
The Power of Isolation
Silviu S. Craciunas Christoph M. Kirsch

Department of Computer Sciences
University of Salzburg, Austria

Email: firstname.lastname@cs.uni-salzburg.at

Abstract—Non-functional system properties such as CPU and
memory utilization as well as power consumption are usually
non-compositional. However, such properties can be made com-
positional by isolating individual system components through
over-provisioning. The challenge is to relate the involved isolation
cost and the resulting isolation quality properly. Temporal and
spatial isolation have been studied extensively. Here we study
the compositionality of power consumption as another and
in this regard unexplored example of a non-linear property
with many important applications. In particular, we introduce
the concept of power isolation for EDF-scheduled hard real-
time systems running periodic software tasks. A task is power-
isolated if there exist lower and upper bounds on its power
consumption independent of any other concurrently running
tasks. The main challenges in providing power isolation are to
find a relationship between the power consumption of a system
and the contribution of a single task to this power consumption
as well as understanding the trade-off between quality and cost
of power isolation. We present lower and upper bounds on the
power consumption of a task as functions of task utilization,
frequency scaling, and power model. Furthermore, we discuss
the variance between lower and upper bounds (quality) and the
power consumption overhead (cost) of power isolation.

I. INTRODUCTION

Non-functional properties of software systems such as CPU
and memory utilization as well as power consumption are
non-compositional: they typically do not follow from indi-
vidual components such as periodic software tasks due to
the non-linear characteristics of hardware. Constructing large-
scale software systems with respect to non-functional correct-
ness is therefore difficult. However, non-functional properties
can generally be made compositional by isolating individual
components through over-provisioning. The challenge is to
relate the involved isolation cost and the resulting isolation
quality properly. Compositional scheduling [1] is a prominent
example. In this paper, we study the compositionality of power
consumption, which is another example of a non-functional
property with significant importance in the embedded and non-
embedded computing world.
Compositionality of system properties such as CPU and

memory utilization is achieved through temporal and spatial
isolation, respectively. Temporal isolation refers to techniques
that prohibit tasks from altering the temporal behavior of
other tasks. Spatial isolation refers to confining tasks to their
own memory regions. We aim at studying compositionality

This work has been supported by the EU ArtistDesign Network of Excel-
lence on Embedded Systems Design and the National Research Network RiSE
on Rigorous Systems Engineering (Austrian Science Fund S11404-N23).

of power consumption by isolating software tasks in terms
of their individual power consumption. In particular, we
provide lower and upper bounds on the power consumption
of individual tasks independently of any other concurrently
running tasks. The quality of power isolation is then given by
the variance of per-task lower and upper power consumption
bounds. The cost of power isolation appears as additional
power consumed for providing different levels of power iso-
lation quality.
Using earliest-deadline-first (EDF) [2] scheduling in power-

aware systems we show that the power consumption of tasks
can be bounded and thus isolated from other tasks without
changing their real-time behavior. We also show that there is
a trade-off between the quality and the cost of power isolation.
Depending on the system and task properties, the penalty for
improved quality of isolation, i.e., less variance between lower
and upper power consumption bounds, is higher overall power
consumption while tasks with certain properties can be isolated
accurately with little power consumption overhead.
Many scheduling concepts that ensure temporal isolation,

like CBS [3] and VBS [4] use EDF scheduling as the basic
decision policy. The results presented in this paper may
therefore be applied to such techniques, eventually enabling
systems that provide full isolation in terms of time, space, and
power. Furthermore, other non-functional properties which are
non-compositional, such as thermal properties in large data
centers [5], may also benefit from the analysis presented in
the paper. Power isolation could also have applications in
cloud computing [6]. The power consumed for processing the
request of a client does not scale linearly with the speed of
execution and, even worse, may depend on other, unrelated
clients sharing the system. Time and power is therefore hard
to account for in fair and competitive cost analyses. Power
isolation may help to overcome fairness issues and, as a result,
enable advanced pricing models for cloud computing.
We begin by presenting the task and power models that we

study (Section II). We then discuss the quality of power iso-
lation with different system settings (Section III) and address
the cost of power isolation in Section IV. We present related
work in Section V and conclude the paper in Section VI.

II. TASK AND POWER MODEL

We consider the problem of power isolation in hard real-
time systems using the periodic task model described by Liu
and Layland [2]. Our task model description is similar to the
one in [7]. Let Γ = {τi | 1 ≤ i ≤ n} be a set of n tasks

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record is available at https://doi.org/10.1109/ICCSE.2012.59

with periodic activation. Each task τi is defined by a tuple
(Ci, Ti, Di), where Ci represents the computation time, Ti

is the period, and Di is the relative deadline of task τi. For
simplicity we assume that Di = Ti. Furthermore, each task
τi produces an unbounded sequence of instances (also called
jobs) τi,k, k = 1, 2, As described in [7], each instance
τi,k has a release time ri,k = (k − 1)Ti and an absolute
deadline di,k = ri,k + Di. The release time represents the
time at which a job can be considered for scheduling and
the absolute deadline represents the time at which the job
must complete its workload of Ci time units. In this paper,
we assume that there is no dependence between tasks, that the
system allows preemption, and that the jobs τi,1 are released
at time zero (ri,1 = 0). The utilization Ui of a task τi is
given by Ui = Ci/Ti and the total utilization of the tasks in
the set Γ is U =

∑n
i=1

Ui. The jobs are scheduled using the
preemptive earliest deadline first (EDF) [2] algorithm, a well-
known optimal dynamic scheduling algorithm in which, at
each time instant, the job that has the nearest absolute deadline
is assigned to run on the CPU. In [2] the authors present a
simple necessary and sufficient condition for the task set Γ to
be schedulable under EDF, namely, if U ≤ 1 then the set of n
periodic tasks is schedulable by the EDF algorithm such that
each job τi,k finishes its execution before its deadline di,k .
Reducing power consumption in real-time systems is widely

studied [8], [9]. The main method in this context is dynamic
voltage and frequency scaling (DVFS) [10]. In this paper
we concentrate on the CPU energy consumption of a system
which allows DVFS and do not analyze the energy consump-
tion of other system components, like I/O devices. In [10]
a simple DVFS mechanism for EDF-scheduled systems has
been proposed. The mechanism builds upon the assumption
that scaling the CPU operating frequency by a factor κ ∈ (0, 1)
will cause the execution time (but not the deadline and period)
of a task to be scaled by a factor 1/κ [11], [10].
Note that this assumption depends on the particularities

of the task. Whenever memory operations are involved, the
execution time does not scale with the frequency [12], [13],
and thus more accurate power-consumption models [8] or
workload dissection [12] may be required.
The main result of [10] is that a set of periodic tasks

remains schedulable if the system is scaled with a frequency
scaling factor κ = U . Moreover, if the system is scaled to any
frequency f > κ·fmax, where fmax is the maximum available
frequency, the system remains schedulable.
We take the power consumption characterization described

in [14]. If the CPU is scaled to frequency f , the power
consumption function of the CPU is

p(f) = c0 + c1f
ω, (1)

where ω ≥ 2 is a constant, and the constants c0 and c1
represent the power consumption of the CPU in idle mode
and at maximum frequency, respectively [14]. For all figures
in this paper we use the power consumption function of
an Intel XScale platform described in [15], [16], namely
p(f) = 1520fω + 80 mWatt, with ω ≥ 2.

Since in an EDF-scheduled system we can scale the fre-
quency at the beginning using the scaling factor κ = U [10] (in
the case of an ideal system with a continuous set of available
frequencies), the energy consumption in an interval [t0, t1)
depends only on the sum of the utilizations of the tasks (U).
The consumed CPU energy in an interval [t0, t1) is

∫ t1

t0

p(U · fmax)dt.

We further discuss the quality and cost of power isolation
in EDF-scheduled systems using the presented task and power
model.

III. QUALITY OF POWER ISOLATION
In this section we start from the case when there are only

two available frequencies, i.e., the processor is either in idle
mode or running at the maximum frequency available. We then
look at systems with a continuous set of available frequencies
and at systems with multiple discrete frequency levels. In
each case we provide upper and lower bounds for the CPU
energy consumption of a task τi in the considered interval
[t0, t1) independently of the other tasks in the system. We
choose the interval [t0, t1) to represent the hyper-period of
the periods of all tasks. Since we consider a time interval
we will henceforth talk about CPU energy consumption. The
average power consumption can be described by dividing the
CPU energy consumption by the length of the considered time
interval. We work with discrete time, i.e., the set of natural
numbers N is the time-line.
We look at the CPU energy consumption of a system with

total task utilization U =
∑n

i=1
Ui running at frequency

κ ≥ U in the interval [t0, t1). In the considered interval the
processor switches the frequency from κfmax when some task
is running to 0 when no task is running. The CPU energy
consumption over [t0, t1) is

tidlec0 + trunning(c0 + c1(κfmax)
ω),

where tidle is the total time the processor is idle and trunning
is the total time some task is running, tidle+trunning = t1−t0.
Since tidlec0 + trunningc0 = (t1 − t0)c0, we can simplify

the CPU energy consumption in the interval to

(t1 − t0)c0 + trunningc1(κfmax)
ω.

The base energy consumption Ebase is the CPU energy
consumption that is independent of the utilization of the tasks
and is expressed as follows,Ebase = (t1−t0)c0. Since the base
CPU energy consumption does not depend on the utilization
of the task set, we do not consider it in the discussion from
this point on.
As elaborated in [10], if the frequency is scaled with the

scaling factor κ, the computation time of all tasks will be
scaled with factor

1

κ
. The total time some task runs in the

considered interval can be written as

trunning = (t1 − t0)
n
∑

i=1

Ci

κTi
= (t1 − t0)

U

κ
.

We write the CPU energy consumption of the system in the
considered time interval as

E(κ, U) = (t1 − t0)c1
U

κ
(κfmax)

ω. (2)

A. Two frequency levels
We first assume a system where there are only two possible

discrete frequency levels, namely 0 and fmax. In this case
we show that the CPU energy consumption of the periodic
tasks in the system is compositional, namely, the CPU energy
consumption of a single task τi with utilization Ui = Ci

Ti
is

directly proportional to its utilization.
If there are only two frequency levels, the processor is scaled

to the maximum frequency fmax when some task is running
and to 0 when no task is running. Using Equation 2 we write
the CPU energy consumption in the interval [t0, t1) as

E(1, U) = (t1 − t0)c1Ufω
max.

It follows that the compositional CPU energy consumption
function for a task τi with utilization Ui is

E(1, Ui) = (t1 − t0)c1Uif
ω
max.

Next we define the upper and lower bounds for the CPU
energy consumption of a task τi as follows

bEu
i = bEl

i = E(1, Ui).

Note that in this case, the CPU energy consumption of a
task is fully compositional in the sense that the amount of
CPU energy that a specific task consumes is proportional to
the amount of time it runs which in turn only depends on the
utilization of the considered task. Thus we can write in this
case that

E

(

1,
n
∑

i=1

Ui

)

=
n
∑

i=1

E(1, Ui).

With only two discrete frequency levels, the nonlinearity
of the power consumption function is not expressed in terms
of the utilization of the tasks and thus plays no role in the
bounds.
An important aspect is the wake-up cost. In some systems

the idle time must be sufficiently long such that the wake-
up overhead is neutralized [17]. However, even in this case
the amount of energy attributed to individual tasks does not
change, just the overall CPU energy consumption.
Since there are only two frequency levels, the CPU en-

ergy consumption is higher than in the case of intermediate
frequency levels. We compare the CPU energy consumed in
this case to the ideal case where there is a continuous set of
available frequencies in Section IV.

B. Continuous frequency levels
We now look at power isolation in an ideal system in which

there is a continuous set of available frequency levels. In this
case the frequency scaling factor, as described in [10], is κ =
U =

∑n
i=1

Ui.
In order to isolate a task τi from the task set in terms

of energy consumption we look at the two extreme cases,

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
P

U
 e

n
er

g
y
 [

%
]

Ui

t0 = 0s, t1 = 10s, c1 = 1520 mWatt

jitter

bEi
u
, ω = 2 bEi

l
, ω = 2 bEi

u
, ω = 3 bEi

l
, ω = 3

Fig. 1. CPU energy consumption bounds and jitter as a percentage of the
maximum CPU energy consumption with ω = 2, 3

namely when the frequency is scaled from 0 to Ui and when
the frequency is scaled from 1 − Ui to 1, where Ui is the
utilization of task τi. Because of the nonlinearity of the CPU
energy consumption function (Equation 1), a task τi has the
lowest contribution to the CPU energy consumption if there are
no other tasks running besides the given task and the highest
contribution to the CPU energy consumption if by adding the
task the utilization becomes 100%. The two cases are easy
to prove using the binomial theorem. Given three utilizations
U1, U2, Ui ∈ (0, 1) with U1 ≤ U2, we have that

E(U1 + Ui, U1 + Ui)− E(U1, U1) ≤
E(U2 + Ui, U2 + Ui)− E(U2, U2),

and conversely, for U1 ≥ U2 we have
E(U1 + Ui, U1 + Ui)− E(U1, U1) ≥
E(U2 + Ui, U2 + Ui)− E(U2, U2).

The two cases occur when U1 = 0 and when U1 + Ui = 1,
respectively.
Given the best and worst case we find the lower and

upper bound on CPU energy consumption for a task τi with
utilization Ui.
Equation (2) in this case gives the following CPU energy

consumption function

E(U,U) = (t1 − t0)c1(fmaxU)ω.

We now look at the best case, namely that task τi with
utilization Ui is the only task in the system. Hence the CPU
energy consumption for this task, and therefore the lower
bound on CPU energy consumption, is given by

bEl
i = E(Ui, Ui) = (t1 − t0)c1(fmaxUi)

ω .

In the worst case, adding this task to a system will cause
a frequency scaling from frequency (1 − Ui)fmax to fmax.
Therefore the upper bound on CPU energy consumption for
task τi is

bEu
i = E(1, 1)− E(1 − Ui, 1− Ui)

= (t1 − t0)c1(f
ω
max − ((1 − Ui)fmax)

ω)

= (t1 − t0)c1f
ω
max(1 − (1− Ui)

ω).

Figure 1 shows the CPU energy consumption bounds with
ω = 2 and ω = 3. The x-axis represents the utilization Ui of
the task τi. The y-axis shows the CPU energy consumption
as a percentage of the maximum CPU energy consumption,
i.e., when running at frequency fmax for the whole considered
time interval. Interestingly, the bounds converge for tasks with
low and high utilization while the biggest difference between
the upper and lower bound is when the task has utilization
Ui = 50%. Moreover, for ω = 2 the difference between the
bounds is less than for ω = 3.
We measure the quality of power isolation through the CPU

energy consumption jitter. The CPU energy consumption jitter
jEi is the difference between the upper and lower bound:

jEi = bEu
i − bEl

i

= (t1 − t0)c1f
ω
max(1 − (1− Ui)

ω − Uω
i).

In practice a system does not have a continuous set of
frequency levels. Hence, in the next section we discuss systems
with discrete frequency levels.

C. Discrete frequency levels
In systems with discrete frequency levels, the frequency is

scaled to the nearest frequency that is at least fmax ·
∑n

i=1
Ui.

This ensures that all tasks will finish their computation within
or at their deadlines.
Let κ1 ·fmax < κ2 ·fmax < · · · < κm ·fmax be the available

frequency levels with κ1, . . . ,κm ∈ [0, 1], κ1 = 0, κm = 1,
and m > 2.
We first assume that we have three frequency levels, i.e.,

m = 3, namely 0, κ · fmax, and fmax, where κ ∈ (0, 1).
Depending on the sum of the utilization of the tasks the fre-
quency is scaled either to κ ·fmax if

∑n
i=1

Ui ≤ κ or to fmax

if
∑n

i=1
Ui > κ. Whenever the system is idle, i.e., no task is

running, the processor is scaled to 0. Since we want to express
the CPU energy consumption bounds of a task independently
of any other task, we have no knowledge how the total system
utilization will be affected by adding or removing task τi.
Thus we have to consider the best- and worst-case contribution
of task τi to the CPU energy consumption of the system.
As seen in the previous subsection, where we considered
continuous frequency levels, the worst-case contribution of a
task τi to the CPU energy consumption is when by adding
τi, the utilization becomes 100%. Conversely, the best case
contribution of τi is when the task is the only one running
in the system. This insight can be extended for the discrete
frequency case. However, we need to prove whether the worst-
case contribution of τi is when the frequency is switched from
κfmax to fmax, or whether the worst-case contribution is when
the frequency remains fmax with and without τi.
Proposition 1: The worst-case CPU energy consumption of

a task τi is when, by adding the task to a system, the frequency
is switched from κfmax to fmax, where κ ∈ (0, 1).

Proof: We consider two possibilities. The first one is
when the frequency is not scaled. Here, due to the nonlinear-
ity of the power consumption function, the worst-case CPU
energy consumption of a task τi is when by adding task τi,

the utilization in the system increases from 1 − Ui to 1. The
worst-case contribution to the CPU energy consumption of
task τi in this case is (t1 − t0)c1fω

max(1 − (1 − Ui)). The
second possibility is when by adding task τi the frequency is
switched from κfmax to fmax for some κ ∈ (0, 1). We know
that the utilization of all other tasks in the system satisfies

n
∑

j=1

j !=i

Uj ≤ κ and
n
∑

j=1

j !=i

Uj > κ− Ui.

The CPU utilization of all other tasks in the system besides
τi is max(κ−Ui, 0). If the frequency is scaled from κfmax to
fmax the utilization is either κ−Ui in the case when Ui < κ
or 0 in the other case. The CPU energy consumption of the
system without task τi at frequency level κfmax is

E(κ,max(κ−Ui, 0)) > (t1−t0)c1 (κfmax)
ω max

(

1−
Ui

κ
, 0

)

.

With task τi the worst-case utilization of all tasks in the
system is min(κ+Ui, 1), since the CPU energy consumption
of the system cannot exceed the maximum possible CPU
energy consumption, i.e., when the utilization is 100%, we
take the minimum between κ+ Ui and 1.
Using Equation 2 the CPU energy consumption of the

system is

E(1,min(κ+ Ui, 1)) ≤ (t1 − t0)c1f
ω
max min(κ+ Ui, 1).

We take the worst-case contribution of task τi to the CPU
energy consumption when the frequency is scaled, which is
always less than E(1,min(κ+Ui, 1))−E(κ,max(κ−Ui, 0)).
We now have to prove that the CPU energy consumption in

the first case is always lower than or equal to the CPU energy
consumption in the second case, i.e.,

1− (1− Ui) ≤ min(κ+ Ui, 1)−max

(

1−
Ui

κ
, 0

)

κω

There are four cases.

C.1 If min(κ+Ui, 1) = κ+Ui and max

(

1−
Ui

κ
, 0

)

= 1−

Ui

κ
then Ui ≤ κ+Ui−

(

1−
Ui

κ

)

κω. After reductions,

the inequality becomes (κ−Ui)κω−2 ≤ 1, which is true
since κ ≥ Ui, ω ≥ 2, and κ ∈ (0, 1).

C.2 If min(κ+Ui, 1) = 1 and max

(

1−
Ui

κ
, 0

)

= 1−
Ui

κ

then Ui ≤
1− κω

1− κω−1
, which is true since κω−1 > κω

for κ ∈ (0, 1) and ω ≥ 2.

C.3 If min(κ + Ui, 1) = κ + Ui and max

(

1−
Ui

κ
, 0

)

=

0 then the inequality becomes Ui ≤ κ + Ui, which is
trivially true.

C.4 Last, if min(κ+Ui, 1) = 1 andmax((κ−Ui)κω−1, 0) =
0 then the inequality becomes Ui ≤ 1, which completes
the proof.

The best case contribution of task τi to the CPU energy
consumption, i.e., the lowest CPU consumption of a system
with task τi, is when τi is the only task in the system.
Given the worst- and best-case contribution of task τi to

the CPU energy consumption we now give upper and lower
bounds for the CPU energy consumption of task τi. We
differentiate two cases depending on whether Ui is bigger or
smaller than κ.
Case 1. (Ui ≤ κ) In this case, the lowest contribution to the
CPU energy consumption of task τi is when by adding the
task, the frequency level remains κfmax. Since the frequency
is not scaled, the contribution is proportional to Ui/κ.
We remind the reader that the term Ui/κ refers to how much

CPU bandwidth the task τi will require after the system has
been scaled with a scaling factor κ.
The lower CPU energy consumption bound is therefore

bEl
i = (t1 − t0)c1

Ui

κ
(κfmax)

ω = (t1 − t0)c1Uif
ω
maxκ

ω−1.

The upper CPU energy consumption bound is

bEu
i = (t1 − t0)c1f

ω
max(min(κ+ Ui, 1)− κω(1−

Ui

κ
)).

We now elaborate on the upper CPU energy consumption
bound. From Proposition 1, the worst-case contribution to the
CPU energy consumption of task τi is when the frequency is
scaled from κfmax to fmax. Naturally, for Ui ≤ κ, the lowest
possible utilization of all other tasks besides τi is κ−Ui. The
CPU energy consumption without task τi at frequency level
κfmax is

E(κ,κ− Ui) > (t1 − t0)c1 (κfmax)
ω

(

1−
Ui

κ

)

.

The CPU energy consumption when running at frequency
fmax is

E(1,min(κ+ Ui, 1)) ≤ (t1 − t0)c1f
ω
maxmin(κ+ Ui, 1).

The upper bound is thus the difference between the CPU
energy consumption of all tasks including τi at level fmax

and the CPU energy consumption at level κfmax of all tasks
excluding τi, namely

E(1,min(κ+ Ui, 1)) − E(κ,κ− Ui)

< (t1 − t0)c1f
ω
max(min(κ+ Ui, 1)

− κω(1−
Ui

κ
))

= bEu
i .

The CPU energy consumption jitter for Ui ≤ κ is

jEi = bEu
i − bEl

i = (t1 − t0)c1f
ω
max(min(k + Ui, 1)− κω).

Case 2. (Ui > κ) The difference between this case and the
previous is that if there are no tasks in the system and task τi
is added, the frequency is scaled to fmax directly. In this case
only the lower bound changes to

bEl
i = (t1 − t0)c1Uif

ω
max.

For Ui > κ, the utilization of all other tasks besides τi is 0 in
the best case. The CPU energy consumption without task τi
at frequency level κfmax is always greater than 0. The upper
bound in this case is

bEu
i = (t1 − t0)c1f

ω
max(min(κ+ Ui, 1)).

We present several figures that show how the bounds and
jitter behave dependent on the frequency level κfmax, the
utilization of task τi, and ω.
In Figure 2 we plot the dependency of the CPU energy

consumption jitter in terms of both κ and Ui. Figures 2(a)
and 2(b) show a 2D map of the jitter as a percentage of the
maximum CPU energy consumption with ω = 2 and ω = 3
respectively. The x-axis depicts Ui and the y-axis represents
κ. We can see that for κ < 0.2 and κ > 0.8, the jitter remains
at around 10− 20% independently of Ui. Similarly, for small
and large task utilization, the jitter is around 10− 30% of the
maximum CPU energy consumption. For Ui ∈ [0.3, 0.7] and
κ ∈ [0.3, 0.7] we have the most jitter, i.e., the CPU energy
consumption bounds have the largest variance.
We now look at the general case where there are multiple

discrete frequency levels.
Let κl ∈ {κ1,κ2, . . . ,κm} be the next higher frequency

scaling factor to Ui such that κl−1 < Ui ≤ κl and let κu ∈
{κ1,κ2, . . . ,κm} be the next higher frequency scaling factor
to 1− Ui such that κu−1 < 1− Ui ≤ κu.
The lowest contribution to the CPU energy consumption of

task τi is when the task is the only task running in the system.
Thus the processor is scaled to the frequency level given by
κlfmax. The lower bound for task τi is therefore

bEl
i = (t1 − t0)c1

Ui

κl
(κlfmax)

ω.

For the upper bound we consider the CPU energy consump-
tion of task τi in the worst case in which adding the task to the
system would scale the frequency from the largest frequency
possible without τi in the system to fmax. Since we do not
know the total utilization of the other tasks in the system, the
frequency at which the system runs is the minimum between
κu and κm−1. Let κ = min(κu,κm−1).
Following the same line of reasoning as in the case where

there are only three available frequencies, the upper bound for
task τi is

bEu
i = (t1 − t0)c1f

ω
max(min(κ+ Ui, 1)

−κω max(1−
Ui

κ
,min(κu−1,κm−2))),

since

E(1,min(κ+ Ui, 1)) − E(κ,min(κu−1,κm−2)))

< (t1 − t0)c1f
ω
max(min(κ+ Ui, 1)

− κω max(1−
Ui

κ
,min(κu−1,κm−2))).

The term min(κu−1,κm−2) refers to the least amount of
utilization that all other tasks besides τi in the system can have
if the frequency is scaled from κfmax to fmax by adding τi.

 60
 40

 20
 0

 0 0.2 0.4 0.6 0.8 1

Ui

 0

 0.2

 0.4

 0.6

 0.8

 1
κ

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

(a) ω = 2

 80
 60

 40
 20

 0

 0 0.2 0.4 0.6 0.8 1

Ui

 0

 0.2

 0.4

 0.6

 0.8

 1

κ

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

(b) ω = 3

Fig. 2. CPU energy consumption jitter map as a percentage of the maximum CPU energy consumption in function of κ and Ui

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
P

U
 e

n
er

g
y

 [
%

]

Ui

t0 = 0s, t1 = 10s, c1 = 1520 mWatt, ω = 2

#κ = 3
#κ = 4

#κ = 5
#κ = 6

#κ = 11
#κ = ∞

(a) ω = 2

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
P

U
 e

n
er

g
y

 [
%

]

Ui

t0 = 0s, t1 = 10s, c1 = 1520 mWatt, ω = 3

#κ = 3
#κ = 4

#κ = 5
#κ = 6

#κ = 11
#κ = ∞

(b) ω = 3

Fig. 3. CPU energy consumption jitter as a percentage of the maximum CPU energy consumption with different number of frequency levels

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
P

U
 e

n
er

g
y
 [

%
]

Ui

t0 = 0s, t1 = 10s, c1 = 1520 mWatt, κ = 0.0,0.5,1.0

jEi, ω = 2
jEi, ω = 3

bEi
u
, ω = 2

bEi
l
, ω = 2

bEi
u
, ω = 3

bEi
l
, ω = 3

(a) 3 discrete frequency levels

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
P

U
 e

n
er

g
y
 [

%
]

Ui

t0 = 0s, t1 = 10s, c1 = 1520 mWatt, κ = 0.0,0.2,0.4,0.6,0.8,1.0

jEi, ω = 2
jEi, ω = 3

bEi
u
, ω = 2

bEi
l
, ω = 2

bEi
u
, ω = 3

bEi
l
, ω = 3

(b) 6 discrete frequency levels

Fig. 4. CPU energy consumption bounds and jitter as a percentage of the maximum CPU energy consumption with multiple discrete frequency levels and
ω = 2, 3

In Figure 3(a) and 3(b) we plot the CPU energy consump-
tion jitter for all system configurations mentioned above and
for ω = 2 and ω = 3, respectively. In addition we also plot
an ideal system with a continuous set of available frequency
levels. As before the x-axis is the task utilization and the y-axis
represents the CPU energy consumption jitter as a percentage
of the maximum CPU energy consumption.
In Figure 4 we plot the CPU energy consumption bounds

and jitter as a percentage of the maximum CPU energy
consumption (y-axis) in terms of the task utilization Ui (x-
axis) for different system configurations and for ω = 2, 3. In

Figure 4(a) we have the frequency scaling factors {0, 0.5, 1}
and in Figure 4(b) we have the frequency scaling factors
{0, 0.2, 0.4, 0.6, 0.8, 1}.

IV. COST OF POWER ISOLATION
We introduce the term of CPU energy consumption cost as

the additional CPU energy consumed in the case of discrete
frequencies over the ideal case where a system has continuous
frequency levels.
As we have seen from the previous section, the quality

of power isolation, i.e., the CPU energy consumption jitter,

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14

cE
i(

U
i)

jEi(Ui)

t0 = 0s, t1 = 10s, c1 = 1520 mWatt, ω = 2

Ui=0.1

Ui=0.2

Ui=0.3

Ui=0.4Ui=0.5Ui=0.6

Ui=0.7

Ui=0.8

Ui=0.9

#κ=3

(a) #κ = 3 and ω = 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14

cE
i(

U
i)

jEi(Ui)

t0 = 0s, t1 = 10s, c1 = 1520 mWatt, ω = 2

Ui=0.1

Ui=0.2

Ui=0.3

Ui=0.5

Ui=0.7

Ui=0.8

Ui=0.9

#κ=5

(b) #κ = 5 and ω = 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14

cE
i(

U
i)

jEi(Ui)

t0 = 0s, t1 = 10s, c1 = 1520 mWatt, ω = 2

Ui=0.1

Ui=0.2

Ui=0.3

Ui=0.5

Ui=0.7

Ui=0.8

Ui=0.9

#κ=11

(c) #κ = 11 and ω = 2

Fig. 5. Parametric plot of the CPU energy consumption cost and jitter as functions of Ui

is dependent on several factors. One factor is the number
of frequency levels. We have seen that for two frequency
levels the jitter is zero. With more frequency levels, the
jitter increases but is also dependent on the utilization of the
considered task τi. For tasks that have low or high utilization
the jitter is less than for tasks with medium utilization. With
a continuous set of available frequency levels, tasks with 50%
utilization have the maximum jitter. We now quantify the cost
of power isolation. Given the described power model, the
lowest energy consumption is when the frequency is scaled
to exactly the sum of the utilizations of the tasks, i.e., when
there is a continuous set of available frequencies.
Note that, in some systems a race to idle, i.e., the CPU

runs at maximum frequency in order to maximize idle time,
is more energy efficient [18]. If this is the case the CPU
energy consumption of the tasks is fully compositional as
described in Section III-A. We analyze the general case where
with increasing number of frequency levels the CPU energy
consumption is closer to the ideal.
The cost of power isolation depends on four main factors,

the sum of task utilizations, the utilization of the considered
task, the number of available frequency levels, and the distri-
bution of the frequency levels in the interval [0, fmax].
We define the ideal CPU energy consumption in an interval

[t0, t1) for a set of tasks Γ = {τi | 1 ≤ i ≤ n} as the energy
consumption in a system with a continuous set of frequency
levels, namely Eideal(U,U) = (t1 − t0)c1(fmaxU)ω.
The CPU energy consumption of a system with κ1 ·fmax <

κ2 · fmax < · · · < κm · fmax frequency levels is

Eκ(κl, U) = (t1 − t0)c1
U

κl
(κlfmax)

ω,

with κl ∈ {κ1,κ2, . . . ,κm} such that κl−1 <
∑n

i=1
Ui ≤ κl

being the frequency level closest to the total utilization of the
tasks.
We define the cost metric as the additional CPU energy

consumed in the case of discrete frequencies over the ideal
case, namely Eκ − Eideal.
We want to compare the quality and cost metric for a given

task in isolation of any other tasks. Thus we have to bring
the two metrics on a common denominator. Since the jitter
depends on the utilization of the task τi, we also want to

express the cost in terms of τi. If the total system utilization
is 1 then the difference between Eκ and Eideal is 0. The
greatest difference in terms of cost is when only task τi runs
in the system, but the system runs at maximum frequency. The
best case CPU energy consumption is when only τi runs in
the system and the frequency is scaled to Uifmax. We can
define an upper bound on the cost that is only dependent on
τi, namely cEi = (t1 − t0)c1fω

maxUi(1− Uω−1

i).
In Figure 5 we show the relation between the cost and

quality of power isolation with different number of frequency
levels (#κ) uniformly distributed over [0, 1]1. Each figure
is a parametric plot where the independent variable is the
utilization of the task τi, the y-axis is the upper bound on
the cost as a function of Ui, and the x-axis represents the
CPU energy consumption jitter in function of Ui. While more
frequency levels imply less isolation cost, the isolation quality
is highly dependent on the task utilization and there is no strict
monotonic relation between the number of frequency levels
and the quality of isolation.

V. RELATED WORK

We distinguish several directions of related research. The
first is related to isolation of task behavior in real-time systems
and more generally to power-aware real-time scheduling while
still ensuring schedulability and temporal isolation. Another
class of related research is centered on measuring and/or
predicting the energy consumption of individual tasks in a
system. Moreover, we also mention a third class of related
results that enforce isolation of task power consumption.
In real-time systems the most important kind of isolation

is temporal isolation. Temporal isolation is usually guaranteed
via server mechanisms like CBS [3] and VBS [4] or through
compositional scheduling [1]. Servers are usually defined by
a period and a budget, where the budget is in most cases an
upper limit on the time the server executes in the time-frame
given by the period. Through dynamic voltage and frequency
scaling (DVFS) the total CPU power consumption may be
reduced without negatively affecting the timing restrictions
of individual tasks [10], [20], [21]. Power-aware versions
of server mechanisms have also been studied, e.g. [9]. The

1More figures depicting intermediary configurations can be found in [19].

aim of these approaches is to reduce the total CPU power
consumption while maintaining temporal isolation. They do
not, however, address isolating the tasks in terms of their
individual power consumption.
Another line of research is concerned with measuring or ap-

proximating the energy consumption of specific tasks. In [22]
the authors present a method for estimating the worst-case
energy consumption (WCEC) of a task on a given platform. As
the authors point out, the method is similar to WCET analysis
because it computes upper bounds on energy consumption for
each basic block in the control-flow graph of a task. In terms
of measuring the power consumption of a task, a more recent
example is [23] which proposes a system-call-based approach
for fine-grained energy consumption accounting.
The work in [24] introduces a different approach to power

isolation in the context of sensor networks. Each task is
assigned a virtual energy source, called the virtual battery, with
the aim to divide the total energy amongst all tasks (where
each task can reserve a certain percentage). When a task has
exhausted its allotted energy reserve it is terminated. Mea-
suring and controlling power consumption has been studied
for virtual machines [25], and in distributed systems (with
a focus on thermal management) by employing the resource
container abstraction [26]. In [27] the authors propose a
model that, among other properties, allows power to be shared
among tasks according to their proportional share. Another,
related research direction is the Chameleon framework [28]
in which power isolation is accomplished by letting each task
specify and control their own power requirements while the
system enforces isolation of these requirements. The presented
methods from the third class of related research enforce power
isolation, i.e., the behavior of tasks is changed in order to
maintain power isolation. In contrast, our work provides a way
to analyze the individual power consumption of tasks without
intervening in the execution or scheduling of the tasks.

VI. CONCLUSION AND FUTURE WORK

We have introduced the concept of power isolation for
EDF-scheduled periodic hard real-time tasks and shown that
such tasks can be effectively isolated with respect to their
power consumption without affecting their relevant real-time
behavior. In particular, we have provided lower and upper
bounds on the individual power consumption of a given task
independent of any other tasks in the system and shown that
the quality of power isolation depends on task utilization and
system properties related to frequency scaling. We have also
discussed the cost of power isolation in terms of how much
additional power may be consumed depending on system
properties, power model, and quality of power isolation.
The analysis presented in this paper is a theoretical starting

point for power isolation and compositionality. In future work
we plan to address several assumptions that have been made,
e.g., scaling cost, and use a more accurate power model [8].

REFERENCES
[1] I. Shin and I. Lee, “Compositional real-time scheduling framework with

periodic model,” ACM Trans. Embed. Comput. Syst., vol. 7, May 2008.

[2] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20, pp.
46–61, 1973.

[3] L. Abeni and G. C. Buttazzo, “Resource reservation in dynamic real-
time systems,” Real-Time Syst., vol. 27, no. 2, pp. 123–167, 2004.

[4] S. S. Craciunas, C. M. Kirsch, H. Payer, H. Röck, and A. Sokolova,
“Temporal isolation in real-time systems: The VBS approach,” Interna-
tional Journal on Software Tools for Technology Transfer (STTT), 2012.

[5] J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making scheduling
”cool”: temperature-aware workload placement in data centers,” in Proc.
USENIX ATC. USENIX Association, 2005.

[6] S. S. Craciunas, A. Haas, C. M. Kirsch, H. Payer, H. Röck, A. Rottmann,
A. Sokolova, R. Trummer, J. Love, and R. Sengupta, “Information-
acquisition-as-a-service for cyber-physical cloud computing,” in Proc.
HotCloud. USENIX, 2010.

[7] G. C. Buttazzo, Hard Real-time Computing Systems: Predictable
Scheduling Algorithms And Applications (Real-Time Systems Series).
Springer-Verlag, 2004.

[8] D. C. Snowdon, S. M. Petters, and G. Heiser, “Accurate on-line
prediction of processor and memory energy usage under voltage scaling,”
in Proc. EMSOFT. ACM, 2007.

[9] C. Scordino and G. Lipari, “Using resource reservation techniques for
power-aware scheduling,” in Proc. EMSOFT. ACM, 2004.

[10] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in Proc. SOSP. ACM, 2001.

[11] Y. Shin, K. Choi, and T. Sakurai, “Power optimization of real-time
embedded systems on variable speed processors,” in Proc. ICCAD.
IEEE Press, 2000.

[12] K. Choi, R. Soma, and M. Pedram, “Dynamic voltage and frequency
scaling based on workload decomposition,” in Proc. ISLPED. ACM,
2004.

[13] V. Devadas and H. Aydin, “Real-time dynamic power management
through device forbidden regions,” in Proc. RTAS. IEEE, 2008.

[14] R. Xu, D. Mossé, and R. Melhem, “Minimizing expected energy in
real-time embedded systems,” in Proc. EMSOFT. ACM, 2005.

[15] J.-J. Chen and T.-W. Kuo, “Procrastination determination for periodic
real-time tasks in leakage-aware dynamic voltage scaling systems,” in
Proc. ICCAD. IEEE, 2007.

[16] J.-J. Chen and L. Thiele, “Expected system energy consumption min-
imization in leakage-aware DVS systems,” in Proc. ISLPED. ACM,
2008.

[17] V. Devadas and H. Aydin, “On the interplay of dynamic voltage scaling
and dynamic power management in real-time embedded applications,”
in Proc. EMSOFT. ACM, 2008.

[18] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony, and R. Ra-
jkumar, “Critical power slope: understanding the runtime effects of
frequency scaling,” in Proc. ICS. ACM, 2002.

[19] S. S. Craciunas, C. M. Kirsch, and A. Sokolova, “The power of
isolation,” Department of Computer Sciences, University of Salzburg,
Tech. Rep. 2011-02, July 2011.

[20] C. M. Krishna and Y. Lee, “Voltage-clock-scaling adaptive scheduling
techniques for low power in hard real-time systems,” IEEE Trans.
Comput., vol. 52, no. 12, 2003.

[21] D. Shin and J. Kim, “Dynamic voltage scaling of periodic and aperiodic
tasks in priority-driven systems,” in Proc. ASP-DAC. IEEE Press, 2004.

[22] R. Jayaseelan, T. Mitra, and X. Li, “Estimating the worst-case execution
energy of embedded software,” in Proc. RTAS, 2006.

[23] A. Pathak, Y. C. Hu, M. Zhang, V. Bahl, and Y.-M. Wang, “Fine-grained
power modeling for smartphones using system call tracing,” in Proc.
Eurosys. ACM, 2011.

[24] Q. Cao, D. Fesehaye, N. Pham, Y. Sarwar, and T. Abdelzaher, “Virtual
battery: An energy reserve abstraction for embedded sensor networks,”
in Proc. RTSS. IEEE Computer Society, 2008.

[25] J. Stoess, C. Lang, and F. Bellosa, “Energy management for hypervisor-
based virtual machines,” in Proc. USENIX ATC. USENIX, 2007.

[26] A. Weissel and F. Bellosa, “Dynamic thermal management for dis-
tributed systems,” in Proc. TACS, 2004.

[27] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “Currentcy: a
unifying abstraction for expressing energy management policies,” in
Proc. USENIX ATC. USENIX Association, 2003.

[28] X. Liu, P. Shenoy, and M. Corner, “Chameleon: application level power
management with performance isolation,” in Proc. MULTIMEDIA.
ACM, 2005.

