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ABSTRACT
In Ethernet-based time-triggered networks, like TTEther-
net, a global communication scheme, for which the schedule
synthesis is known to be an NP-complete problem, estab-
lishes contention-free windows for the exchange of messages
with guaranteed low latency and minimal jitter. However, in
order to achieve end-to-end determinism at the application
level, software tasks running on the end-system nodes need
to obey a similar execution scheme with tight dependencies
towards the network domain. In this paper we address the
simultaneous co-synthesis of network as well as application
schedules for preemptive time-triggered tasks communicat-
ing in a switched multi-speed time-triggered network. We
use Satisfiability Modulo Theories (SMT) to formulate the
scheduling constraints and solve the resulting problem using
a state-of-the-art SMT solver. Furthermore, we introduce
a novel incremental scheduling approach, based on the de-
mand bound test for asynchronous constrained-deadline pe-
riodic tasks, which significantly improves scalability for the
average case without sacrificing schedulability. We demon-
strate the performance of our approach using synthetic net-
work topologies and system configurations.

1. INTRODUCTION
Ethernet-based time-triggered networks, like TTEther-

net [30] (SAE AS6802 [14]), enable the integration of mixed-
criticality communicating systems requiring different de-
grees of determinism in scalable, switched network topolo-
gies. TTEthernet is used for safety-critical real-time appli-
cations within aerospace and industrial domains allowing
critical traffic with guaranteed end-to-end latency (time-
triggered communication) to co-exist with flexible non-
critical rate-constrained and best-effort traffic. Examples
of time-triggered networks successfully deployed include the
TTP-based communication systems for the flight control
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computer of Embraer’s Legacy 450 and 500 jets and the
distributed electric and environmental control of the Boeing
787 Dreamliner, while technologies like TTEthernet are part
of the NASA Orion Multi-Purpose Crew Vehicle scheduled
for the first test flight later this year [12].

In TTEthernet the transmission of time-triggered mes-
sages (i.e. tt-messages) is statically configured at precise
instants of time. A global communication scheme, the tt-
network-schedule, defines transmission and reception time
windows for each frame being transmitted, received, or for-
warded by any end-system or switch within the multi-hop
communication path. The tt-network-schedule accounts for
end-to-end latency, message length, as well as additional
constraints derived from other used resources, e.g., message
buffers. At run-time, a network-wide time synchronization
protocol guarantees the cyclic execution of the schedule with
sub-microsecond precision [15, p. 186].

The production and consumption of data payload trans-
ported by tt-messages is often performed by periodic soft-
ware tasks (i.e. tt-tasks) following a similar time-triggered
scheme (through static table-driven scheduling) on the end-
system CPUs1. The end-to-end latency is then subject to
both scheduling domains: on the one hand the distributed
network schedule, tt-network-schedule; and on the other
hand the multiple dependent end-system schedules, tt-task-
schedules. The composition of the two scheduling domains
is crucial to extend the high end-to-end deterministic guar-
antees of the network layer to include the application level.

In this paper, we consider multi-hop fully switched
TTEthernet networks, such as the one depicted in Figure 1,
in which different end-systems execute software tasks com-
municating via the time-triggered traffic class of TTEth-
ernet. Separate sequential schedule synthesis, either by
scheduling the network first and using the result as input
for the task schedule synthesis [7], or the complementary
approach [11], does not cover the whole solution space. Con-
sidering tasks and messages as part of the same scheduling
problem enables an exhaustive search of the whole solution
space guaranteeing that, if a feasible schedule exists, it will
be found.

In this respect, we extend the time-triggered paradigm
to include the application layer on end-systems providing
a complete end-to-end deterministic chain. Our approach
extends previous work by Steiner [28] by considering the
co-generation of static tt-network- and tt-task-schedules for
preemptable interdependent application tasks with arbitrary

1We will use task and tt-task as well as message and tt-
message interchangeably in this paper.



communication periods over a multi-speed switched TTEth-
ernet network. We model the CPUs as self-links on the end-
systems and schedule virtual frames (explained below) rep-
resenting non-preemptable chunks of preemptable tt-tasks.
With this abstraction we define a set of general constraints,
allowing a Satisfiability Modulo Theories (SMT) solver to
synthesize a system-wide tt-schedule. Moreover, we present
a novel incremental approach for creating tt-schedules, based
on the utilization demand bound analysis for asynchronous
tasks [3] scheduled using the earliest deadline first (EDF)
algorithm [19], which significantly improves our scalability
factor. We evaluate our approach using synthetic workloads
and show that our algorithm scales for medium to large net-
worked systems achieving guaranteed high determinism and
minimal jitter.

In Section 2, we define the networked system model, which
we later use in Section 3 to construct logical constraints that
correctly describe a combined network and task schedule. In
Section 4 we introduce two scheduling algorithms based on
SMT, which we then evaluate using synthetic benchmarks
in Section 5. We present related research in Section 6 and
conclude the paper in Section 7.

2. NETWORKED SYSTEM MODEL
TTEthernet establishes a multi-hop layer 2 switched net-

work via full-duplex multi-speed links (e.g. 100 Mbit/s, 1
Gbit/s, etc.). We formally model the networked system as
a directed graph G(V,L). The set of vertexes (V) comprises
the set of communication nodes (switches and end-systems)
while the edges (L ⊆ V × V) represent the directional com-
munication links connecting the nodes. Since we consider
bi-directional physical links, we have that ∀[va, vb] ∈ L ⇒
[vb, va] ∈ L, where [va, vb] is an ordered tuple that represents
a directed logical network link connecting vertex va ∈ V to
vb ∈ V. In addition to the network links, we also consider
tasks running on the end-system CPUs. We model the CPU
as a directional self-link, which we call CPU link, connecting
an end-system vertex with itself.

A network or CPU link [va, vb] between nodes va ∈ V and
vb ∈ V is defined by the tuple

〈[va, vb].s, [va, vb].d, [va, vb].mt, [va, vb].b〉,

where [va, vb].s is the speed coefficient, [va, vb].d is the link
delay, [va, vb].mt is the macrotick, and [va, vb].b is the max-
imum buffer constraint. In the case of a CPU link, the
macrotick represents the granularity of the time-line that the
real-time operating system (RTOS) of the respective end-
system recognizes. A typical macrotick for a time-triggered
RTOS ranges from a few hundreds of microseconds to sev-
eral milliseconds [4, p. 266]. In the case of a network link
the macrotick is the time-line granularity of the physical
link. Typically, the TTEthernet time granularity is around
60ns [16] but larger values are commonly used. The link
delay refers to either the propagation and processing delay
on the medium in case of a network link or the queuing and
software overhead for a CPU link. The speed coefficient is
used for calculating the transmission time of the frame on a
particular physical link based on its size and the link speed,
–for a network link the speed coefficient represents the time
it takes to transmit one byte. Considering the minimum
and maximum frame sizes in the Ethernet protocol of 84
and 1542 bytes, respectively, the frame transmission time,
for example, on a 1Gbit/sec link would be 0.672µsec and
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Figure 1: A TTEthernet network with 5 end-systems
and 2 switches.

12.336µsec, respectively. For a CPU link, the speed coef-
ficient is used to allow heterogeneous CPUs with different
clock rates, resulting in different WCETs for the same task.
The maximum buffer constraint represents the maximum
amount of time a frame of any size can reside in the message
queues of the transmitting node (switch or end-system).

We denote the set of all tt-tasks in the system by Γ. A
tt-task τvai ∈ Γ running on the end-system va is defined,
similar to the periodic task model from [19], by the tuple

〈τvai .φ, τvai .C, τvai .D, τvai .T 〉,

where τvai .φ is the offset, τvai .C is the WCET, τvai .D is the
relative deadline, and τvai .T is the period of the task. Note
that, a tt-task is pre-assigned to one end-system CPU and
does not migrate during run-time. Hence, all task parame-
ters are scaled according to the macrotick and speed of the
respective CPU link. We denote the set of all tasks that run
on end-system va by Γva .

We model communication through the network via the
concept of virtual links, where a virtual link is a logical
data-flow path in the network from one sender node to one
receiver node over which a tt-message is transmitted. The
concept is similar to [1] but extended to include the tt-tasks
associated with the generation and consumption of the data
running at the end-systems. We distinguish three types of
tt-tasks, namely, producer, consumer, and free tt-tasks. Pro-
ducer tasks generate messages that are being sent on the
network, consumer tasks receive messages that arrive from
the network, and free tasks have no dependency towards
the network. Note that we assume the actual instant of
sending and receiving messages occurs at the end and at
the beginning of producer and consumer tasks, respectively.
Schedulability may improve by considering the exact mo-
ment in the execution of a task where the message is sent or
received (cf. [9]).

A virtual link vli ∈ VL from a producer task running on
end-system va to a consumer task running on end-system vb,
routed through the nodes (i.e. switches) v1, v2, . . . , vn−1, vn
is expressed, similar to [28], as

vli = [[va, va], [va, v1], [v1, v2], . . . , [vn−1, vn], [vn, vb], [vb, vb]].

Additionally vli.max latency denotes the maximum allowed
latency between the start of the producer task and the end of
the consumer task. For communicating tasks, a virtual link
is composed by the path through the network and the two
end-system CPU links [va, va] and [vb, vb]. For a free task
τvai ∈ Γ, a virtual link vli is created with vli = [[va, va]].

Our goal is to schedule virtual links considering the task-
and network-levels combined. Hence, we take both the tt-
message that is sent over the network and the computation
time of both producer and consumer tt-tasks and unify these
through the concept of frames.



LetM denote the set of all tt-message in the system. We
model a tt-message mi ∈M associated with the virtual link
vli by the tuple 〈Ti, Li〉, where Ti is the period and Li is the
size in bytes. For the network links, a frame is understood
as the instance of a tt-message scheduled on a particular
link. For CPU links, we model tasks as a set of sequential
virtual frames that are transmitted (or scheduled) on the
respective CPU link. Since we consider preemptive tasks,
we generate as many virtual frames as are needed for a fully
preemptive task based on the CPU macrotick and speed. We
defined τvai .C to be the WCET of the task scaled according
to the macrotick and speed of the CPU link it is running
on. Therefore we have τvai .C non-preemptable chunks (or
virtual frames) of a task τvai .

In order to generalize frames scheduled on physical links
and virtual frames scheduled on CPU links we say that a vir-
tual link vli will generate sets of frames on every link (CPU
or network) along the communication path. In the case of a
network link the set will contain only one element, which is
the (non-preemptable) frame instance of tt-message mi on
the respective link, whereas in the case of a CPU link the
cardinality of the set will be given by the computation time
of the task generating the virtual frames. We denote the

ordered set of all frames f
[va,vb]
i,j of virtual link vli scheduled

on a (CPU or network) link [va, vb] by F [va,vb]
i , the order-

ing being done by frame offset. Furthermore, we denote

the first and last frame of the set F [va,vb]
i with f

[va,vb]
i,1 and

last(F [va,vb]
i ), respectively.

We use a similar notation to [28] to model frames. A frame

f
[va,vb]
i,j ∈ F [va,vb]

i is defined by the tuple

〈f [va,vb]
i,j .φ, f

[va,vb]
i,j .T, f

[va,vb]
i,j .L〉,

where f
[va,vb]
i,j .φ is the offset in macroticks of the frame

on link [va, vb], f
[va,vb]
i,j .T is the period of the frame in

macroticks, and f
[va,vb]
i,j .L is the duration of the frame in

macroticks. For a network link we have

f
[va,vb]
i,1 .T =

⌈
Ti

[va, vb].mt

⌉
, f

[va,vb]
i,1 .L =

⌈
Li × [va, vb].s

[va, vb].mt

⌉
.

A tt-task τ
vl
i ∈ Γ yields a set of frames f

[vl,vl]
i,j , j =

1, 2, . . . , τ
vl
i .C, where each frame has size 1 and a period

equal to the scaled task period, i.e., f
[vl,vl]
i,j .T = d τ

vl
i .T

[vl,vl].mt
e.

Note that it is possible in our model to specify that some
(or all) tasks are nonpreemptive by allowing a task to gen-
erate a single frame with length equal to the WCET of the
task. Our approach implicitly supports nonpreemptive task
schedule synthesis as it is a subproblem of preemptive task
schedule synthesis.

3. SCHEDULING CONSTRAINTS
Creating static time-triggered tt-schedules for networked

systems, like the one described in this paper, generally re-
duces to solving a set of timing constraints. In this sec-
tion we construct, based on our system model, the manda-
tory constraints to correctly schedule, in the time-triggered
sense, both tt-tasks and tt-messages. Some of our con-
straints (namely those in Sections 3.2, 3.3, 3.4, and 3.8) are
similar to the contention-free, path-dependent, end-to-end
transmission, and memory constraints from [28] but gener-

alized according to our system definition to include virtual
frames generated by tasks, different macrotick granularity,
and different link speeds.

3.1 Frame constraints
For any frame scheduled on either a network or CPU link,

the offset cannot take any negative values or any value that
would result in the scheduling window exceeding the frame
period. Therefore, we have

∀vli ∈ VL, ∀[va, vb] ∈ vli,∀f [va,vb]
i,j ∈ F [va,vb]

i :(
f

[va,vb]
i,j .φ ≥ 0

)
∧
(
f

[va,vb]
i,j .φ ≤ f [va,vb]

i,j .T − f [va,vb]
i,j .L

)
.

The constraint restricts the offset of a frame to be inside
the period of the generating tt-task or tt-message and, more-
over, to have a value for which the whole frame fits inside
the said period.

3.2 Link constraints
The most essential constraint that needs to be fulfilled

for time-triggered networks is that no two frames that are
transmitted on the same link are in contention, i.e., they do
not overlap in the time domain. Similarly, for CPU links,
no tasks running on the same CPU may overlap in the time
domain, i.e., no two chunks from any task may be scheduled

at the same time. Given two frames, f
[va,vb]
i,j and f

[va,vb]
k,l ,

that are scheduled on the same link [va, vb] we need to spec-
ify constraints such that the frames cannot overlap in any
period instance. Let F denote the set of all frames in the
system.

∀[va, vb] ∈ L,∀F [va,vb]
i ,F [va,vb]

k ⊂ F ,

∀f [va,vb]
i,j ∈ F [va,vb]

i , ∀f [va,vb]
k,l ∈ F [va,vb]

k ,

∀α ∈

[
0,

HP k,li,j

f
[va,vb]
i,j .T

− 1

]
, ∀β ∈

[
0,

HP k,li,j

f
[va,vb]
k,l .T

− 1

]
:(

f
[va,vb]
i,j .φ+ α× f [va,vb]

i,j .T ≥

f
[va,vb]
k,l .φ+ β × f [va,vb]

k,l .T + f
[va,vb]
k,l .L

)
∨(

f
[va,vb]
k,l .φ+ β × f [va,vb]

k,l .T ≥

f
[va,vb]
i,j .φ+ α× f [va,vb]

i,j .T + f
[va,vb]
i,j .L

)
,

where HP k,li,j

def
= lcm(f

[va,vb]
i,j .T, f

[va,vb]
k,l .T ) is the hyperpe-

riod of the two frames being compared. Please note that
the contention-free constraints from [28] compare two frames
over the cluster cycle (the hyperperiod of all frames in the
system) whereas our approach only considers the hyperpe-
riod of the two compared frames.

Although the macrotick is typically set as the granularity
of the physical medium, we can use this parameter to reduce
the search space simulating what in [28] is called a schedul-
ing “raster”. Hence, increasing the macrotick length –for a
network or CPU link– reduces the search space for that link,
making the algorithm faster, but also reduces the solution
space. However, since the typical macrotick lengths of net-
work and CPU links are several orders of magnitude apart,
it may only make sense to take advantage of the scheduling
raster in network links.



3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum difference
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with δ, where typically δ ≈ 1µsec [15, p. 186].

∀vli ∈ VL, ∀[va, vx], [vx, vb] ∈ vli :

[vx, vb].mt× f [vx,vb]
i,1 .φ− [va, vx].d− δ ≥

[va, vx].mt× (last(F [va,vx]
i ).φ+ last(F [va,vx]

i ).L).

The constraint expresses that, for a frame, the difference
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vli) and dest(vli) denote the CPU links on which

the producer task and, respectively, the consumer task of
virtual link vli are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

∀vli ∈ VL :

dest(vli).mt× (last(Fdest(vli)i ).φ+ last(Fdest(vli)i ).L) ≤

src(vli).mt× fsrc(vli)i,1 .φ+ vli.max latency.

In essence, the condition states that the difference between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the offset of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have

∀va ∈ V,∀τvai ∈ Γva :(
f

[va,va]
i,1 .φ ≥ τvai .φ

)
∧
(
last(F [va,va]

i ).φ ≤ τvai .D − τvai .C
)
.

3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
different tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.

∀va ∈ V, ∀τvai ∈ Γva , ∀j ∈
[
1,
(∣∣∣F [va,va]

i

∣∣∣− 1
)]

:

f
[va,va]
i,j+1 .φ ≥ f [va,va]

i,j .φ+ f
[va,va]
i,j .L.

3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task τvai and τ
vb
j have precedence con-

straints (τvai ≺ τ
vb
j ) then τvai has to finish executing before

τ
vb
j starts. Even though these dependencies arise typically

between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows

τvai ≺ τ
vb
j ⇒ [vb, vb].mt× f [vb,vb]

j,1 .φ ≥

[va, va].mt× (last(F [va,va]
i ).φ+ last(F [va,va]

i ).L).

Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.

∀vli ∈ VL, ∀[va, vx], [vx, vb] ∈ vli :

[vx, vb].mt× f [vx,vb]
i,1 .φ− [va, vx].mt× f [va,vx]

i,1 .φ ≤ [va, vx].b.

Note that an alternative method to directly constrain the
memory utilization in terms of frame and buffer lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are



Algorithm 1: One-shot SMT schedule synthesis

Data: G(V,L),VL,M,Γ
Result: S (tt-schedule)
begin
S ← ∅;
if Check(V,Γ) ∧ Check(VL,M) then
C ← Assert(G(V,L),VL,M,Γ);
S ← SMTSolve (C);

return S;

easily expressed in terms of constraint-satisfaction in lin-
ear arithmetic and are thus suitable application domains for
SMT solvers; a good use-case presentation of using SMT for
job-shop-scheduling can be found in [8]. At its core, our
scheduling algorithm generates assertions (boolean formu-
las) for the logical context of an SMT solver based on the
constraints defined in Section 3 where the offsets of frames
are the variables of the formula. For a satisfiable context,
the SMT solver returns a so-called model which is a solution
(i.e. a set of variable values for which all assertions hold) to
the defined problem.

4.1 One-shot scheduling
The one-shot method (Algorithm 1) considers the whole

problem set including all tt-tasks on all end-systems as well
as all tt-messages. The inputs of the algorithm are the net-
work topology G(V,L), the set of virtual links VL, the set of
tt-messagesM, and the set of tt-tasks Γ. The output is the
set S of frame offsets or the empty set if no solution exists.

First, the utilization on each end-system is verified
(through the Check function) to be lower than 100% using
the simple polynomial utilization-based test (cf. [19])

∀va ∈ V :
∑

τ
va
i ∈Γva

τvai .C

τvai .T
≤ 1.

This test is necessary but not sufficient, i.e., if the test fails,
the system is definitely not schedulable since the demand
of the task set exceeds the CPU bandwidth on at least one
end-system, however, if the test passes, the system may or
may not be schedulable. A similar check is employed for all
network links and the corresponding frames since, in general,
the density of feasible systems is less than or equal to 1 [18].

If the check is successful, the algorithm adds the con-
straints defined in Section 3 to the solver context C (Assert)
and invokes the SMT solver (SMTSolve) with the constructed
context as described above. The solution S (the solver
model), if it exists, contains the values for the offset vari-
ables of all frames and is used to build the tt-schedule.

The producer, consumer, and free tt-tasks as well as the
tt-messages may generate, depending on the system con-
figuration, a very large number of frames that need to be
scheduled. It is known that such scheduling problems (which
reduce to the bin-packing problem) are NP-complete [28].
Hence, the scalability of the one-shot approach may not be
suitable for applications with hundreds of tt-messages and
large network topologies.

In order to improve the performance for network-only
schedule synthesis, Steiner [28] proposes an incremental
backtracking approach which takes only a subset of the

frames at a time and adds them to the SMT context. If a
partial solution is found, additional frames and constraints
are added until either the complete tt-network-schedule is
found or a partial problem is unfeasible. In the case of un-
feasibility, the problem is backtracked and the size of the
increment is increased. In the worst case the algorithm back-
tracks to the root, scheduling the complete set of frames in
one step.

The performance improvement due to the incremental
backtracking method may be sufficient when only scheduling
network messages. However, when co-scheduling messages
and tasks in large systems, the number of virtual frames
due to tasks running on end-systems renders the problem
impracticable. Moreover, our experiments with an incre-
mental version of our one-shot algorithm have shown that
it performs best when the utilization is low (which is often
true for network links) since there is enough space on the
links to incrementally add new frames without having to
move the already scheduled ones. However, on CPU links,
the utilization due to tasks is usually high, resulting in the
incremental backtracking method performing worse than in
the average case. Hence, the incremental backtracking ap-
proach proposed by Steiner is not suitable for our purpose.

We present in the next section a novel incremental algo-
rithm specifically tailored for task scheduling that reduces
the runtime of combined task/network scheduling for the
average case by taking into account the different types of
tasks executing on end-systems.

4.2 Demand-based scheduling
Free tasks account for a significant amount of the total

frames that need to be scheduled. However, these tasks do
not present any dependency towards the network nor other
end-system tasks. Hence, they do not need to be considered
from the network perspective, but only from the end-system
perspective.

The main idea behind the demand-based method (Algo-
rithm 2) is to schedule only communicating tasks via the
SMT solver and check, afterward, if the resulting schedule
on all end-systems is feasible when adding the corresponding
free tasks. In [7] we have introduced a method to generate
optimal static schedules using dynamic priority scheduling
algorithms. We considered tasks as being asynchronous with
deadlines less than or equal to periods (i.e., constrained-
deadline task systems) and generated static schedule by sim-
ulating the EDF algorithm until the hyperperiod. We em-
ploy a similar method here for scheduling free tasks. In this
way, free tasks do not add to the complexity of the SMT
context but are scheduled separately, resulting in improved
performance for the average case. This improvement does
not come at the expense of schedulability. We guarantee
this by doing an incremental approach that in a first step
schedules communicating tasks and checks if, for any end-
system, the resulting schedule after adding the free tasks
would be schedulable. If this is the case, the free tasks are
scheduled by simulating EDF until the hyperperiod. If the
resulting system is not schedulable the algorithm increases
the SMT formulation by adding only those free tasks that
make the solution unfeasible and runs the solver over the
increased set. This is done incrementally until either a so-
lution is found or the whole set of free tasks has been added
to the SMT problem without finding a solution.

The inputs of the algorithm are, as before, the network



Algorithm 2: Demand-based SMT schedule synthesis

Data: G(V,L),VL,M,Γ
Result: S (tt-schedule)
begin
S ← ∅;
if Check(V,Γ) ∧ Check(VL,M) then

f ← false;
Γedf ← Γfree;
Γsmt ← Γ \ Γfree;
while f 6= true do
C ← Assert(G(V,L),VL,M,Γsmt);
S ← SMTSolve (C);
if S 6= ∅ then

Γd ← DemandCheck(V,S,Γedf);
if Γd 6= ∅ then

Γedf ← Γedf \ Γd;
Γsmt ← Γsmt ∪ Γd;

else
f ← true;
if Γedf 6= ∅ then
S ← S ∪ EDFSim(V,S,Γedf);

else
f ← true;

return S;

topology G(V,L), the set of virtual links VL, the set of
messages M, and the set of tasks Γ (cf. Algorithm 2). Like
in the one-shot method, the utilization on all end-systems
and all network links is verified first (Check function).

We define the following helper sets. The set of free tasks
Γfree is the set containing all tasks that are neither producer
nor consumer tasks and which are not dependent on other
tasks. We also introduce the set of tasks scheduled with
SMT (Γsmt) and the set of tasks scheduled with EDF (Γedf ).

Initially, Γedf is equal to the set of free tasks Γfree and
Γsmt = Γ \ Γfree is the set of remaining tasks from Γ. We
repeat the following steps until either a solution is found or
the set Γedf is empty. First, we add the constraints defined
in Section 3 based on the tasks in Γsmt to the solver context
C (Assert) and then invoke the SMT solver (SMTSolve) with
the constructed context. If no solution exists we exit from
the loop and return the empty set. If there exists a partial
solution S 6= ∅, we check (via the function DemandCheck)
the demand of the resulting system together with the tasks
which have not yet been scheduled (the tasks in Γedf ).

The demand check is based on the necessary and sufficient
feasibility condition for constrained-deadline asynchronous
tasks with periodic execution under EDF (cf. [3]). The test
constructs a set of intervals between any release and any
deadline over a certain time-window. In each of these in-
tervals the demand of the executing tasks is checked to be
smaller than or equal to the supply (the length of the in-
terval). In our case, for every end-system, the set of tasks
is derived from the already scheduled tasks in Γsmt and the
tasks in Γedf . The already scheduled tasks in Γsmt have
fixed scheduled intervals according to their virtual frames
whereas the tasks in Γedf will be treated as EDF tasks.

For every end-system va ∈ V the function Demand-

Check generates a set Γ̃va of virtual periodic tasks,

where every virtual task τ̃k
va is defined by the tuple

〈τ̃kva .φ, τ̃kva .C, τ̃kva .D, τ̃kva .T 〉, consisting, as before, of the
offset, the WCET, the relative deadline, and the period of
the virtual task, respectively. For every task τvai ∈ Γedf we
generate a virtual task τ̃k

va with a one to one translation
of the task parameters. Additionally, for every frame offset2

f
[va,va]
i,j .φ ∈ S we generate a virtual task τ̃k

va with τ̃k
va .φ =

f
[va,va]
i,j .φ, τ̃k

va .C = 1, τ̃k
va .D = 1, and τ̃k

va .T = f
[va,va]
i,j .T .

We use the necessary and sufficient feasibility condition

from [3, 23] for every generated virtual task set Γ̃va , namely

∀va ∈ V, ∀t1 ∈ Φva , ∀t2 ∈ ∆va , t1 < t2 :∑
τ̃i

va∈Γ̃va

τ̃i
va .C ×

(⌊
t2 − τ̃iva .φ− τ̃iva .D

τ̃i
va .T

⌋
−
⌈
t1 − τ̃iva .φ
τ̃i
va .T

⌉
+ 1

)
0

≤ t2 − t1,

where

Φva
def
= {avai,j = τ̃i

va .φ+ j × τ̃iva .T |τ̃iva ∈ Γ̃va , j ≥ 0, avai,j ≤ λ
va},

∆va def
= {dvai,j = avai,j + τ̃i

va .D|τ̃iva ∈ Γ̃va , j ≥ 0, dvai,j ≤ λ
va},

λva = max({τ̃iva .φ|τ̃iva ∈ Γ̃va}) + 2× lcm({τ̃iva .T |τ̃iva ∈ Γ̃va}).

The sets Φva and ∆va of arrivals and absolute deadlines,
respectively, define intervals in which the demanded execu-
tion time of running tasks has to be less than or equal to
the processor capacity [3, 23]. If the test is fulfilled on every
end-system, we know that applying EDF to the task sets
will result in a feasible schedule. In this case, the function
DemandCheck returns an empty set. We schedule the remain-
der of the tasks by running an EDF simulation (EDFSim) on
each end-system of the entire virtual task set (composed of
both scheduled and unscheduled tasks) until the hyperpe-
riod. The EDF simulation will return the static schedule
for the tasks in Γedf which will complete the partial solution
S. If the schedulability condition is not fulfilled on some
end-system, the function DemandCheck returns the set (Γd)
of tasks that have contributed to the intervals where the de-
mand was greater than the supply. These tasks are removed
from the set Γedf and added to the set Γsmt and the pro-
cedure is repeated. The loop terminates (f ← true) when
either a full solution is found or the SMT solver could not
synthesize a partial schedule for Γsmt.

Note that in the worst case, the algorithm may perform
worse than the one-shot method due to the intermediary
steps in which partial solutions were unfeasible. If none
of the partial solutions were feasible, in the last step, the
demand-based algorithm has to solve the same input set as
the one-shot method.

The feasibility test3 is known to be co-NP-hard [17, p.
615]. Therefore, the underlying scheduling problem still re-
mains exponential in the worst case. However, the run-time
of the test is highly dependent on the properties of the tasks
(periods, harmonicity of periods, hyperperiod, etc.) which,
in practice, are not that pessimistic. Thus, the demand
method may be more practicable than solving the entire
problem using SMT in the average case. Moreover, splitting
the problem and solving it using an incremental approach

2Frames of the same task scheduled sequentially on the time-
line can be joined into a bigger virtual task to increase the
performance of the feasibility test.
3Note that other tests with pseudo-polynomial complex-
ity [22, 3] could be used instead, but these are only sufficient
or deal with restricted task sets.



(a) (b) (c)

Figure 2: Example network topologies: (a) Ring–
size 6, (b) Mesh–size 6, (c) Tree–depth 2. All ex-
amples with 3 end systems per switch (leaf nodes
only).

Num Num
Size Topology

Switches End-Systems

Small (S)
Mesh, Ring 2 4

Tree, depth = 1 4 6

Medium (M)
Mesh, Ring 4 16

Tree, depth = 2 13 36

Large (L)
Mesh, Ring 8 48

Tree, depth = 3 15 48

Table 1: Configuration parameters for network con-
figurations of each size.

also reduces the runtime for the average case in which only
a few incremental steps are needed.

Naturally, we do not improve the scalability of the un-
derlying SMT solver, rather, we reduce, regardless of the
algorithm complexity and without sacrificing schedulability,
the size of the SMT problem and hence the number of asser-
tions and frames that place a burden on the solver. Through
this we can tackle medium to large problems even in the ex-
tended scenario of co-scheduling preemptive tasks together
with messages in a multi-hop switched network. Moreover,
finding a schedule with the SMT solver becomes harder the
more utilized the links become. By eliminating subsets of
tasks from the input of the SMT solver we make it easier for
the SMT solver to place the (virtual) frames of the remain-
ing tasks, thus shifting the complexity from the SMT solver
to the schedulability test.

We show in the next section that the demand method out-
performs the one-shot in most cases and results in significant
performance improvements leading to better scalability for
medium to large input configurations.

5. EVALUATION
We have implemented a prototype tool, called TT-NTSS,

for task- and network-level static schedule generation based
on the system model, constraint formulation, and schedul-
ing algorithms described above. The underlying SMT solver
employed by the tool is Yices v2.2.1 (64bit) [6] using lin-
ear integer arithmetic (LA(Z)) without quantifiers as the
background theory. We have run all experiments on a 64bit
8-core 3.40GHz Intel Core-i7 PC with 16GB memory. We
have fixed a 1µsec granularity for the network links, and de-
fined two different network speeds (100Mbit/s and 1Gbit/s).

We analyze the performance of TT-NTSS over a number
of industrial-sized synthetic scenarios following the network
topologies depicted in Figure 2. For each case we evalu-
ate three network sizes which range from small (i.e. a cou-
ple of switches) to large (i.e. tens of switches). We scale
proportionally the number of connected end systems and
therefore the number of tasks to be scheduled. We define
a virtual link between each two communicating tasks exe-
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Figure 5: Runtime as a function of the macrotick.

cuting on distinct randomly-selected end systems. Table 1
summarizes the set of configurations. Message sizes are cho-
sen randomly between the maximum and minimum Eth-
ernet packet sizes, while periods are randomly distributed
among three different predefined sets. The WCET of tasks
is set proportionally to the task period and the desired CPU
utilization bound, rounded to the nearest macrotick multi-
ple. Each end-system runs a total of 16 tasks, of which 8
are communicating and 8 free. VLs are defined between
communicating tasks running on randomly selected end-
systems. It is a common pattern in industrial applications
that communicating tasks (e.g. sensing and actuating) are
sensibly smaller than non-communicating ones (e.g. back-
ground computation and core functionality). Therefore, we
choose to model free tasks to account for approximately 75%
of the utilization and communicating tasks for 25%. For
the experiments we use 3 different period configurations,
namely {10, 20, 25, 50, 100}, {10, 30, 100}, and {50, 75} ms.
The time-out for each experiment was set to 100 minutes af-
ter which the problems were deemed unfeasible. Note that
the number of leaves in the tree topology is set to 3 for the
small and medium sized networks and 2 for the large, while
the tree depth is set to 1, 2, and 3 for small, medium, and
large, respectively.

Figures 3 and 4 depict the runtime of the demand-based
algorithm compared to the one-shot with different network
topologies and period configurations. For these experiments
we fixed the macrotick on each end-system to 250µs and the
average utilization of tasks to 50%. The y-axis showing the
runtime has a logarithmic scale and the x-axis shows the 3
different sizes for each topology, each size being described
by the tuple (switches, total end-systems, total tasks, vir-
tual links). We combine the mesh and ring topologies to-
gether in Figure 3 since they have similar sizes in terms of
end-systems, switches, tasks, and virtual links. The one-
shot method reaches the time-out (100 minutes) even for
most medium-sized problems whereas the demand method
performs significantly better in all cases scaling up to large
network sizes.

The hardware-dependent macrotick for time-driven
scheduling in real-time operating systems (RTOS) running
on embedded platforms is usually in the range of hundreds
of microseconds to a few milliseconds [4, p. 266]. The RTOS
developed internally at TTTech (see [7] for a short descrip-
tion) running on a TMS570 MCU [33] with a 180 MHz ARM
Cortex-R4F processor has a configurable macrotick in the
range of 50µs to 1ms. Smaller macroticks increase the re-
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Figure 3: Runtime for mesh and ring topologies with MT = 250µsec, U = 50%.
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Figure 4: Runtime for the tree topology with MT = 250µsec, U = 50%.
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Figure 6: Runtime as a function of the average end-
system utilization.

sponsiveness of the system but introduce more overhead due
to more frequent timer interrupt invocations and context
switches. The macrotick also has an impact on the runtime
of our method, a bigger macrotick leads to tasks generating
less virtual frames but decreases the solution space (simi-
lar to the raster method for network links). In Figure 5
we compare the runtime of the one-shot and demand algo-
rithms (logarithmic y-axis) as a function of the macrotick
length (x-axis). All values were obtained using the small
mesh topology with 50% task utilization, period configura-
tion {10, 20, 25, 50, 100}, and macrotick values between 50µs
and 0.5ms. As can be seen, the smaller the macrotick is,
the longer it takes to find a schedule due to the increas-
ing number of virtual frames generated by the tasks on the
end-system CPUs.

In Figure 6 we compare the runtime of the demand and
one-shot methods (logarithmic y-axis) as a function of the
average end-system utilization (x-axis) for a small mesh
topology where each end-system has a macrotick of 250µs
and the task and message periods are chosen randomly from
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the period configuration set {10, 20, 25, 50, 100}ms. The
more utilized the end-systems becomes the harder it is for
the SMT solver to find a solution. We remind the reader that
free tasks account for approximately 75% of the utilization
and communicating tasks for around 25%. The demand al-
gorithm eliminates, in the best case, up to 75% of the tasks
and therefore, even for a highly utilized end-system, the size
of the SMT problem becomes significantly smaller.

The runtime of the scheduling method is dependent on a
number of factors, the most important of them being the
number of frames that need to be scheduled. However,
as can be seen from the previous figures, there is a non-
monotonic relationship between the various variables and
the runtime of the algorithm. The number of frames has
a complex dependency on the macrotick, the hyperperiod,
the relation and length of the periods, the topology, etc. It
is therefore hard to find a monotonic relationship between
these variables and the complexity of the problem. However,
there is a monotonic relationship between the number of as-
sertions and the runtime, and, to a lesser degree, between the
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Figure 8: SMT-scheduled frames with the one-shot
and demand methods.

number of frames and the runtime. In Figure 7 we plot the
number of logical assertions (left y-axis) and frames (right y-
axis) as functions of the runtime (logarithmic x-axis). The
values were obtained from the previous experiments with
all 3 topologies scheduled with the demand-based algorithm
with all 3 period configurations and a macrotick of 250µs.
We omitted from the figure the one-shot method since most
of the experiments reached the time-out, as well as the ex-
periments where the demand-based algorithm needed more
than one incremental step due to failed demand checks.

On average, the demand-based algorithm performed sig-
nificantly better than the one-shot method due to the fact
that it eliminates the majority of the virtual frames gener-
ated by free tasks from the SMT formulation. In Figure 8
we show the total number of frames (virtual frames from
tt-tasks and frame instances of network tt-messages) sched-
uled with each method as well as how many incremental
steps (“retries” sub-plot) were used for the demand method
in all the network configurations discussed above. The sig-
nificant performance improvements result directly from the
reduced number of frames (on average a 64.8% reduction)
that have to be scheduled with the SMT solver in each case.

Finding a solution for very large input sets still remains an
impracticable problem (unless P = NP ) since SMT solvers,
which generalize SAT solvers, have exponential complexity.
For inputs that generate an amount of frames and asser-
tions beyond the ranges presented above, the problem be-
comes intractable, making the proposed method unfeasible.
Even though an active community constantly improves the
performance of SMT solvers, for very large systems a heuris-
tic method or a combination of heuristics and SMT-based
scheduling, at the expense of decreased solution spaces, re-
mains the most promising approach.

6. RELATED WORK
The starting point for our work was [28] in which the

author formulates SMT message scheduling constraints for
multi-hop time-triggered networks and solves them using
Yices [6]. We extend the work done by Steiner threefold.
First, we extend the problem definition to include preemp-
tive tasks that run in a table-driven schedule on end-system
nodes and formulate the scheduling constraints based on
this model. Furthermore, we add support for different link
speeds and time-line granularities for both network and CPU

links. Finally, based on this extended model, we show how
to efficiently create combined task and network schedules
with deterministic end-to-end latency that push the time-
triggered properties of TTEthernet to the software layers.

Other approaches besides [28] also discuss the genera-
tion of message schedules for time-triggered networks with-
out factoring in the producing and consuming tasks. The
problem of generating a time-triggered message schedule is
extended with rate-constrained traffic considerations by ei-
ther scheduling reserved slots that correspond to the rate-
constrained requirements [29] or by formulating an optimiza-
tion problem that minimizes the end-to-end delay of rate-
constrained frames [32]. The work in [11] addresses the syn-
thesis of time-triggered message schedules for Profinet IO
where messages depend on pre-scheduled producer and con-
sumer tasks. Scheduling for time-triggered network-on-chip,
where both scheduling points and communication routes of
messages are assigned, is studied in [13].

There have been several approaches dealing with task and
message scheduling in tandem for time-triggered communi-
cation. A recent paper [35] studies task and messages sched-
ule co-synthesis in switched time-triggered networks using a
MIP multi-objective optimization formulation. Similar to
our work, the authors differentiate between communicating
and free tasks, however, their task model is non-preemptive
whereas ours allows preemption which increases the solution
space on the application level. Another MIP-based approach
can be found in [34] where FlexRay bus scheduling is con-
sidered. Scheduling preemptive tasks together with time-
triggered messages has been analyzed in [25, 24] for fixed-
priority scheduled tasks communicating through a TTP bus.
Similarly, [20] studies a SAT-based solution for task and
message scheduling on bus systems where tasks are sched-
uled using a fixed-priority assignment.

In [26], a system consisting of communicating event- and
time-triggered tasks running on distributed nodes is sched-
uled in conjunction with the associated bus messages from
the dynamic and static domains respectively. A similarity
to our work consists in the separate schedulability test (in
this case fixed-priority) for event-triggered tasks based on
the static schedule of the time-triggered tasks.

Hitherto, all presented methods for task and message
schedule co-synthesis deal either with non-preemptive tasks
on multi-hop networks, or with preemptive tasks on simple
bus network topologies. We consider a more complex prob-
lem by including preemptive tasks that communicate in a
switched multi-hop multi-speed time-triggered network.

7. CONCLUSION
We have introduced algorithms for the simultaneous co-

synthesis of time-triggered schedules for both network mes-
sages and preemptive tasks in switched multi-speed time-
triggered networks. We have defined the schedulability con-
straints as Satisfiability Modulo Theories (SMT) formulæ
and solved them using the state-of-the-art solver Yices.
Moreover, we have shown how to increase, for the average
case, the performance of our method through a novel in-
cremental scheduling approach based on the utilization de-
mand bound analysis for asynchronous periodic tasks from
classical scheduling theory. Our evaluation, using a variety
of synthetic network topologies and system configurations,
shows that our approach can tackle medium to large prob-
lems efficiently and scales for industrial-sized systems.
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