting the bestmethod com-
pared to the worst method, withUC1, N=18 and L=4

To characterize the tipping point, wewill vary several parameters
sequentially: the ring length, the path length and the RC load on
the secondary path.

Ring length variation
We varied the size of the ring between N=4 and N=24 to compute

this tipping point and represent the areas where solving or breaking
is better, as illustrated in Fig. 10(a). Results show that the tipping
point increases with the ring length N, e.g., tipping point= 30% at
N=8, and tipping point= 100% at N=24. This is due to the fact that
when N increases, the delay bound remains constant with TSM,
and increases with the breaking method, as illustrated in Fig. 5 and
Fig. 7.

Path length variation
A second parameter in�uencing the tipping point is the path

length L, as illustrated in Fig. 10(b). For L=2, we �nd the results
of Fig. 10(a). Over the tipping point function is the area where
breaking is better, under the tipping point function is the area
where solving is better. Hence, when L increases, we can see a
decrease of the tipping point. For instance, at N=24, the tipping
point is at 100% for L=2, 35% for L=4, and 15% for L=6. The reason
is that when L increases, the di�erence of path length between the
primary path (with the cyclic dependency) and the secondary path
(without cyclic dependency) decreases. However, we also noticed
that for the same path di�erence, we still do not obtain the same
tipping point. For instance, for (N=10, L=2) the tipping point is 55%;
for (N=12, L=4), the tipping point is 20%. We identify here an impact
of the pessimism of the solving method which increases with L
and N, i.e., solving is more pessimistic at (N=10, L=2) than (N=12,
L=4). This results in poorer performance compared to the breaking
method and thus leads to a lower tipping point.

RC load variation on secondary path
With the �rst use-case UC1, all the �ows turn clockwise, un-

less they are broken by the turn-prohibition routing method. As
a result, the anti-clockwise output ports (for instance A to D in
Fig. 2(a)) are empty in the cyclic-dependent network. Hence, when
a �ow is constrained to turn anti-clockwise, the contention in the
output ports is low and there is a low risk of over�ow in the output
port. In the second use-case UC2, we consider that all ports are
similarly loaded. As a result, when a �ow is constrained to turn
anti-clockwise, it encounters more contention which increases its
delay, and risks over�owing the output ports. This is illustrated
in Fig. 10(c), with the RC load on the secondary path in use-case
2 equals the load on the primary path before breaking the depen-
dencies. In use-case 1, the load is null in the secondary path before

RTNS 2019, November 6–8, 2019, Toulouse, France Anaïs Finzi and Silviu S. Craciunas

breaking the dependencies. The test cases depicted in Fig. 10(c) are
detailed in Table 3.

We can see that the tipping point increases in the presence of
RC load on the secondary path for both N=6 and N=8. A third area
also appears, where breaking is not possible due to the overloading
of the output ports, e.g., over 65%. Additionally, we notice that the
only-solving area is not a�ected by N (see test 2 and 4), since the
load on the secondary path is not a�ected by the variation of N.

R
C

 lo
a
d
 (

%
 c

a
p
a
ci

ty
)

ring length N

best=breaking
best=solving

 0

 20

 40

 60

 80

 100

 4 8 12 16 20 24

(a) De�ning the tipping point between
best methods, with L=2

R
C

 lo
a
d
 (

%
 c

a
p
a
ci

ty
)

ring length N

L=2
L=4
L=6

 0

 20

 40

 60

 80

 100

 4 8 12 16 20 24

(b) Variations of the tipping point

R
C

 lo
a
d
 o

n
 p

ri
m

a
ry

 p
a
th

 (
%

)

test number

best=solving
best=breaking

only solving

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4

(c) Impact of the secondary path load with
L=2

R
C

 lo
w

 lo
a
d
 (

%
 c

a
p
a
ci

ty
)

RC high load (% capacity)

best=breaking
best=solving

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 16 32 48

(d) Impact ofRCHIGH onRCLOW , with
UC1 , N=10 and L=4

Figure 10: Tipping point and impact analysis

test number use-case N L
1 UC1 6 2
2 UC2 6 2
3 UC1 8 2
4 UC2 8 2

Table 3: Test cases for Fig. 10(c)

Hence, we can see that in the use-case UC2, L=2 and N=8, there
is no area where breaking should be used. Interestingly, the current
AFDX on the A380 has a maximum load of 30%, with the possibility
of forming a ring of length N=8 and paths of length L=2. Conse-
quently, according to Fig. 10(c), the best solution is to solve the
dependencies rather than break them.

Now that we have presented the results of the tipping point for
one RC class, we will study the impact of higher priorities. First,
we consider two RC priorities in an AFDX network, then we study
the impact of TT �ows within a TTEthernet network.

Impact of RCHIGH on RCLOW
We now consider two RC tra�c classes and use-case UC1 for

both RCLOW and RCHIGH , with only one VL sent per end-system
for RCHIGH (resp. two VLs for RCLOW). Consequently, we vary
RCLOW from 6% to 96%, and RCHIGH from 3% to 48%. The results,
illustrated in Fig. 10(d), show that the tipping point decreases when
RCHIGH increases.

For example, the tipping point is at 32% for RCHIGH = 16% and
15% for RCHIGH = 32%. This is due to the fact that by increasing
the load of RCHIGH , we increase the relative load of RCLOW , i.e.,

the load of RC with regard to the remaining available capacity left
by RCHIGH (instead of the full link capacity). We saw in Fig. 8 that
the solving method is more pessimistic than the breaking method
for higher value of RC load. Hence, increasing the load of RCHIGH
decreases the tipping point due to the pessimism of the solving
method.

4.4 TTEthernet network
We �nish our performance analysis by considering general TTEth-
ernet networks. In particular, we study the impact of TT �ows on
RCHIGH tra�c.

With TT frames going clockwise and anticlockwise, all the ports
in the ring receive the same amount of TT tra�c. Additionally,
TT routing is not concerned by the turn-prohibition algorithm.
Concerning RC tra�c, we consider use-caseUC2, i.e., the RC load is
the same in all output ports in the ring with the cyclic dependencies.

The results are illustrated in Fig. 11. We can see that for close
values of N and L, i.e (N=8, L=2) and (N=9, L=4), we obtain very
di�erent results.

R
C

 lo
a
d
 (

%
 c

a
p
a
ci

ty
)

TT load (% capacity)

only solving
best=breaking

best=solving

 0

 20

 40

 60

 80

 100

 0 4 8 12 16 20

(a) N=8 L=2
R

C
 lo

a
d
 (

%
 c

a
p
a
ci

ty
)

TT load (% capacity)

only solving
best=breaking

best=solving

 0

 20

 40

 60

 80

 100

 0 4 8 12 16 20

(b) N=9 L=4

Figure 11: Impact of TT on RCHIGH , withUC2

With (N=8, L=2) in Fig. 11(a), there is no area where breaking is
better. On the contrary, with (N=9, L=4) in Fig. 11(b), the area where
breaking is the best solution is large: between 20% and 60% for a TT
load of 8%, and between 15% and 50% for a TT load of 20%. The �rst
reason is of course the di�erence of path length when breaking the
dependencies, with (N=8, L=2), the path length di�erence is 5 hops,
whereas with (N=9, L=4), the path length di�erence is 1 hop. The
second reason is due to the Time Stopping Method matrices. When
L=2, the matrix (I �A1 ·A2) is always invertible and the delay does
not diverge. With L=4, (I �A1 ·A2) is not always invertible and the
RC delay diverges when the RC load increases, resulting in better
delays with the breaking method.

With (N=9, L=4), we notice that the tipping point decreases when
the TT load increases, i.e. when the RC relative load increases. This
is caused by the pessimism of the solving method which increases
with the RC relative load.

In both Figures 11(a) and 11(b) , the lower limit of the only-
solving area is due to the overloading of the links when the de-
pendencies are broken, e.g., at TT load=10% and RC load equals
60%, the total tra�c on the most loaded output port is 100%, with
60% due to �ows on unmodi�ed routes, 30% due to �ows on routes
modi�ed by turn prohibition and 10% due to the TT frames.

In Fig. 12, we have selected TT load=20%. We have represented
the variations of the delay and backlog bounds computed using

Breaking vs. Solving cyclic dependencies in real-time networks RTNS 2019, November 6–8, 2019, Toulouse, France

the solving method, compared to using the breaking method, when
breaking is possible, i.e., RC load lower than 45%:

relative variation =
boundsol�e � boundbreak

boundbreak

-75

-70

-65

-60

-55

-50

-45

 5 10 15 20 25 30 35 40 45

re
la

tiv
e
 v

a
ri
a
tio

n
 (

%
)

RC load (% capacity)

delay
backlog

(a) N=8 L=2

-100

 0

 100

 200

 300

 400

 500

 5 10 15 20 25 30 35 40 45

re
la

tiv
e
 v

a
ri
a
tio

n
 (

%
)

RC load (% capacity)

delay
backlog

(b) N=9 L=4
Figure 12: Delay and backlog variations with solving com-
pared to breaking, withUC2 and TT load = 20%

As expected, in Fig. 12(a), selecting the solving method over the
breaking method improve both the delays and backlog, e.g., the
delay and backlog are reduced between by 65% for a RC load of 32%.
In Fig. 12(b), under an RC load of 15%, the delay bound with the
solving method is lower than the delay with the solving method,
and over 15%, breaking is better, as illustrated also in Fig. 11(b).

It is interesting to note that selecting the solving solution can
have large rewards in terms of delay bounds, e.g., a reduction of
70% at an RC load of 40% with (N=9, L=4). However, it can also be
very costly, e.g., an increase of 200% at an RC load of 45% with (N=8,
L=2). We obtain similar results for the backlog, with a reduction of
up to 70% of the backlog bound with the solving method. Hence,
simply selecting one method or the other is not a good solution.

4.5 Discussion
In this performance analysis, we have shown the importance of
selecting the best solution between solving or breaking cyclic de-
pendencies, especially within rings. In particular in Fig. 9 and Fig. 12,
we showed that selecting the best solution can largely reduce the
delay (resp. backlog) bounds, e.g., up to over 75% (resp. 70%), and
that selecting one solution over the other can be very costly, with
signi�cant bound increases, e.g., up to 500%.

To select the best solution, we have done a sensitivity analysis
of the delay bounds to identify the so-call tipping point, i.e., when
the two methods have identical bounds.

From our analysis, we can draw a few conclusions about the
tipping point:

• variation of the ring length (see Fig. 10(a)): we have shown
that the tipping point increases when the ring length in-
creases, due the higher length of the secondary path which
increases the delay of the breaking method;

• variation of the path length (see Fig. 10(b)): results have
shown that increasing the path length decreases the tip-
ping point, due to the lower path length di�erence between
the primary path and secondary path, which decreases the
delay of the breaking method;

• variation of RC load on secondary path (see Fig. 10(c)): our
studies have shown that the tipping point increases when the
load on the secondary path increases, due to the added con-
tention which increases the delay of the breaking method;

• variation of the RCHIGH load on primary path (see Fig. 10(d)):
we have shown that the tipping point decreaseswhenRCHIGH
load increases, due to both the reduction of the remaining
available capacity to RCLOW and the pessimism of the solv-
ing method;

• variation of the TT load on both primary and secondary paths
(see Fig. 11): results have shown the tipping point decreases
when the TT load increases, due to the pessimism of the
solving method which increases with the relative load.

Concerning the limit over which breaking is not possible, we
have shown in Fig. 10(c) and Fig. 11 that increasing the contention
on the secondary path decreases the possibility of using the break-
ing method due to output port overloading.

Additionally, for the current A380 AFDX network, we have show
in Fig. 10(c) that under our hypothesis, at the current maximum RC
load, i.e., 30%, the best solution is:

• forUC1, to break the dependencies;
• forUC2, to solve the dependencies.

This analysis has been done on rings, but even in general topol-
ogy re-routing would increase the load on a secondary path (to
a smaller extend), which would lead to increased contention, in-
creased delays, and sometimes would lead to reaching themaximum
load of a link.

Hence, we have shown that always selecting one method over
the other is not a viable solution, in particular within rings. Con-
sequently, in the next section we propose a methodology to select
the best solution to resolve the cyclic dependency issue.

5 TIPPING POINT METHOD
With our performance analysis, we have shown that the bestmethod
is based on several criteria (inputs), i.e., ring length, path length,
output port load for each class. For example, for an AFDX network
with 2 RC classes, the inputs are: 1) ring length; 2) path length;
3) output port load for RCHIGH on both primary and secondary
paths; 4) output port load for RCLOW on both primary and sec-
ondary paths. With the �ows used forUC1 andUC2, all the output
ports in the same direction (i.e. clockwise or anti-clockwise) are
identically loaded. Hence, we only need to consider one value each
for the loads. For the general case, each output port with tra�c
must be considered.

The main idea of this method is to populate a database with
inputs associated to the corresponding best method, to enable the
construction of the tipping point and corresponding best method
areas.

5.1 Database description
This database can be described by a two-dimensional array. There
is one column (i.e. data �eld) for each input, plus one for the best
solution, and one optional to describe the input set id. Each row
corresponds to a given input set characterized by the inputs and
best solution. In the case of the best solution �eld, the possible
entries are solving, breaking, only-solving, and tipping point. For
instance, a few input sets are presented in Table 4. We consider
only one class, so there are 5 mandatory �elds, i.e., N, L, RC loads
and best solution, plus the input set id �eld.

RTNS 2019, November 6–8, 2019, Toulouse, France Anaïs Finzi and Silviu S. Craciunas

5.2 Method steps
There are three steps in our method: input computation, identi�ca-
tion of best solution in database and updating database. They are
detailed in this section.

input set id N L RCpr im (%) RCsec (%) Best solution
1 10 4 20 20 solving
2 10 4 40 40 breaking
3 10 4 60 60 breaking
4 10 4 80 80 only solving

Table 4: Database example

1) Input computation: for a given network and its �ows, the
�rst step must be to obtain the inputs, i.e., we need to run the rout-
ing algorithm without turn prohibition �rst and check the presence
or absence of cyclic dependencies.

2) Identi�cation of best solution in the database: then, we
attempt to identify the best solution using the database.We consider
that due to the continuity and monotonicity of the tipping point
variations, we can identify the best solution if, for the input set
I = {i1, ..in }:

9 two sets of parameters Pm = {pm1 , ..,pmn } and PM = {pM1 , ..,pMn }
with the same best method and such as:

8j 2 {1, ..,n},pmj 6 i j 6 pMj

For example, using Table 4, with I = {N = 10, L = 4,RCpr im =
RCsec = 50%}, we use P2 = {N = 10, L = 4,RCpr im = RCsec =
40%} and P3 = {N = 10, L = 4,RCpr im = RCsec = 60%} to deduce
that the best solution for I is breaking the cycle dependencies.

Additionally, we can use conclusions from Section 4.5 to select
the best solution. Following are a few examples using Table 4:

• I = {N = 10, L = 4,RCpr im = RCsec = 10%}, we know that
the tipping point is over 20%. Hence, we can conclude that
the best solution is solving;

• I = {N = 9, L = 4,RCpr im = RCsec = 40%}, we know
that the tipping point decreases when N decreases and the
only-solving area is not a�ected by N (see test numbers 2
and 4 in Fig. 10(c)). Hence, we can conclude that I is in the
best=breaking area;

• I = {N = 12, L = 4,RCpr im = RCsec = 40%}, we know
the tipping point increases with N. Hence, we are unable to
directly conclude which is the best solution from the data of
Table 4.

3) Updating the database: if the best method cannot be identi-
�ed using the database, we need to identify it by also running the
breaking method and comparing the bounds of the two methods
(if breaking is possible). After identifying the best method based
on the comparison of the results, we can add the new data to the
database and select the best routing.

Finally, we can run a check to delete redundant entries. For
example with Table 4 and I = {N = 10, L = 4,RCpr im = RCsec =
22%}, we identify with step 3 that both solutions have the same
bounds, making this point a tipping point. Consequently, input sets
1 and 2 can be replaced by the new data, as illustrated in Table 5.

input set id N L RCpr im (%) RCsec (%) Best solution
3 10 4 60 60 breaking
4 10 4 80 80 only solving
5 10 4 22 22 tipping point

Table 5: Updated database

5.3 Discussion
The presentation of the tipping point method highlighted the fact
that the main challenge of the method is to correctly build the
database to avoid data loss and redundant data. In particular, the
construction of the logic needed to deduce the best solution. How-
ever, while complex, all the needed information has been provided.

With this method, we are able to select the best solution for
solving or breaking cyclic dependencies. When building the data-
base, this method necessitates running the two routing algorithms
and both the breaking and solving methods. Then, thanks to the
database, we only have to run the turn-prohibition routing if we
identify the breaking method as the best one. Hence, we can obtain
the best bounds while limiting the amount of computation time.

This method is mainly useful when needing to assess a large
number of input sets. For example, in [15, 30], heuristic searches
are used to �nd TT o�sets enforcing both RC and TT deadlines in
networks mixing RC and TT frames. So, at each step of the search,
RC delay bounds must be computed. Thus, in the case of cyclic
dependencies, our proposal can largely reduce the search time.

6 CONCLUSION
In this paper, we have reviewed the existing methods for 1) break-
ing cyclic dependencies and computing bounds in feed-forward
networks; 2) computing bounds in cyclic dependent networks, i.e.,
solving cyclic dependencies. For the breaking method, we have se-
lected the turn-prohibition algorithm [27] associated to the Turnnet
algorithm [14] to break the dependencies, and SEP/TFA++ [8, 16]
to compute delay and backlog bounds. For the solving method,
we have selected both the Time Stopping Method [12] and the
Backlog-based Method [20], and used the minimum of the resulting
bounds.

We have done a performance analysis of these two methods to
compare them inside ring topologies for both AFDX and TTEth-
ernet networks. In particular, our sensitivity analysis focused on
the impact of the ring length, the path length, and di�erent ring
loads (RC and TT). Our results showed that depending on these
variables, either breaking or solving can give the best delay and
backlog bounds. We have also shown that breaking is not always
possible due to routing constraints or port overloading. In particu-
lar, we showed that on the one hand, selecting the best solution can
improve the delay and backlog bounds by over 70%. On the other
hand, selecting the wrong method can increase the bounds by over
500%. Hence, it is important to identify the optimum solution for a
given scenario.

Consequently, we have proposed the Tipping Point Method, to
identify the points where both methods have the same bounds and
select the best solution depending on input parameters. Thanks
to these lower bounds, the delays and backlogs can validate lower
deadline and memory constraints, resulting in the possibility of
certifying networks with higher utilization rates. Initial results are
encouraging, but before implementing industrial applications, the
tipping method must be validated on industrial topologies.

Breaking vs. Solving cyclic dependencies in real-time networks RTNS 2019, November 6–8, 2019, Toulouse, France

REFERENCES
[1] Airlines Electronic Engineering Committee. Aircraft Data Network Part 7, Avion-

ics Full Duplex Switched Ethernet (AFDX) Network, ARINC Speci�cation 664.
Aeronautical Radio, 2002.

[2] Ahmed Amari and Ahlem Mifdaoui. Worst-case timing analysis of ring networks
with cyclic dependencies using network calculus. In Embedded and Real-Time
Computing Systems and Applications (RTCSA). IEEE, 2017.

[3] Ahmed Amari, Ahlem Mifdaoui, Fabrice Frances, Jérôme Lacan, David Rambaud,
and Loic Urbain. AeroRing: Avionics Full Duplex Ethernet Ring with High
Availability and QoS Management. In European Congress on Embedded Real Time
Software and systems, 2016.

[4] Anne Bouillard. Stability and performance guarantees in networks with cyclic
dependencies. arXiv preprint arXiv:1810.02623, 2018.

[5] Anne Bouillard, Laurent Jouhet, and Eric Thierry. Service curves in Network
Calculus: dos and don’ts. Research report, INRIA, 2009.

[6] Frédéric Boulanger, Dominique Marcadet, Martin Rayroley, Safouan Taha, and
Benoit Valiron. A time synchronization protocol for A664-P7. In DASC. IEEE,
2018.

[7] Marc Boyer, HugoDaigmorte, Nicolas Navet, and JörnMigge. Performance impact
of the interactions between time-triggered and rate-constrained transmissions
in ttethernet. In 8th European Congress on Embedded Real Time Software and
Systems, pages 1–10, Toulouse, FR, 2016.

[8] Marc Boyer, Jörn Migge, and Nicolas Navet. An e�cient and simple class of
functions to model arrival curve of packetised �ows. In Proc. of the 1st Int.
Workshop on Worst-Case Traversal Time (WCTT’2011), novembre 2011.

[9] Marc Boyer, Nicolas Navet, and Marc Fumey. Experimental assessment of timing
veri�cation techniques for afdx. In 6th European Congress on Embedded Real Time
Software and Systems, 2012.

[10] Henning Butz. The Airbus approach to open integrated modular avionics (IMA):
technology, methods, processes and future road map. InWorkshop on Aircraft
System Technologies (AST), 2007.

[11] Silviu S. Craciunas and Ramon Serna Oliver. Combined task- and network-level
scheduling for distributed time-triggered systems. Real-Time Systems, 52(2):161–
200, 2016.

[12] Rene L Cruz. A calculus of delay Part II: Network analysis. IEEE Trans. Inform.
Theory, 37(1):132–141, 1991.

[13] Jonas Diemer, Daniel Thiele, and Rolf Ernst. Formal worst-case timing analysis of
Ethernet topologies with strict-priority and AVB switching. In Proc. International
Symposium on Industrial Embedded Systems (SIES). IEEE Computer Society, 2012.

[14] Markus Fidler and Gerrit Einho�. Routing in turn-prohibition based feed-forward
networks. In International Conference on Research in Networking. Springer, 2004.

[15] Anaïs Finzi and Silviu S. Craciunas. Integration of SMT-based scheduling with
RC network calculus analysis in TTEthernet networks. In Proc. of International
Conference on Emerging Technologies and Factory Automation (ETFA), 2019.

[16] Fabrice Frances, Christian Fraboul, and Jérôme Grieu. Using network calculus
to optimize the AFDX network. In Embeeded Real Time Software and Systems
(ERTS), 2006.

[17] Jérôme Grieu. Analyse et évaluation de techniques de commutation Ethernet pour
l’interconnexion des systèmes avioniques. PhD thesis, INPT, 2004.

[18] Institute of Electrical and Electronics Engineers, Inc. Time-Sensitive Networking
Task Group. http://www.ieee802.org/1/pages/tsn.html, 2016. retrieved 06-Jul-
2017.

[19] Jean-Yves Le Boudec. A theory of tra�c regulators for deterministic networks
with application to interleaved regulators. IEEE/ACM Transactions on Networking
(TON), 26(6):2721–2733, 2018.

[20] J.Y. Le Boudec and P. Thiran. Network calculus: a theory of deterministic queuing
systems for the internet, chapter 1. Springer-Verlag, 2001.

[21] Andres Mejia, Jose Flich, Jose Duato, S-A Reinemo, and Tor Skeie. Segment-based
routing: An e�cient fault-tolerant routing algorithm for meshes and tori. In
Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.
IEEE, 2006.

[22] AhlemMifdaoui and Thierry Leydier. Beyond the Accuracy-Complexity Tradeo�s
of Compositional Analyses using Network Calculus for Complex Networks. In
10th International Workshop on Compositional Theory and Technology for Real-
Time Embedded Systems, 2017.

[23] José Carlos Sancho, Antonio Robles, and José Duato. A new methodology to
compute deadlock-free routing tables for irregular networks. In International
Workshop on Communication, Architecture, and Applications for Network-Based
Parallel Computing. Springer, 2000.

[24] Jens B Schmitt and Frank A Zdarsky. The disco network calculator: a toolbox
for worst case analysis. In Proceedings of the 1st international conference on
Performance evaluation methodolgies and tools. ACM, 2006.

[25] Jens B Schmitt, Frank A Zdarsky, and Ivan Martinovic. Improving performance
bounds in feed-forward networks by payingmultiplexing only once. InMeasuring,
Modelling and Evaluation of Computer and Communication Systems (MMB). VDE,
2008.

[26] Michael D. Schroeder, Andrew D Birrell, Michael Burrows, Hal Murray, Roger M.
Needham, Thomas L. Rodehe�er, Edwin H. Satterthwaite, and Charles P. Thacker.
Autonet: A high-speed, self-con�guring local area network using point-to-point
links. IEEE Journal on Selected Areas in Communications, 9(8):1318–1335, 1991.

[27] David Starobinski, Mark Karpovsky, and Lev A Zakrevski. Application of network
calculus to general topologies using turn-prohibition. IEEE/ACM Transactions on
Networking (TON), 11(3):411–421, 2003.

[28] Wilfried Steiner. An Evaluation of SMT-based Schedule Synthesis For Time-
Triggered Multi-Hop Networks. In RTSS. IEEE Computer Society, 2010.

[29] Wilfried Steiner, Günther Bauer, Brendan Hall, Michael Paulitsch, and Srivat-
san Varadarajan. TTEthernet Data�ow Concept. In Eighth IEEE International
Symposium on Network Computing and Applications, 2009.

[30] Domitian Tamas-Selicean, Paul Pop, and Wilfried Steiner. Synthesis of com-
munication schedules for TTEthernet-based mixed-criticality systems. In Proc.
CODES+ISSS. ACM, 2012.

[31] Daniel Thiele, Philip Axer, and Rolf Ernst. Improving formal timing analysis
of switched ethernet by exploiting �fo scheduling. In Proceedings of the 52nd
Annual Design Automation Conference, page 41. ACM, 2015.

[32] Luxi Zhao, Paul Pop, Qiao Li, Junyan Chen, and Huagang Xiong. Timing analysis
of rate-constrained tra�c in TTEthernet using network calculus. Real-Time
Systems, 53(2):254–287, 2017.

[33] Luxi Zhao, Huagangh Xiong, Zhong Zheng, and Qiao Li. Improving worst-
case latency analysis for rate-constrained tra�c in the time-triggered ethernet
network. IEEE Communications Letters, 18(11):1927–1930, 2014.

