JNavigator - An Autonomous Navigation
System for the JAviator Quadrotor
Helicopter

Magisterarbeit zur Erlangung des akademischen Grades
Diplom-Ingenieur der Angewandten Informatik

Angefertigt am
Institut fir Computerwissenschaften und Systemanalyse
der Naturwissenschaftlichen Fakultat
der Paris-Londron-Universitat Salzburg

Eingereicht von

DI(FH) Clemens D. Krainer

Eingereicht bei
Univ.-Prof. Dipl.-Inform. Dr.-Ing. Christoph Kirsch

Salzburg, September 2009

Affidavit

Herewith I, Clemens D. Krainer, declare that I have written the present diploma thesis
fully on my own and that I have not used any other sources apart from those given.

9020112
Clemens D. Krainer Matriculation Number

i

Details

Name: DI(FH) Clemens D. Krainer

University: Paris-Lodron-Universitat Salzburg
Naturwissenschaftliche Fakultat
Institut fiir Computerwissenschaften und Systemanal-
yse

Course of Studies: Angewandte Informatik

Title of the diploma thesis: JNavigator - An Autonomous Navigation System for
the JAviator Quadrotor Helicopter

Mentor at the university: ~ Univ.-Prof. Dipl.-Inform. Dr.-Ing. Christoph Kirsch

Keywords
1. Keyword: Autonomous Unmanned Aerial Vehicle
2. Keyword: Flight Control System
3. Keyword: Java

Abstract

This thesis describes an autopilot software, called JNavigator, suitable for the needs
of the JAviator [6] helicopter. At start of autonomous flights, JNavigator divides set
course trajectories, which are paths of waypoints, in segments of constant velocity
or constant acceleration. In consideration of flight time, JNavigator determines the
JAviator’s nominal position and tries to stir the helicopter towards it by regarding its
current position, which is provided by a GPS receiver.

This thesis focuses on flexibility and extensibility of the implemented Java [36] software.
First, this thesis outlines the JAviator’s hardware and software architecture. Second,
it briefly describes satellite-based and close-range locations systems, as well as coor-
dinate transformations. Third, this thesis explains four-rotor helicopter dynamics and
describes PID controllers developed for stabilizing altitude, attitude, and position. Sub-
sequently, it designs a waypoint-following algorithm, which allows limited acceleration,
and it elaborates on JNavigator’s software design and implementation. Thereafter, this
thesis presents the results of experiments that evaluate controllers, autonomous flights,
and JVM behavior by utilizing the JAviator simulator. The implemented software has
been verified on standard PC hardware successfully. Finally, this thesis reflects the
current implementation and outlines design strengths and weaknesses.

il

Table of contents

[Table of contents|

[List of figures|

IList of tables|

(1__Introduction|

[3.3 Summary|

[4 Location systems|

[4.1 Satellite-based location systems|

[4.2 Close-range location systems| . .

4.4 Summary|
[5__Vehicle controll

[>.1 Four-rotor helicopter dynamics

0.2 Controller overview|

[>.3 Altitude controller design|. . . .

iv

vil

W N =

N

o O O O

©

v

[>.4 Attitude controller design| 15

[>.5 Position controller design|. 15
[>.6 Path following| oo 16
[O.7 Summary| 18
6 Software design and implementation| 19
[6.1 Basic concepts|. 19
[6.1.1 Object construction via properties|. 19
[6.1.2 Hierarchical configuration| 20

0.2 Functional modello 20
[6.2.1 Use case “Fly Manually”| 21
[6.2.2 Use case “Fly Autonomously” 21

[6.3 Implemented software modules|. 22
[6.3.1 Module Input/Output| 22
6.3.2 Module Utilitiesl 24
6.3.3 Module Communicationl 26
6.3.4 Module Coursel 30
6.3.5 Module GPSl 34
6.3.6 Module Location| o0 44
6.3.7 Module User Interfacel 45
6.3.8 Module JAviator Controll. 46

(0.4 Summary| 50
[7__Evaluation| 51
[7.1 Altitude flight controll. 52
(7.2 Attitude flight controll o0 53
[7.3 Position flight control|. 0000 54
[7.4 Autonomous flight controlf 57
[7.4.1 Experiment 1 - ideal location systems|. 57
[7.4.2 Experiment 2 - inaccurate location systems|. 59
[7.4.3 Experiment 3 - controller limitations| 59

(o FCS JVM behaviorfo oo 61
7.6 Summary| 64

8 Conclusion|

vi

65
65
66
67

68

72

List of figures

[3.1 JAwviator system overview. | 7
.2 JAviator software architecture [6]. | 7
4.1 Transforming non-GPS coordinates to GPS coordinates. | 10
(5.1 Controller overview including JAviator Plant and GPS receiver. |. . . . 13
b.2 Altitude controller. |o oo 14
[5.3 Attitude controllers for roll, pitch, and yaw. |. 15
[>.4 Position controllers for z- and y-axis. | 16
[5.5 Vehicle path definition. | 16
B.6 Acceleration scenarios. 1. 17
6.1 Configuration tree.| 20
[6.2 Use cases of the JNavigator software.| 21
[6.3 Implemented sottware modules and their dependencies.| 23
(6.4 Class diagram of Module Input/Output.| 23
[6.5 Class diagram of Module Communication.| 27

[6.6 Raw packet format for communication between Plant, FCS, and GCS [6]. | 27

[6.7 Receiving Packet objects from an InputStream, conversion to D'TOs, [

and dispatching DTOs. | 28
[6.8 Sending DTOs to an OutputStream.| 29
[6.9 Class diagram of the Data Transter Objects.| 30
[6.10 Class diagram of Module Course.| 31
[6.11 Set course data loading and flight plan preparing.| 32
[6.12 Retrieving the set course vehicle state for a given flight time.| 33
[6.13 Class diagram of Module GPS.| 35
[6.14 Initialization sequence of class GpsAdapter. | 36

vil

[6.15 GpsDaemon forwards NMEA 0183 messages to registered listeners. |. . . 37

[6.16 RtcmSc104Scanner forwards RI'CM SC-104 messages to listeners. | . . 37
[6.17 GpsDaemon forwards RTCM SC-104 messages to the GPS receiver. | . . 39
[6.18 Diagram of the classes accessing the APOS [§] service. | 39
6.19 APOS NTRIP connection establishment. 40
[6.20 Class diagram of the GPS simulation.|. 41
6.21 GPS receiver simulator scenariol o000 L 42
[6.22 Class diagram of Module Location.| 45
[6.23 Class diagram of Module User Intertace.| 46
[6.24 Class diagram of Module JAwviator Control.|. 47
[6.25 Initialization sequence of class JControlMain.| 48
[6.26 Flight control sequence.| 49

[7.1 Test arrangement comprising separate JVMs tor Plant, FCS, and GCS.| 51

[7.2 The helicopter’s responses to a step input command (a) from 0.5 m to |

1.5mand (b) from 1.bmto0.5m. [. 52

[7.3 The helicopter’s attitude responses to (a) roll, (b) pitch, and (c¢) yaw |

step input commands, as well as the corresponding altitude responses. | 53

[7.4 'The helicopter’s position, attitude, and altitude responses to a 10 m [

step input command for moving eastwards (left) and northward (right), |

respectively. | 54

[7.5 Position controller performance with an ideal positioning system applied |

(1.8 cm error circle, 34 s flight time). |. 55

[7.6 60 s DGPS corrected deviations recorded by the JAviator's GPS receiver |

at 10 Hz update rate for emulating inaccuracies (1 m error circle, 1.4 m |

MAXIMUI €ITOT). . . . o o v v o o e e e e 56

[7.7 Position controller hover performance as the GPS receiver simulator ap- [

plies the recorded deviation data shown in Figure[7.6] (1 m error circle, |

60 s trajectory, 1.15 m maximum error). | L. 56

[7.8 Path following at 0.5 m/s average velocity utilizing an ideal location |

system. |o 57
[7.9 East and north deviations during path following at 0.5 m/s. | 58
[7.10 Path following at 0.5 m/s average velocity utilizing an inaccurate loca- |
tlon system. | 59
[7.11 Path tollowing at miscellaneous velocities. | 60
[7.12 Deviation during path following at miscellaneous velocities. | 60

viil

[7.13 Experimental test bed.| oo 61
(7.14 IBM’s WSRT-JVM running the FCS on Gumstix Verdex XL6P.|. . . . 62

[7.15 Memory usage and cycle time when running the FCS on [IBM’s Java [

1.4.2 JVM on a 3.3 GHz Intel Celeron PC (non-real-time) for 480s. | . 63
[7.16 Memory usage when running the FCS on IBM’s Java 1.4.2 JVM on a |
3.3 GHz Intel Celeron PC (non-real-time) for approximately 1 h. | . . . 63

1X

List of tables

[6.1 Message format for attaching close-range location systems.|

1

Introduction

This thesis focuses on controlling autonomous flights of an Unmanned Aerial Vehicle
(UAV]). It particularly focuses on the design and implementation of an autopilot soft-
ware, called JNavigator, suitable for the needs of the JAviator [6] model helicopter.

While model helicopters are build lightweight with limitations in payload and pro-
gramming capabilities, the JAviator is conspicuously different. First, a diameter of
1.3 m and the fully symmetrical frame design let it stand out from others. Second, the
JAviator has an unladen weight of 2.2 kg and can transport a payload of up to 3.2 kg.
Third, the JAviator provides powerful onboard computers, which allow programming
in Java.

The JAviator software consists of three main components called Plant, Flight Control
System , and Ground Control System (GCSJ). First, the Plant is responsible for
communicating sensor data from the hardware to the [FCS and motor data vice versa.
Second, the [FCS| implements the actual control algorithms to fly the JAviator. Third,
the [GCY visualizes the reported vehicle state from the [FCS| and stipulates the target
values for the [FCY for roll, pitch, yaw, and altitude. Currently, both [FCS| and [GCS|
allow only manually controlled flights.

At the time of writing this thesis, the JAviator Plant features an Inertial Measurement
Unit (IMU)), an ultrasonic altimeter, a barometer, a laser range finder, and a Global
Positioning System (GPS)) receiver.

1.1 Conceptual formulation

[UAVE apply software in various ways on various levels to accomplish autonomous
flights. This diploma thesis elaborates on the design and implementation of flexible
and extensible autopilot software. The requirements for this software are that it

e is written in Java,

e allows flying autonomously along a given set course, and

e utilizes

The target platform for the functional demonstration of this thesis is the available
JAviator simulator, called MockJAviator, and not the real JAviator.

1

1. Introduction 2

Written in Java. Java is an object-oriented high-level programming language developed
by Sun Microsystems [36]. It is designed to be simple, robust, and secure, which makes
it suitable for just about any programming task. The most significant advantage of
Java over other languages and environments is its platform independency at both the
source and binary level.

Java’s automatic Garbage Collection (GC)) causes unbounded and unpredictable pauses
to running applications. To overcome the indeterminacy of traditional [GC| the
JAviator platform employs the IBM WebSphere Real Time Java Virtual Machine
(WSRT JVM)) [27], which includes the Metronome Garbage Collector [26].

Because of the utilized IBM [WSRT JVM] all software must be written in Java version
1.4.2 or lower. The only exceptions to this are calls to the underlying operating system
to access serial interfaces and the like.

Flying autonomously along a given set course. The autopilot software must enhance
or replace the to enable the JAviator to follow a given set course autonomously,
without being connected to the [GCS] When either necessary or intended, the [GCS|
must be able to take over manual control momentarily.

Utilization of [GPY For the determination of the JAviator’s current position, a [GPSY
receiver provides the required data. A possibly available Differential or
Real-Time Kinematics correction data stream must be forwarded to the
receiver.

Target platform. The implementation on the real system is not part of this thesis.
Hence, to verify the implemented autopilot, a functional demonstration with the JAvi-
ator simulator is necessary. Experiments should rely on the JAviator simulator.

1.2 Main contributions

The main contributions of this thesis are the design, implementation, and evaluation
of the JNavigator autopilot software, which addresses the following items:

e The design focus of JNavigator is flexibility and extensibility. JNavigator not
only covers the JAviator’s requirements, but also easily adapts to other [UAVE.
A hierarchical configuration approach allows arbitrary reuse of components that
are either included in JNavigator or provided externally by additional libraries
using JNavigator’s programming interfaces.

e JNavigator substitutes the existing[F'CS|and controls both manual and autonomous
flights. The [GCS| can interrupt an ongoing autonomous flight at any time.

e JNavigator verifies that the JAviator can fly a loaded set course and prepares an
acceleration plan before starting the autonomous flight.

e For the determination of the JAviator’s current position, JNavigator employs
the National Marine Electronics Association 0183 [I] messages from a
[GPS| receiver. For enhanced precision, JNavigator can forward an available Ra-
dio Technical Commission for Maritime Services SC-104 version 2.3 [2]

correction data stream to the [GPS| receiver. The correction data stream may be

1. Introduction 3

provided by a Networked Transport of [RTCM]| via Internet Protocol (NTRIP|
[4] caster, a Global System for Mobile Communications (GSM]) service or a di-

rectly connected [RTCM|SC-104 receiver (Transmission Control Protocol / Inter-
net Protocol (TCP/IP)) socket, Bluetooth socket, or serial line).

e Apart from eight calls to the operating system to access serial lines and Bluetooth
sockets, the JNavigator software is entirely written in the Java programming
language. Calls to the operating system are nicely abstracted to allow access to
sockets, Bluetooth sockets, and serial lines uniformly.

e A newly implemented extension to the JAviator simulator allows determining the
current position via 0183 messages. This extension can also be applied
to convert coordinates of arbitrary positioning systems to [NMEA] 0183 messages.

1.3 Thesis outline

Chapter 2 contains a short overview of related work on autonomous flight control
systems for [UAVE. It briefly describes controller implementation, flight path following,
and special features of each system.

Chapter 3 outlines the status quo of the JAviator platform hardware and software by
depicting the involved elements and their interaction.

Chapter 4 presents satellite-based and close-range location systems from a general point
of view. It explains inaccuracies of satellite-based location systems and augmentation
systems to lessen their impact. Furthermore, this chapter summarizes the methods of
close-range location systems and focuses on coordinate transformation.

Chapter 5 describes a dynamic model for four-rotor helicopters and develops controllers
for both manual and autonomous flight. It details the controller for autonomous flight
with respect to the implemented waypoint-following algorithm.

Chapter 6 contains the design and implementation of the JNavigator software. After
outlining the basic concepts, it details the implementation with respect to the functional
model and the implemented software modules.

Chapter 7 explains the configuration for testing the JNavigator software and evaluates
the implemented altitude, attitude, and position controllers. The experiments address
controller time responses, accuracies, and limitations. Additionally, this chapter pro-
vides a detailed discussion of the measured results and focuses on autonomous flights.
This chapter also studies the behavior of the Java Virtual Machine on

available embedded systems and standard PC hardware.

Chapter 8 concludes by presenting an evaluation of the implemented software and
proposals for future research directions in this field. In particular, it discusses the
current implementation, as well as outlines design strengths and weaknesses.

2

Related work

This chapter gives an (incomplete) overview of the related work on autonomous flight

control systems for [UAVk.

Johnson and DeBitetto [28] present a guidance system, which generates position, head-
ing, and velocity commands based on the current state of the [UAV] as reported by the
navigation system, and a waypoint list. The guidance system commands a straight line
course between waypoints.

Hoffmann et al. [22] 23] developed a hierarchical hybrid control structure to govern a
helicopter-based [UAV] in its mission to search for, investigate, and locate objects in
an unknown environment. The hierarchical architecture consists of four layers, the
strategic, tactical, and trajectory planners, as well as the regulation layer. The strate-
gic planner coordinates missions with cooperating [[AVk and creates a sequence of
waypoints for the tactical planner. The tactical planner achieves landing, searching
an area, approaching a waypoint, collision avoidance, and inspection of objects on the
ground. Additionally, it overrules the strategic planner for safety reasons. The trajec-
tory planner decomposes commanded behavior into a sequence of primitive maneuvers,
guarantees safe and smooth transitions, and assigns an appropriate sequence of flight
commands to the regulation layer to execute.

Kottmann [31] designed a trajectory generator, which converts flight maneuvers on an
abstract level into waypoints that must be contained in the trajectory. In a further step
of refinement the generator splits the routes between waypoints into several segments
of constant velocity or constant acceleration. After this, the ground station uploads
the segments to the helicopter onboard system for execution.

Lai et al. [20] present a hierarchical flight control system containing three tiers, the
navigation, path, and stabilizing layer. The navigation manager controls the mission
and commands a series of locations to the path controller. When the path controller
reaches a location, it switches its destination to the next location. The stabilizing
controller applies the nominal values from the path controller for both attitude and
height to fly the helicopter.

Kim et al. [29] 0] designed a hierarchical flight control system, which allows a group of
'UAVE and Unmanned Ground Vehicles (UGVE) to cooperate. The flight management
system employs three strategy planners to solve specific missions. The first strategy

2. Related work 5)

planner implements a simple waypoint navigation of a predefined course. The second
strategy planner operates a pursuit-evasion game where pursuers should capture evaders
in a given grid field. The third strategy planner executes high-speed position tracking,
where an pursues a moving ground vehicle.

Williams [40] developed in his open source project Vicacopter two ways of autonomous
control, waypoint following and programmable missions. For waypoint following the
ground station uploads a sequence of waypoints to the helicopter. After the helicopter
reaches a location, it heads for the next location. For programmable missions the
ground station uploads a series of control commands to the helicopter for execution.

This chapter summarizes the related work on autonomous flight control systems for
[UAVE. Many of the authors employed a hierarchical controller structure to solve the
task. Basic systems follow a list of either waypoints or flight commands. Advanced im-
plementations allow cooperation of several vehicles and strategic planning of missions.

3

JAviator

This chapter presents an overview of the high-performance four-rotor model helicopter
JAviator [6]. After outlining the structural elements of the JAviator system, it briefly
describes the collaboration of the contained components and proceeds with a survey of
the software architecture.

3.1 System overview

Figure presents an overview of the complete system containing the JAviator, its
ground station, and the emergency shutdown equipment. The ground station comprises
a four-axis joystick, a Wireless Local Area Network router, and a laptop.
The [GCS| running on the laptop, receives control signals from the joystick and sends
commands to the helicopter via the WLAN]| router. Additionally, the [GCS| visualizes

and logs incoming information from the JAviator.

Onboard the JAviator, the WLAN| module forwards messages from the [GCS| to the
in the Gumstix [2I] and vice versa. The Robostix [2I] routes sensor data from
laser and altitude sensors to the [FCS| After analyzing the positions of several [GPS|
satellites, the[GPS|receiver delivers the current position to the Robostix, which forwards
it to the [FCS] Furthermore, the Robostix transmits revolution speed nominal values
from the [FCS| to the four motor controllers MCy, MCy, MC5, and MC,. The IMU
transmits its data directly to the [FCS|in the Gumstix. In case of an emergency, the
operator transmits a shutdown message via the 868MHz sender to the corresponding
receiver onboard the JAviator. The receiver forwards the shutdown message to the
power board, which opens the high-current relays to disconnect the lithium-polymer
battery from the motor controllers.

3.2 Software architecture

As shown in Figure the JAviator [6] software consists of three main components
called Plant, [FCS|, and [GCS| which are connected by well defined interfaces. The
Plant is responsible for communicating sensor data from the hardware to the and

3. JAviator 7

JAviator Quadrotor GPS Satellites
T T T LT I T N]
Lithium— I
| Polymer @ : 4\ EOE
i | Battery |
LB ; X —()
I
: High—C‘urr‘enl MCl1 ‘ ‘ MC2 ‘ ‘ MC3 ‘ ‘ MC4 :
Relays | \ | \ | \ [
I Laser |
1 ‘ ‘ ‘ ‘ Sensor | 1
| g‘)wedr PWM PWM PWM PWM !
| Boar Robostix | ; EQE
I (Plant) RS232 GPS
1 Analog Port Analog Port SPI Receiver ! { 4\
| | |
I
| 868MHz | | Altimeter | | Altimeter | | WLAN | | Gumstix | | e ||
: Receiver (barometric) (sonar) Module (FCS, Plant) :
I
EST:E%S&? Ground Station
P \
86SMHz | WLAN | | Laptop | | 4-Axis |
Sender 'l Router (GCS) Joystick |
\ !
Figure 3.1: JAviator system overview.
Plant JControl EControl CControl TControl
Controller—Plant Interface IBM WSRT JVM
Flight Control System
Patched RT Linux
Controller—Ground Interface
Ground Control System Intel XScale PXA 25x

Figure 3.2: JAviator software architecture [6].

revolution speed nominal values withershins. The implements the actual control
algorithms to fly the JAviator. The [GCS|logs and visualizes reported vehicle states
from the and stipulates target values for the for roll, pitch, yaw, and altitude.
Currently, both [FCS| and [GCS| allow manually controlled flights only.

The Plant provides an abstracted view on sensors and actuators to the [FCS Currently
exist two implementations. The Physical Plant is a collection of C programs residing
in the Robostix and in the Gumstix onboard the JAviator. The Simulated Plant
or MockJAviator is a pure Java program that simulates the JAviator dynamics and
kinematics.

The Controller-Plant Interface specifies the communication protocol between Plant and
[FCS It is the that initiates the communication by sending new revolution speed
nominal values for the motors to the Plant. As response, the Plant returns the current
sensor values to the [FCS]

3. JAviator 8

Figure [3.2] depicts the four available implementations of the FCS| JControl is pure Java
code utilizing threads. EControl employs Exotasks [7] as a threads alternative, where
each Exotask uses a private heap that is garbage collected separately whenever the
task does not execute. The IBM [WSRT JVM] executes either JControl or EControl.
CControl implements the [FCS|in a single Linux process written in C. The underlying
Linux with real-time patches applied executes either CControl or the IBM[WSRT JVM]
TControl is a port of CControl to the real-time operating system Tiptoe [12]. The
current version of Tiptoe lacks support for user processes, therefore TControl is hard-
wired to the Tiptoe kernel.

The Controller-Ground Interface defines the communication protocol between [FCS|and
[GCS| It is the [FCY| that initiates the communication by sending the current sensor
data to the [GCS Subsequently, the [GCS| responds with navigation data, that is, the
roll, pitch, yaw, and altitude nominal values.

The [GCS| consists of a control terminal and a logging system. Via the control terminal,
an operator can fly the JAviator by entering roll, pitch, yaw, and altitude nominal
values using either keyboard, joystick, or both. The control terminal visualizes the
vehicle state corresponding to the received sensor data in a 3-dimensional view
of the JAviator, as well as in gauges for roll, pitch, yaw and altitude. For studying
flight stability and system performance, the logging system allows real-time tracing
during flights.

3.3 Summary

This chapter presents the high-performance four-rotor model helicopter JAviator. After
outlining the involved elements, this chapter briefly explains their interaction. The
JAviator software comprises the components Plant, [FCS| and [GCS| which interact via
well defined interfaces. This chapter describes the currently existing implementations

of the components Plant, [FCS| and [GCS

4

Location systems

For autonomous flights along a given set course, a [UAV] needs to know its current
position at any time. Globally available satellite-based location systems for outdoor
application and close-range location systems for indoor utilization help a [UAV]to find
its current position with sufficient precision and short delay. Transforming orthogonal
coordinates of close-range location systems to global coordinates allows easy combin-
ing of several close-range and satellite-based location systems for autonomously flying

[TAVE.

4.1 Satellite-based location systems

In a Global Navigation Satellite System (GNSS), like the U.S.-american [5], [38],
the Russian Globalnaja Nawigazionnaja Sputnikowaja Sistema [3, B] or
the European Galileo [5] [17], each satellite broadcasts its position and time. Applying
the data from at least four satellites allows a receiver the determination of its current
position and time.

Errors of satellite position, ionospheric delays, drift of satellite clocks, and electromag-
netic interference cause inaccuracies. Receivers may integrate correction data, provided
by GNSS augmentation systems, into the calculation process to improve the reliability,
availability, or accuracy of the satellite navigation signal. For [GPS| exist space-based
augmentation systems [16] like [0, 18], WAAS| [5], [MSAS| [5, 41], and
[, [35], as well as ground-based augmentation systems [15] like LAAS|
. 19], GRAS [13], and [XPOS 5.

The position accuracy of is about 13 m for 95% of all measurements [42]. Receivers
may achieve a position accuracy of approximately 1 m by using [DGPS| derived from
signal travel time delay measurement (pseudo-range or C/A code measurement). In
order to obtain a precision within millimeters, [DGPS|based on the phase measurement
of the carrier signal must be applied.

4. Location systems 10

4.2 Close-range location systems

In urban canyons and inside buildings [GNSSE can not be utilized successfully in a
majority of cases. Indoor location systems are appliances that allow navigation within
closed rooms. They employ infra red light, ultrasound [34], 39], radio waves [10] [37],
and combinations of these for localization, but provide only portion-of-a-room accuracy
in most instances. Indoor location systems applying ultra-wideband radio waves attain
an accuracy of about 15 cm [37] to 20 cm [10], adequate for [UAV] positioning.

4.3 Coordinate transformation

To handle linear coordinates of close-range location systems, this thesis proposes a
conversion into Department of Defense World Geodetic System 1984 [33]
coordinates, as [GPS| receivers provide them. This allows a straightforward combina-
tion of satellite-based and close-range location systems. A close-range location sys-
tem usually describes positions in an orthogonal coordinate system comprising z-, y-,
and z-axes, as shown in Figure 4.1] It considers an arbitrary position U as a vector
U = [u, u, u.]" from its point of origin R to U. Longitude Ag, latitude ¢g, and al-

Figure 4.1: Transforming non-GPS coordinates to GPS coordinates.

titude ap describe the location of the point of origin R in coordinates, where
ar = |ag| is the distance from the ellipsoid to R. r, = |7¢| is the radius of the
ellipsoid at longitude Ag and latitude pg. 7 describes the angle of rotation
between the North tangent to the median through R and the z-axis of the close-range
location system. z- and y-axes are elements of the plane defined by the tangent to the
meridian and the tangent to the parallel in R.

For coordinate transformations, this thesis considers the Earth as a sphere having
radius r.. Consistent with the scenario in Figure [4.T] the formula for the altitude a
of location U is

ay = ag + u,. (4.1)

4. Location systems 11

The formulas for the angle differences Ay and A\ are

1
Ap = —(uycosy—u,siny), and (4.2)
r
1
AN = ———(—u,siny — 4.3
Tcosch(Uy Siny — u, cosy) (4.3)

where r = r, + ar. Formulas and assume that the Earth’s radius r. is very
large in comparison to the limits of the close-range location system’s coordinate system.
In the vicinity of R, the Earth’s surface is a satisfactory approximation of the tangential
plane in position R. Formulas and approximate the transformation from
linear to coordinates by equating linear distances with arc lengths on the
Earth’s surface.

Combining formulas (4.1)), (4.2]), and (4.3)) to calculate position U in [WGS 84 coordi-

nates results in

U ©R rt 0 0] [cosy —siny 0] [u,
Mo| = [Ar| +| 0 (rcosepg)™? —siny —cosy 0| |u, (4.4)
ay aR 0 0 1 0 0 1| |u

where [py Ay ap]’ =U and [pr Mg ag]’ = R

4.4 Summary

This chapter presents an overview of satellite-based location systems, the causes for
inaccuracies, and available augmentation systems. Additionally, it briefly summarizes
close-range location systems, which use infra red light, ultrasound, radio waves, and
combinations of these for localization. Finally, this chapter proposes the transformation
of linear close-range location system coordinates into coordinates to allow the
combination of close-range and satellite-based location systems.

5

Vehicle control

This chapter introduces the dynamics of four-rotor helicopters, develops the con-
trollers for flying [UAVE, and describes the implemented algorithms for flying

autonomously along a given set course.

5.1 Four-rotor helicopter dynamics

This thesis uses the linearized mathematical model developed in [24]. Equation (j5.1))
presents the kinematic model in matrix form, where m is the four-rotor helicopter’s
mass in kilograms and g the gravitational acceleration in kg/m?. 7, r,,, and 7, denote
the z-, y-, and z-components of the position vector’s second derivative with respect to
time in m/s?. Variables ¢, 6, and 1 represent the angles roll, pitch, and yaw in radians.
T is the total trust of all rotors 7} in Newtons, that is, T = Zle T;. This model is the
result of a small angle approximation and allows angles up to about +x /6 rad.

Ty 1 ¢ 6 0 0
m|iy| =¥ 1 ¢ 01+10 (5.1)
7, 0 —o 1| =T mg

Equation (5.2)) shows the dynamic model for a four-rotor helicopter. I,, I,, and I,
identify the @-, y-, and z-axis moments of inertia in kg -m?. (}5, é, and w indicate the
second derivatives with respect to time of roll, pitch, and yaw in rad/s?>. Because of
the symmetric body of the helicopter, all rotor axes have equal distance to the center
of gravity, represented by [in meters. Constant K, describes the proportion between
thrust and torque of a rotor. 17, 15, T3, and T} stand for the thrusts of each rotor.

Lo I ?

Lol=1{1 0 -1 0 T2 (5.2)
! - -)

Ll LK Ko Ko K

The model consists of six independent second-order differential equations, as shown
in (5.1) and (5.2]). The three equations in (5.1]) affect the design of the position and

12

5. Vehicle control 13

altitude controller. The other three equations in (5.2)) have an impact on the design of
the attitude controllers.

Because the JAviator employs revolution-speed-controlled brushless synchronous mo-
tors, the connection between the rotor’s thrust and angular speed is of particular
interest. [32] defines the constant rotor thrust coefficient formally as

T

Cr=-——
L AR

(5.3)

where p is the air density in kg/m3, A is the area swept out by the rotor in m?, Q is
the angular speed of the rotor in rad/s, and R is the radius of the propeller in meters.
Rearranging this equation and solving for the rotor thrust gives

1
T = 5OTpARQQQ. (5.4)

As depicted in Equation ([5.4)) thrust 7" is directly proportional to the squared revolution
speed, thus the controllers have to adapt to this non-linearity.

5.2 Controller overview

Figure visualizes an overview of the proposed controllers including JAviator Plant,
[GPS| receiver, and autopilot. An array of four switches allows changing from manual

Autopilot Attitude and Altitude Control

latitude Y
Earth Flattener 2

T1

<
=
o}
e
g
o [e
gm|%
A
g
5
-
z £

+ e
Manual o] i
Roll Roll T2
Controller

longitude

latitude [~
T3

oL,

PhiDot ——

altitude p | 7 ! e \S N y -
| ! al

speed over| |
ground

T4

m
o
>
[
<=
]
i
]
(o}
Ex
EH]
L@J
=z
o 5]

Figure 5.1: Controller overview including JAviator Plant and GPS receiver.

to autonomous flight and vice versa. For manual flights, the [GCS| delivers the desired
values for roll, pitch, yaw, and altitude. When performing autonomous flights, the
autopilot issues the values for latitude, longitude, orientation, and height above ground.

5. Vehicle control 14

The displayed Earth Flattener blocks transform the spherical latitude ¢ and longitude
A values to a z-y-plane by adopting formulas (5.5)) and (5.6]).

Ty = Tep (5.5)
Ty = TeAcos(p) (5.6)

Variables 7, and r, denote the z- and y-components of the position vector to the vehicle
center of gravity in meters. r. is the average earth radius in meters, ¢ is the latitude
position in radians, and A is the longitude position in radians. After calculating the
difference between the desired position from the autopilot and the current position
from the receiver, that is, Ar, and Ar,, the Rotator considers the desired vehicle
yaw 1 from the autopilot by applying Formula ([5.7)).

iRl AN

The presented Polar to Rectangular converter transforms signal Speed over Ground
from the receiver to its rectangular equivalents r, and r, by regarding the dif-
ference between the Course over Ground and the desired yaw of the vehicle. The
controllers for x and y utilize the rotated differences Ar;, and Ar, as well as the values
of ry, and 7, as inputs.

5.3 Altitude controller design

The differential equation for 7, extracted from Equation (5.1) and combined with
Equation (5.4)) is as follows

_ CTPAR2

2m

P, = 02, (5.8)
This thesis proposes a PD controller with some modifications in regard to the quadratic
dependency of Q and the available signals. As depicted in Figure [5.2] the controller
uses the current altitude z and its first derivative z, provided by the JAviator Plant.

takeoft RPM

Figure 5.2: Altitude controller.

The controller saturates the difference between desired and current z, as well as 2 in
order to allow input signals up to +oo without getting unstable. It also adds the takeoff

5. Vehicle control 15

revolution speed to the result, to master the quadratic dependency of). In doing so,
the controller operates in a rather linear environment and therefore gains stability.

5.4 Attitude controller design

Rearranging Equation 1) and solving for the angular accelerations 95, g, and ¢ gives

. l
¢ = E(T2 —Ty) (5.9)
. I

i = (T-T) (5.10)
b= Lorn- @) (5.11)

As Equation and Equation convey, varying the thrust of opposing rotors
differently leads to an acceleration of ¢ and 6, respectively. Equation indicates
that varying opposing rotors equally, but different from the other rotor pair, leads to an
acceleration of 1. The of the JAviator Plant delivers the current values for ¢, qz.S, 0,
9, v, and w This thesis recommends saturated PD controllers to manage the attitude

Figure 5.3: Attitude controllers for roll, pitch, and yaw.

stabilization of ¢, 0, and 1, as depicted in Figure[5.3] The altitude controller already
linearizes the quadratic dependency to 2 and therefore, the design of the attitude
controllers disregards this fact.

5.5 Position controller design

Combining Equation ({5.1) and Equation (5.4) and solving for 7, and 7, gives

A 2

Py = _QCTPTRQQ (5.12)
CrpAR?

i, = —¢%Q2. (5.13)

As shown in Equation (5.12)) and Equation (5.13]), non-zero roll and pitch values lead
to an acceleration in axes x and y, respectively. A PD controller for each axis is able to

handle stabilization. The design of the controllers visualized in Figure|5.4]discounts the

5. Vehicle control 16

Figure 5.4: Position controllers for z- and y-axis.

quadratic quadratic dependency to €2, because the altitude controller already considers
it sufficiently.

5.6 Path following

Path following is a topic that has been elaborated on extensively in literature. Describ-
ing a trajectory is seen differently among the authors and depends also on the particular
requirements. Egerstedt et al. [14] describe a trajectory as a path of waypoints, veloci-
ties, and accelerations. The authors consider the waypoints as soft constraint, allowing
for a trade off between accuracy and smoothness. Conte et al. [I1] interconnect the
waypoints by applying a cubic spline interpolation, which has second-order continu-
ity at the joints to avoid discontinuity in the helicopter’s acceleration. Hoffmann et
al. [25] define a trajectory as a series of waypoints interconnected by linear segments
of constant velocity.

This thesis develops a flight controller, which follows given waypoints. The developed
algorithm defines a trajectory as a sequence of locations the vehicle has to pass. This
thesis proposes the durations to traverse the routes between waypoints for defining
the dynamic properties of a trajectory. It is this procedure that allows trajectories
comprising well defined halts. Two successive waypoints pointing at the same location
lock the vehicle into position for the specified traversal time.

Figure depicts the trajectory route from waypoint W; to waypoint W; 1, where v;
is the average velocity between these waypoints. The average velocities v;_; and ;11
belong to the previous and next routes of the trajectory. «; is the angle between the

Figure 5.5: Vehicle path definition.

current and the previous route. ;7 is the angle between the current and the next

5. Vehicle control 17

route. U;_; and v}, are the components of ¥;_; and v;4; in direction of the current
route. They are formally defined as U;_; = v;_1 cos(o;) and U;,; = ;41 cos(atr).
p(t) is the position of the vehicle and W(¢) its orientation at time t. W(t) defines the
orientation of the vehicle as the angle between North and its front rotor.

Inspired by [31], the implemented trajectory controller splits the routes between way-
points into three segments of constant velocity or constant acceleration. Figure [5.6
shows the four possible acceleration scenarios to traverse a given route of length [in
the requested duration t;. v; is the average velocity of the current route defined as

v V. A4
1
a 7777227770\ 4 v _
,,,,,,,,,,, SN/ 127777277700 Vi v
=, A/ IS I777777747 = i+l
Vil SIN SIS/ 777477 Vi_i
VIIAN/ 227 | 27774777 _ a a, /7
s s 2 SIS Vi a /0y
VS IANI I P2 s /P77 K77 77 L T 2 N vr77] Vi
VS IANI I LIV 777 77K/ 7777 7 v 7
VS IANI ISP I 7SI 77K/ 7 777 77 i gs.b s
S ISANI IS ISP X7 7777 ! SIANTIIT777777777777 !
ta tb ta tb
1y 1y
(a) (b)
v v
V;” ;,
ab _ i-1 a
Vi 7/7] Vi : v; 7.
IR I oo G Ao D R —) i
v AT IS VISP IIIINI ST ITAS ST a, o
i- TIN/ 777] /777477777 VI /AN 777] 4227 H S T Vikl
2PN/ 277 2SI IK SIS S SIANI 277 ISR
VSIANI IS 72777 K7 7777 4 S ISANI ISV 777777877777 !

Figure 5.6: Acceleration scenarios.

v; = é The average speed of the route before the first route and the average velocity
of the route after the last route are assumed as zero. Starting from ¥,_; the vehicle
accelerates in the first segment with a, for time ¢, to reach v; of the middle segment. In
the third segment the vehicle accelerates with a, for time ¢, to reach the exit velocity
U;,1. The route length of the scenarios shown in Figure is
(i =0;4)* | (W4 — i)

vitd 2aa + 2@1)

(5.14)

Larger values for a, and a; allow a bigger spread of route lengths [. By pinning down
la,| and |ay| to a positive constant a,,,., the accelerations are formally defined as

g = T * Qmax and ap = Y * Umaz where x,y € {—1,1}. (5.15)

5. Vehicle control 18

Equation (5.16|) and Equation (5.17)) define the rules for choosing x and y.

o {1 e o
o= {7 i (5.7)

Combining Equation and Equation gives
= oty — BT B Z v (5.18)

2% maz 2Ymag

Solving Equation (5 for the velocity v; of the middle segment results in two solutions
shown in Equatlons and - below.

f = %(amaxtd + xvz—i—l yﬁ;—l)
T 7£ e g = %(2amax 'I”Uz—f—l + yv?—l) (519)
o _f 2
V; s T\ T 43
—20maxt— 51'2, zv/2
r=1: Vv, = 2 yoi t itl (520)

2(—amaztq—yv,_, +xi§_‘_1

The trajectory controller considers only positive, non-complex values for v; as valid.
Other values for v; indicate that time ¢, is too short or too long to traverse route p;
when applying @, as the maximum allowed acceleration.

5.7 Summary

This chapter explains a simplified dynamic model for four-rotor helicopters, and de-
velops altitude and attitude PD controllers for manual control. The altitude controller
takes care of the rotors quadratic thrust characteristic by adding the take off revolu-
tion speed to its output. For a smooth behavior at the target value, the presented
controllers apply the first derivatives of the current values and not the first derivatives
of the deviations.

This chapter also develops a trajectory controller for autonomous flights, which fol-
lows given waypoints. The utilized algorithm splits the routes between waypoints into
segments of constant velocity or constant acceleration.

6

Software design and
implementation

This chapter presents the design and implementation of the JNavigator software. After
explaining the basic concepts, it continues with an overview of the functional model,
and proceeds with a thorough description of the implemented software modules.

It is the aim of this thesis to provide the capabilities necessary to support manual and
autonomous flights of the JAviator, compatible to the existing interfaces to Plant and
[GCS| In particular the design of the software focuses on flexibility and reusability of
components.

6.1 Basic concepts

This thesis establishes two fundamental concepts. The first concept is that a class
supports a constructor with a Properties object as the only parameter. This allows
constructing new objects in a generic object factory and requires that the code for
converting configuration parameters to values is part of the constructed class. The
second concept is that the structure of the configuration is a tree. Hence, constructing
an object implies to identify the subtree belonging to the constructed class in the
configuration and initialize a new object by handing over the subtree as a Properties
object to the class constructor.

6.1.1 Object construction via properties

A class supports a constructor with a Properties object as the only parameter. To
create an instance of a class, a calling object only has to support a Properties ob-
ject that contains the necessary parameters for construction. The class constructor is
responsible for verifying the correctness of the properties and for converting the prop-
erties to values of other type for further usage. By applying a generic factory, a caller
only has to support a class name and properties for instantiating a new object. For
further access, the caller only needs to know a super class or interface of the newly
created object. Additionally, the caller remains completely unaware of the concrete
implementation.

19

6. Software design and implementation 20

6.1.2 Hierarchical configuration

The basic idea is organizing the configuration in agreement to the hierarchy of instan-
tiated objects. Hence, an object only creates its child objects and not its grandchild
objects. It is the child class that is responsible for creating the grandchild objects.
This thesis proposes to implement the hierarchical configuration as Java properties.
An object isolates the properties tree of a child and constructs the child object by
transferring this sub-tree root to the child class constructor.

Figure depicts a configuration, where the configuration of object A and its child
objects A1 and A2 are organized as a tree. Object A isolates the sub-tree of A1 and cre-

configuration root

VRN 4 \
4 4
. \ V4 \
’ \
configuration for A and Y h
its sub—components N\
4
N \
configuration for A’s configuration for A’s
sub—component Al ’ AN sub—component A2
4 4
y ’ \
’ 4 \
4 4
’ ’ \

Figure 6.1: Configuration tree.

ates object Al by calling its constructor code with the root of the sub-tree. Thereafter,
object A isolates the sub-tree of A2 and creates object A2 by calling its constructor
code with the root of the corresponding sub-tree. Section [6.3.2] elaborates on isolating
sub-trees and generically creating objects.

6.2 Functional model

Figure visualizes the use cases of the implemented JNavigator software, where
and Plant are the identified actors. It is the that initiates the use cases
for both manual and autonomous flight, whereas the Plant is passive. The manual-
flight use case includes use cases for controlling altitude and attitude, respectively.
The autonomous-flight use case inherits the functionality of the manual flight and
includes the use cases for uploading set courses, starting and aborting autonomous
flights, following set courses, and determining the current position of the helicopter.
The following subsections describe the use cases in detail.

6. Software design and implementation 21

Control Altitude Control Attitude
N 7 <<include>>

<<include>>

oO—

GCs

Fly Autonomously
<<mc|ude>> -
- AN <<|nc|ude>>
Upload Set Course N Follow Set Course

" <<include>>

<<include>>
Determine Current Position
Start Autonomous Flight
<<|nc|ude>>

<extend>>

Abort Autonomous Flight Get Correction Data

I

0‘

Figure 6.2: Use cases of the JNavigator software.

6.2.1 Use case “Fly Manually”

The [FCS| periodically sends motor revolution speed nominal values to the Plant. For
each received packet the Plant returns sensor data to the which forwards the
data to the connected [GCS| In response to sensor data, the [GCS| transmits attitude
and altitude nominal values to the [FCS| Applying attitude and altitude controllers to
nominal values and sensor data results in new revolution speed nominal values for the
motors.

Control Altitude. Controlling altitude implies controlling the height over ground of the
[UAV] The [FCS| applies the altitude controller developed in Section [5.3] to the received
nominal values, as well as the sensor data for height over ground and its first derivative.

Control Attitude. Controlling attitude means controlling roll, pitch, and yaw of the
[UAV] The[FCS adopts the attitude controllers developed in Section [5.4] to the received
nominal values, as well as sensor data for roll, pitch, and yaw plus their first derivatives.

6.2.2 Use case “Fly Autonomously”

This use case adopts the functionality of the manual flight use case. The [GCS|uploads
set courses to the[FCS| instead of periodically sending it nominal values. After receiving
the start message for conducting a particular set course, the [FCS|navigates the JAviator
along this set course.

Upload Set Course. Currently, uploading a set course is simply copying the file con-
taining the set course data to the Gumstix running the [FCS

Start autonomous flight. The [GCS| sends a start message for an autonomous flight,
which contains the path name of the set course file, to the [FCS After successfully
analyzing the set course, the [FCY| switches from manual to autonomous control and
maneuvers the helicopter along this set course by applying use case Follow Set Course.
If the [FCS] fails to analyze the set course it remains in manual control.

6. Software design and implementation 22

Abort Autonomous Flight. The [GCS|aborts an autonomous flight by sending an abort
message to the [FCS| which switches to manual control instantly.

Determine Current Position. The [FCS| determines the current position by utilizing a
[GPS| receiver or a close-range location system. It retrieves the current orientation by
making use of the Plant’s [[MU] The [FCS| forwards available correction data to a [GPS|
receiver by applying use case Get Correction Data.

Get Correction Data. This use case currently applies to [GPS| receivers only. The [FCS|
forwards available [RTCM] SC-104 correction data to the corresponding [GPS| receiver.

Sources of correction data may provide correction data via or Internet (NTRIP).

Follow Set Course. When following a set course, the FCS calculates the nominal values
for position and orientation by considering the elapsed flight time and the analyzed
course data. With these nominal values, the current position, and the current orienta-
tion, the [FCS| stipulates nominal values for the altitude and attitude controllers.

6.3 Implemented software modules

As displayed in Figure the implemented software modules are the following:
Input/Output
Utilities

e Communication

Course
o GPS
Location
JAviator Control
e User Interface
Module Input/Output abstracts the calls to the operating system to access

and Bluetooth sockets, as well as serial lines. Module Utilities provides functionality
for manipulating properties and objects. Module Communication handles the com-
munication to [GCY| and Plant. Module Course covers all functionality necessary to
navigate on planets, as well as to plan and run set courses. Module GPS processes
messages from [GPS| receivers and augmentation systems. Module Location allows in-
tegrating close-range location systems. Module JAviator Control executes manual and
autonomous control of the helicopter. Module User Interface consists of an applica-
tion to visualize heading, position, and velocity of the helicopter, as well as the time
received from a [GPS receiver.

Figure [6.3| presents the implemented modules, which the remainder of this chapter
thoroughly describes.

6.3.1 Module Input/Output

This module abstracts calls to the operating system to access and Bluetooth

sockets, as well as serial lines. It comprises a shared object and a Java archive. The

6. Software design and implementation 23

Input / Output | Communication

A ' i
Y

A

Location = Utilities

I
Course

] / User Interface
GPS o JAviator Control

Figure 6.3: Implemented software modules and their dependencies.

shared object just makes the system calls connect (), close(), read(), and write() to
Bluetooth sockets, as well as the system calls open(), close(), read(), and write() to
serial lines accessible to Java code. The rest of the implementation resides in the Java
archive. The shared object implementation is currently available for Linux systems
only.

Figuredisplays the class diagram of module Input/Output. Publicly available classes
and interfaces are IConnection, TcpSocketServer, SocketWrapper, TcpSocket,
BluetoothSocket, and SerialLine. It is interface IConnection that nicely abstracts

java:lang::Thread java::net::Socket <<interface>>
IConnection

<<realize>> <<realize>> Al-
| M | <<realize>> <<realize>> !
L L L
|TcpSocketServer l%iSOCKEtWrapper | |TcpSocket | | BluetoothSocket | SerialLine
%

|BIuetoothSocketImpI | |SeriaILineImpI |

java::net::ServerSocket Zﬁ
| PlainBluetoothSocketimpl | PlainSerialLinelmpl
| BluetoothSocketInputStream l——|>| FileInputStream |<]_ SerialLinelnputStream

| BluetoothSocketOutputStream |_|>| FileOutputStream |<]_| SerialLineOutputStream |

Figure 6.4: Class diagram of Module Input/Output.

connections to allow access to and Bluetooth sockets, as well as serial lines
uniformly.

Abstract class TcpSocketServer implements a socket server. It opens a
ServerSocket on the specified port number and waits for clients to connect. It is
a separate working thread that takes an incoming connection and deals with the actual
receiving and sending of data. A concrete class that inherits the TcpSocketServer has

6. Software design and implementation 24

to provide the implementation for starting the working thread. Class TcpSocketServer
employs class SocketWrapper to proxy incoming connections to interface IConnection.

Class TcpSocket is an envelope for Java Runtime Environment class Socket for
providing connections via an IConnection interface. The code below demon-
strates how to connect to a service by constructing a TcpSocket utilizing a
property file. For example, the property file mytcp.properties contains the following
properties

10.10.11.201
3333

host
port

The code to initiate the connection is:

Properties props = new Properties ();
props.load (new FileInputStream("mytcp.properties"));
IConnection connection = (IConnection) (new TcpSocket (props));

Class BluetoothSocket allows connecting to Bluetooth services and class SerialLine
facilitates connecting to serial lines. [JRE] class Socket is archetype for the design of
the associated Bluetooth and serial line classes. The code for connecting to Bluetooth
sockets or serial lines is similar to the code for sockets. Bluetooth sockets
need a device address and a channel address for construction. To initiate a serial line
connection, class Serialline needs the parameters interface device path, baud rate,
parity, number of start bits, and number stop bits.

6.3.2 Module Utilities

This module provides common functionality to all other modules, except module In-
put/Output. It comprises one Java archive, which exports the classes and interfaces
ByteArrayUtils, ObjectFactory, PropertyUtils, IClock, and SystemClock.

Static class ByteArrayUtils implements methods to reverse and split byte arrays, as
well as methods to convert integer and double data types to byte arrays and vice versa.

Singleton ObjectFactory is a generic factory to create objects defined by properties. It
instantiates an object as IConnection, InputStream, or Object and it is this class that
causes the dependency to module Input/Output. To instantiate a connection,
an applying code must provide the full name of class TcpSocket, as well as the host
name and port number to connect to as properties, as shown in the following example.

prefix.className = at.uni_salzburg.cs.ckgroup.io.TcpSocket
prefix.host = 10.10.11.201
prefix.port = 3333

With the properties loaded in an instance of class Properties, the code to instantiate
a TcpSocket as a reference to interface IConnection is as follows.

6. Software design and implementation 25

Properties props = ...
ObjectFactory factory = ObjectFactory.getInstance ();
IConnection connection =

factory.instantiateIConnection ("prefix.", props);

The applying code is capable to instantiate an IConnection object without being
aware of the concrete implementation. The only requirement is that the class specified
in property prefix.className can be found in the class path of the [JVM]

Static class PropertyUtils provides methods for loading property files available in the
context of the current class loader. Additionally, it allows replacing parts of property
keys and extracting property subsets by means of regular expressions.

The code example below illustrates the realization of the hierarchical configuration
approach described earlier. It shows the construction of three connections
specified in one property file allmytcp.properties as follows.

confA.propl
confA.prop2
confA.prop3 -
confA.connl.host = 10.10.11.201
confA.connl.port = 3333
confA.conn2.host = 10.10.11.200
confA.conn2.port = 3334
confA.conn3.host = 10.10.11.199
confA.conn3.port = 3335
confB. ..

confC. ..

As depicted above, the properties of [T'CP /IP| connections one, two, and tree are sub-
trees of component A’s configuration. Loading the properties and extract the subtree
for component A shows the following code.

Properties props = new Properties ();

props.load (new FileInputStream("allmytcp.properties"));
Properties propsA = PropertyUtils.extract ("confA.x", props);
propsA = PropertyUtils.replaceFirst ("confA.", "", propsA);

Static method PropertyUtils.extract() filters the loaded properties and extracts
the subset whose keys match regular expression "confA.*". Thereafter, static method
PropertyUtils.replaceFirst() chops off the first part of the property keys. The

code below demonstrates preparing the property subtrees and establishing the
connections.

Properties propsl = PropertyUtils.extract ("connl.*", propsA);
Properties props2 = PropertyUtils.extract ("conn2.*", propsA);
Properties props3 = PropertyUtils.extract ("conn3.x*", propsA);

6. Software design and implementation 26

propsl = PropertyUtils.replaceFirst ("connl.", "", propsl);
props2 = PropertyUtils.replaceFirst ("conn2.", "", propsi);
props3 = PropertyUtils.replaceFirst ("conn3.", "", props3);

IConnection connectionl
IConnection connection?2
IConnection connection3

(IConnection) (new TcpSocket (propsil));
(IConnection) (new TcpSocket (props2));
(IConnection) (new TcpSocket (props3));

The code above demonstrates how the hierarchical configuration approach works. How-
ever, employing class ObjectFactory for constructing the connections, as depicted in
an example earlier, leads to much more readable code.

Interface IClock provides the functionality of a simple clock. Some of the classes de-
scribed later use implementations of this interface, rather than the System object. This
allows unit tests to employ own mock clocks that are independent of the actual execu-
tion time. Class SystemClock is a simple wrapper around the currentTimeMillis()
method of the System object and implements the IClock interface.

6.3.3 Module Communication

This module implements an upper and a lower communication layer. The upper layer
dispatches received packets among notified packet listeners. The lower layer handles
the connections to [GCS| and Plant via IConnection links. After verifying a received
raw packet, the lower layer converts it to a Data Transfer Object and delivers
it to the upper layer. When the upper layer forwards a to the lower layer, it is
the lower layer that transforms the to a raw packet and sends it to the required
link. This thesis considers a as an entity containing arbitrary interrelated values,
which conveys information from to Plant and [GCS| respectively and vice versa.

Module Communication comprises one Java archive, which exports the upper layer
communication classes and interfaces Dispatcher, IDataTransferObject,
IDataTransferObjectListener, IDataTransferObjectProvider, ISender, and
DataTransferObjectLogger, as shown in Figure[6.5] It also exports the classes,
which implement interface IDataTransferObject, as displayed in [6.9] The exported
lower layer communication classes and interfaces, as depicted in Figure[6.5] are Packet,
TransceiverAdapter, ITransceiver, BufferedTransceiver, Transceiver, and
TcpServer.

Class Dispatcher is responsible for distributing to listeners, which previously
had registered with an instance of class Dispatcher for particular types. Users of
class Dispatcher access it via interface IDataTransferObjectProvider, which allows
registering and deregistering listeners, as well as sending [DTOk.

Listeners of class Dispatcher implement interface IDataTransferObjectListener,
which provides receiving objects that implement the IDataTransferObject interface

of DTOk.

Senders of objects need no registering with instances of class Dispatcher. If a
sender registers with an instance of class Dispatcher, it must supply its reference as

6. Software design and implementation 27

Dispatcher <<interface>>
IDataTransferObject
1
<<realize>> !
AV X

<<interface>> == k- --- -I TcpServer | | Packet |
|IDataTransferObjectProvider T t A
T T 1 1 N
' ! : TcpSocketServer : <<interface>>
v v : : ITransceiver
<<interface>> <<interface>> 1 1 7~
|IDataTransferObjectListener ISender : |java::|ang::Thread | : T
1 1
4 <<realize>> 4 : JAN :<<rea|ize>> E <<realize>>
<<realize>> _ | _s<realize>> _______ R b B -
L L AV AV L
DataTransferObjectLogger | | TransceiverAdapter | | BufferedTransceiver H Transceiver

Figure 6.5: Class diagram of Module Communication.

an ISender interface when sending [DTOp. This prevents [DTOg from being sent to
their origin.

Class DataTransferObjectLogger registers with one instance of class Dispatcher for
all object types and logs every received detailed to file, including the time

stamp in millisecond accuracy.

Class Packet represents a raw packet that is employed as the data transfer vehicle
between Plant, [FCS| and [GCS| Figure [6.6] displays the utilized packet format. Class

Payload Length ‘ Payload ‘ Checksum ‘

‘ O0xFF ‘ O0xFF ‘ Type

-2 -1 0 1 2 Payload Payload
Length + 2 Length + 4

Figure 6.6: Raw packet format for communication between Plant, FCS, and GCS [6].

Packet converts arbitrary payload, given as a byte array, and a type into a raw com-
munication packet by adding header, payload length, and checksum. Class Packet can
also use an InputStream instance to initialize its data members. The Transceiver
class described later uses the latter construction method to deserealize serialized pack-
ets received from an IConnection link.

Interface ITransceiver defines the functionality of a sender and receiver. It abstracts
either a stream connection or packet oriented link to a resource. It allows sending and
receiving Packet objects without bothering about the low level details of the accessed
resource. Class Transceiver is an implementation of the ITransceiver interface that
blocks sending and receiving single packets until their transmission is complete. Class
BufferedTransceiver implements the ITransceiver interface too. It applies a ring
buffer to store packages temporarily for later transmission, that is, it does not block
a sender. An instance of class BufferedTransceiver’s inner class Worker, running
as a separate thread, forwards the packets from the ring buffer to the underlying
Transceiver instance. Due to the finite number of packets the ring buffer can hold,
packets may be lost when sent more rapidly than the link can handle.

6. Software design and implementation 28

Class TransceiverAdapter is responsible for converting to raw communication
packets and vice versa. The mapping between and packet types is part of the
configuration and not hard coded into this class. This allows transporting packets of
future extensions without changing the already existing code.

Class TcpServer implements a server by extending abstract class
TcpSocketServer of Module Input/Output. After a new client connects to the
port number of the server, the server creates instances of classes
TransceiverAdapter and BufferedTransceiver. After linking the instance of class
TransceiverAdapter with the instance of class BufferedTransceiver and the already
running instance of class Dispatcher, the server spawns off the newly created instance
of class TransceiverAdapter as a separate thread.

Figure[6.7]shows how the TransceiverAdapter receives a Packet from an InputStream,
transforms it to a[DTO] and delivers it to the Dispatcher.

l ta:TransceiverAdapter ‘ l bt:BufferedTransceiver‘ ltr:Transceiver‘ l iInputStream ‘ ldg:Disgatcher
T T T

T

|

loop J

[running] 1 1: receive()

2: receive() >

Figure 6.7: Receiving Packet objects from an InputStream, conversion to DTOs, and
dispatching DTOs.

In the following, the sequence depicted in Figure is explained in more detail.

1. TransceiverAdapter ta runs a separate thread that is responsible for receiving
Packet objects from an InputStream. It is this thread that calls the receive ()
method of the associated BufferedTransceiver bt.

2. BufferedTransceiver bt calls the receive() method of the underlying
Transceiver tr.

3. Transceiver tr creates a new Packet p by calling the new() operator with the
InputStream ¢ to read from as parameter.

4. The Packet constructor calls the read() method of the provided InputStream
1 for each byte of the new packet to be received. Then, the Packet constructor
verifies the integrity of the received package.

5. TransceiverAdapter ta retrieves the payload from the newly received Packet
object p.

6. Software design and implementation 29

6.

TransceiverAdapter ta creates a[DTO|by calling its constructor. The parameter
provided is the payload of the received Packet p. The [DTO[s constructor now
verifies the payload and initializes the member variables of object dto.

TransceiverAdapter ta forwards the to Dispatcher dp, which routes the
to all interested listeners. Thereafter, TransceiverAdapter ta starts from
the beginning by calling the receive () method of BufferedTransceiver bt to
get the next Packet object.

The sequence discussed shows how bytes, read from an InputStream instance, are con-
verted into Packet objects, transformed to [DTOp, and forwarded to the Dispatcher.

Figure visualizes how the TransceiverAdapter receives a [DTO]| converts it to a
Packet object, and sends it to an QutputStream.

l dp:Dispatcher ‘ l ta:TransceiverAdagter‘ l dto:lDataTransferOb'ect‘ l bt:BufferedTransceiver‘ l tr:Transceiver ‘ lo:OutgutStream
T T T

1: receive(dto)

2: toByteArray() -
I
|
|
I
|
|
1

4: send(p) + DE] 5: [inactive
—————————— <——————————7—————i—————— interrupt()
l 7: toByteArray()
[:] e

Figure 6.8: Sending DTOs to an OutputStream.

The procession is in detail as follows.

—_

Dispatcher dp forwards a to TransceiverAdapter ta.

TransceiverAdapter ta transforms the to an array of bytes by calling the
[DTOJ's toByteArray () method.

TransceiverAdapter ta creates a new Packet object. The provided parameters
are the packet type and the as an array of bytes.

. TransceiverAdapter ta calls the send() method of BufferedTransceiver b,

which stores the new Packet in an internal ring buffer to prevent blocking the
caller.

BufferedTransceiver bt sends an interrupt() event to its inactive sending
thread.

BufferedTransceiver bt runs a separate thread for sending the Packet objects
stored in its internal ring buffer. For each object in the ring buffer, this thread
calls the send () method of the underlying Transceiver tr.

6. Software design and implementation 30

7. Transceiver tr converts Packet p to an array of bytes by calling method
toByteArray () of p.

8. Transceiver tr calls method write() of OutputStream o to write the array of
bytes as a whole to o.

9. After the sender thread has sent all Packet objects to OutputStream o, it waits
for the arrival of new objects.

The discussed progression ensures that the Dispatcher is not blocked by sending[DTOp
to both Plant and [GCS.

Figure visualizes the [DTO] classes, which realize interface IDataTransferObject.
Class ActuatorData holds the motor revolution speed nominal values for the Plant,

<<interface>>
IDataTransferObject

JAN JAN JAN AN JAN JAN AN JAN AN
1 1 1 1 1 1 1 1 1
<<realize>> 1 <<realize>> 1 <<realize>> 1 <<realize>> 1 <<realize>> 1 <<realize>> 1 <<realize>> 1 <<realize>> 1 <<realize>> 1
1 1 1 1 1 1 1 1 1
L L L L L L L L L
ActuatorData | |AItitudeLimit | |Contr0IParams | |NavigationData | |PilotData | |SensorData| |ShutdownEvent| |TestMode | |TrimVaIues |

Figure 6.9: Class diagram of the Data Transfer Objects.

class AltitudeLimit conveys the maximum altitude the JAviator is allowed to fly,
class ControlParams defines the parameters of the implemented controllers, class
NavigationData stipulates the nominal values for manual flight, class PilotData al-
lows starting and stopping autonomous flights, class SensorData transports the current
sensor values from Pant to FCS, class ShutdownEvent immediately stops any flight,
class TestMode initiates the test sequence while the helicopter still rests on the ground,
and class TrimValues carries the motors revolution speed offset values.

6.3.4 Module Course

This module provides functionality to convert between coordinate systems and to
plan set courses. It comprises one Java archive, which exports the classes and in-
terfaces AdvancedCoursePlanner, CartesianCoordinate, CourseData, CourseUtils,
ICoursePlanner, IGeodeticSystem, IPositionProvider, ISetCourseSupplier,
PolarCoordinate, PrePlanningSetCourseSupplier, SectionFlightPlan, Section,
SetCourse, SphericEarth, VehicleStatus, WGS84.

Class CartesianCoordinate implements a 3-tuple (x, y, z) to describe a position in
an orthogonal coordinate system. It provides functionality for adding, subtracting,
multiplying, and normalizing vectors. Additionally, this class is able to calculate the
length of the vector.

Class PolarCoordinate implements a 3-tuple (latitude, longitude, and altitude) to
describe a position in a polar coordinate system.

6. Software design and implementation 31

Interface IPositionProvider covers the functionality of a geodetic position provider.
An implementation of this interface must support the current position as WGS 84| [33]
coordinates.

Figure depicts the diagram of the main classes and interfaces of Module Course.
Interface IGeodeticSystem defines functionality necessary to convert polar coordinates
of planets in rectangular coordinates and vice versa. Additionally, it offers functionality
to estimate distance, speed, elevation, and course between two given polar coordinates.
Instances of class CourseData act as a transport object of the estimated values. Class
SphericEarth implements interface IGeodeticSystem as a spherical Earth and class

WGS84 implements the WGS 84] [33].

<<interface>> <<interface>>
CourseData |<_ -] IGeodeticSystem [~ ~ 7777 7] ISetCourseSupplier CourseUtils
()
<<realize>> JA <<realize>> . 1
Fr-==="="===5 <<realize>> | 1
1 1 1 1 .
. - : I, terface:
| WGS84 | |SpherlcEarth | | PrePlanningSetCourseSupplier |‘ > ssinterface>>
ICoursePlanner
T T
1 1
: : : <<realize>>
|SetCourse | |VehicIeStatus | |AdvancedCoursePIanner
T T
X 0.* 0.* X
J, J,
Section SectionFlightPlan

Figure 6.10: Class diagram of Module Course.

Class VehicleStatus implements a 5-tuple to describe a vehicle’s status. It contains
position, total speed, course over ground, elevation, and orientation of the vehicle.
Ground is considered as a plain, normal to the nadir-zenith axis. The elevation is the
angle between ground and motion vector of the vehicle.

An instance of class Section describes one section of a set course, which is the planned
linear motion path of the vehicle from one set course way point to the next within a
certain time. A section also defines the desired orientation of the vehicle for the start
and end positions.

Static class SetCourse loads the set course data from an InputStream and allows
access to it by providing several getter methods. The loading method interprets the
course data line by line. A line starting with '#’ is considered as a comment and
therefore skipped. Empty lines are ignored. Every other line must contain the values

for latitude, longitude, altitude, duration, and orientation. Semicolons (’;’) separate
the fields from each other.

Static class CourseUtils allows interpolating between two angles by weighting between
0% and 100%. 0% results in the first and 100% in the second angle.

Interface ICoursePlanner describes the functionality of a course planner in general. A
course planner gets an array of Section objects and an instance of interface
IGeodeticSystem and returns an array of SectionFlightPlan objects.

6. Software design and implementation 32

Class AdvancedCoursePlanner implements interface ICoursePlanner. It splits each
section in three subsections of constant velocity or constant acceleration and tries to
smoothen the transition between course sections. The planning result is an array of
SectionFlightPlan objects. Section elaborates on the details of the implemented
algorithm.

Interface ISetCourseSupplier specifies the functionality of a set course supplier, which
returns the set course position to a given point in time since the start of an autonomous

flight.

Class PrePlanningSetCourseSupplier implements interface ISetCourseSupplier by
pre-planning a set course. It loads the set course data by employing class SetCourse
and plans the set course by applying an instance of ICoursePlanner. A user of
this class may query a required VehicleStatus to a given point in time. The im-
plementation of class PrePlanningSetCourseSupplier will search the corresponding
SectionFlightPlan object and estimate the required vehicle state. Figure visu-
alizes the steps for loading set course data and preparing flight plans.

l dg:Dispatcher‘ l ctl:JControl ‘ lsc:PrePIanningSetCourseSuginer‘ lSetCourse‘ l pl:AdvancedCoursePlanner
T T T
|

.] I
2: new(fileName) ; ; FilelnputStiream
< ,,

—‘1: receive(:PilotData) _L

3: loadSetCourse(co), _L

loop J

[not end of file]

sections

Figure 6.11: Set course data loading and flight plan preparing.

The chronology shown in Figure is outlined below.

1. Dispatcher dp forwards a PilotData start message, which contains the path
name of the set course data file, to JAviator controller ctl.

2. JAviator controller ctl opens the file containing the set course data by creating
FileInputStream co.

3. By calling method loadSetCourse(), JAviator controller ctl instructs
PrePlanningSetCourseSupplier sc to load the set course data.

4. To achieve this, sc calls loadSetCourse () of static class SetCourse.

5. Class SetCourse takes input stream co and wraps LineNumberReader rd around
it for easier handling,.

6. For each line in the set course data file, class SetCourse invokes method readLine ()
of reader rd.

6. Software design and implementation 33

10.

Method readLine() of rd reads bytes from input stream co until it reaches the
end of the current line.

Class SetCourse instantiates a Section object for each line read.

After successfully reading the set course data file, sc plans the course by applying
method planCourse() of AdvancedCoursePlanner pl to the Section objects.

AdvancedCoursePlanner pl establishes one SectionFlightPlan object for each
Section object.

The sequence discussed does not consider errors. Method receive() of JAviator con-
troller ctl takes care of exceptions caused by errors in the set course data. In case of
errors, ctl remains in manual flight control mode.

After successfully loading set course data, JAviator controller ctl periodically polls the
set course supplier for set course positions, as detailed in Figure [6.12]

l ctl:JControl ‘ l sc:PrePlanningSetC QgrseSmpIier‘ l fp:SectionFlightPlan ‘ lse:Sg;jciQn‘ l CourseUtils ‘
T T

T L " T
r1.1: *getSetCoursePosition(time) |

T
2: getScheduledPosition(sectionTime) ! 1 1
oo scheduledPosition _ _ _ _ _ ?t‘] ! !
3: getTravelTime() | |
,,,,,,, Lregvgllime,,,,,,,,,‘,,,,,,,,,D,[:] ‘
4: getStartOrientation() T }
P startOrientation_ _ _ _ _ _ _ . i:] |
5: getEndOrientation() | | I
______endOrientation_ _ __ ___ b] |
6: interpolateAngle(startOrientationjendOrientation,travelTime) |
e . orientation ________ b R
7: new(scheduledPosition,orientation) ; ; ;
P IR LJ<mmm e RRRREEEEE boooooes SR
| | |

Figure 6.12: Retrieving the set course vehicle state for a given flight time.

In the following, the sequence depicted in Figure is explained in detail.

. JAviator controller ctl queries the set course position and orientation correspond-

ing to the current flight time by invoking method getSetCoursePosition() of
PrePlanningSetCourseSupplier sc.

In consideration of the current flight time, sc searches the corresponding
SectionFlightPlan fp and computes the flight time from the beginning of plan
fp. With this time as parameter, sc invokes getScheduledPosition() of plan
fp to get the new set course position.

To get the travel time of the current set course section, sc calls method
getTravelTime () of the associated Section se.

Then, sc determines the vehicle’s orientation at section start by accessing method
getStartOrientation() of se.

Thereafter, sc retrieves the vehicle’s orientation at section end by invoking method
getEndOrientation() of se.

6. Software design and implementation 34

6. In order to get the vehicle’s current orientation nominal value, sc executes method
interpolateAngle () of static class CourseUtils.

7. With the new set course position and the orientation nominal value, sc creates a
new VehicleStatus object vs, and returns it to JAviator controller ctl.

Method getSetCoursePosition() of class PrePlanningSetCourseSupplier caches
the index to SectionFlightPlan fp and Section se for later use. Subsequent in-
vocations of method getSetCoursePosition() will use this index as a start to find
the fitting instances of classes SectionFlightPlan and Section. With the current
JAviator controller cycle time of 20 ms and section travel time spans of at least several
seconds, the correct index value will be the same one as the last in nearly 100% of
all invocations. If the flight time of a section ends, the new index will be the current
index plus one to get the eligible flight plan and section objects. Hence, the execution
time of method getSetCoursePosition() has a constant upper limit independent of
the number of set course sections.

6.3.5 Module GPS

This module implements the range of functions to handle the 0183 [1] messages
of a receiver, the functionality to forward available SC-104 [2] correction
data streams to the same [GPS| receiver, and the functionality necessary to simulate a
receiver.

Module GPS comprises one Java archive, which exports classes and interfaces of general
[GPY] functionality, as well as classes and interfaces to handle 0183 messages,
SC-104 correction data streams, and [GPS| simulation.

Figure [6.13] shows the main classes and interfaces of Module GPS. Instances of class
GpsPositionProvider receive 0183 Course Over Ground and Ground Speed
, Global Positioning System Fixed Data , and Recommended Minimum
Specific Data (RMC) messages as Nmea0183Message objects from instances of
class Nmea0183MessageProvider and convert the received positions to objects of type
PolarCoordinate. Interested objects may retrieve the current vehicle location from a
position provider by accessing the IPositionProvider interface.

Class GpsAdapter extends class GpsPositionProvider by adding initialization code
that allows construction from given properties. To achieve this, class GpsAdapter
employs classes GpsDaemonBuilder and GpsDaemon.

An instance of class GpsDaemon runs as a separate thread that connects to a [GPS| re-
ceiver by means of an IConnection link, parses the incoming bytes, and routes detected
[NMEA] 0183 messages as Nmea0183Message objects to registered instances of interface
NmeaO183MessageListener. Interested objects use the Nmea0183MessageProvider in-
terface for registering with the daemon. If available, the daemon forwards SC-
104 correction data messages to the attached [GPS| receiver.

As depicted in Figure the initialization code of class GpsDaemonBuilder instan-
tiates one GpsDaemon and, optionally, one SC-104 message provider from given
properties by applying the ObjectFactory.

6. Software design and implementation 35

<<interface>> <<interface>> <<interface>>
RtcmSc104Messagelistener Nmea0183MessageProvider [=~~~ ~ Nmea0183MessageListener
| <<realize>> | | <<realize>> | <<realize>>

1 1 1

L L L
RtcmSc104Message I(- 4|GpsDaemon HGpsAdapter |—[>|GpsPositionProvider |

\l/ T T T

1 .
| <<realize>>

<<interface>>
IConnection

<<interface>>
|PositionProvider

A

- <<realize>>
<<interface>> <] ________

RtcmSc104MessageProvider

| Nmea0183Message

Figure 6.13: Class diagram of Module GPS.

An instance of class RtcmSc104Scanner runs as a separate thread that reads SC-
104 correction data from a provided InputStream. After receiving a complete correc-
tion data packet, the scanner converts it to an object of type RtcmSc104Message.
Subsequently, the scanner forwards this message object to registered instances of class
RtcmSc104MessageListener. Interested objects register with the scanner by accessing
its RtcmSc104MessageProvider interface.

The chronology shown in Figure [6.14]is outlined below.

1. GpsAdapter ga instantiates object db of class GpsDaemonBuilder.

2. GpsDaemonBuilder db invokes the instantiateConnection() method of
ObjectFactory of to open a connection to the [GPS|receiver.

3. ObjectFactory of creates a new IConnection object gps and returns the refer-
ence to it to GpsDaemonBuilder db.

4. GpsDaemonBuilder db constructs a new GpsDaemon object gpsd.

5. GpsDaemonBuilder db starts the gpsd thread, which immediately scans the data
available from the receiver gps.

6. If the configuration supports parameters of a [RTCM] SC-104 correction data
stream, GpsDaemonBuilder db calls the instantiateInputstream() method of
ObjectFactory of to connect to this data stream.

7. ObjectFactory of creates a new InputStream object rtcm and returns the ref-
erence to it to GpsDaemonBuilder db.

8. If the correction data stream needs the approximate location of the [GPS|receiver
before sending correction data, it also implements the Nmea0183MessageListener
interface. In this case GpsDaemonBuilder db registers stream rtcm with
daemon gpsd.

6. Software design and implementation 36

2: instantiatelConnection() ~_ 3: new()
gps:IConnection
e G

[rtcm message provider configured]

6: instantiatelnputStream()

optional J }
I
I
I
I

8: [rtcm instanceof Nmea0183MessageListener] P

addNmea0183MessageListener(rtcm)

Figure 6.14: Initialization sequence of class GpsAdapter.

9. GpsDaemonBuilder db instantiates object sc of class RtcmSc104Scanner.
10. GpsDaemonBuilder db registers GpsDaemon gpsd with scanner sc.

11. GpsDaemonBuilder db starts the sc scanner thread, which forwards the correction
data as RtcmSc104Message objects to daemon gpsd.

12. GpsAdapter ga retrieves a reference to daemon gpsd for further usage.

13. GpsAdapter ga registers itself with [GPS| daemon gpsd.

The sequence discussed shows how the connection to a [GPS| receiver and an optional
[RTCM] SC-104 correction data stream is initialized.

After initialization, the daemon parses the data provided from the receiver
and forwards it as Nmea0183Message objects to registered listeners, as visualized in
Figure |6.15] The series of invocations shown in this picture follows in detail.

1. daemon gpsd calls its own readLine () method to retrieve the next message
from receiver gps.

2. Method readLine() reads bytes from [GPS| receiver InputStream gps until the
end of line characters arrive, that is, character carriage return followed by char-
acter linefeed.

3. With the received sequence of bytes as parameter, daemon gpsd creates a
new Nmea0183Message object msg.

6. Software design and implementation

37

gpsd:GpsDaemon

l gps:lngutStream‘ l :Nmea0183Messagelistener

loop |

[running]

T

1

] 1: readline() }
< 2: *[not end of message] read() B

!
1

|
|
|
I
| 5: *receive(msg)
|
,,,,,,,,,,,,,,,,,,,,,, ¢,,,,,,,,,,,,,D
I
1
I

Figure 6.15: GpsDaemon forwards NMEA 0183 messages to registered listeners.

4. daemon gpsd calls its own fireNewMessage () method.

5. Method fireNewMessage() distributes newly arrived message msg to all reg-
istered listeners by calling method receive() of their implemented interface
NmeaO183MessageListener.

If the received sequence of bytes does not represent a well-formed 0183 message,
the constructor of class Nmea0183Message throws an exception, which the main loop

of [GPS| daemon gpsd catches. Thereafter, gpsd continues reading messages from [GPY|

receiver gps.

Figure views how a RtcmScl04Scanner instance reads SC-104 messages
from a correction data stream and forwards them to registered listeners that implement
interface RtcmSc104Listener.

sc:RtcmSc104Scanner

rtcm:InputStream ‘ l :RtcmSc104Messagelistener

loop]

runnin -
! 91 alternative J

T
1
h 1: synchronize() ;
I
|
|
|
|

[not synchronized]
2: *read()
< ,,,,,,,,,,,,,, ,DD

[synchronized]
3: readFrame()

4: *read()

5: readFrame()
6: *read() B
T 1
‘ msg:RtcmScl04Message
< ,,,,,,,,,,,,,,,,,,

loop J

[message not complete]

8: readFrame()
[;l 9: *read()

11: fireNewMessage(msg)
L_E 12: *receive()

10: addFrame() |
! g
Kommmm e e o b
T
I
I
+
1

Figure 6.16: RtcmSc104Scanner forwards RTCM SC-104 messages to listeners.

6. Software design and implementation 38

In the following, the sequence shown in Figure [6.16] is explained in more detail.

10.

11.

12.

. RtcmSc104Scanner sc calls its synchronize() method to get in sync with the

correction data stream.

If scanner sc is not yet in sync with correction data stream rtcm, method
synchronize () repeatedly reads bytes from the stream and tries to find the
preamble of a SC-104 message. Then, method synchronize() reads the
rest of the first message frame and returns.

If the scanner is already synchron to the correction data stream it reads the next
message frame, which has to be a message header, by calling its readFrame ()
method.

Method readFrame () reads a complete frame from correction data stream rtcm.

With the first frame available, scanner sc reads the second frame of the message
by calling its readFrame () method.

Method readFrame () reads a complete frame from correction data stream rtem.

Now the first two frames of the message are available. These two frames enable
scanner sc to determine the message type and length, thus scanner sc creates a
new RtcmSc104Message object msg.

Scanner sc reads the remaining frames of the message from stream rtecm by
repeatedly calling its readFrame () method.

Method readFrame () reads a complete frame from correction data stream rtcm.
Scanner sc adds the newly read message frame to RtcmSc104Message msg.

Scanner sc calls its method fireNewMessage() for every newly received and
well-formed SC-104 message.

Method fireNewMessage () sends message msg to all registered listeners by call-
ing method receive() of their interface RtcmSc104MessagelListener.

Whenever the RtcmSc104Scanner instance recognizes parity errors, it assumes not to
be in sync with the correction data stream and tries to re-synchronize.

Figure illustrates how a GpsDaemon instance forwards received RtcmSc104Message
objects to the receiver.

The procession depicted in Figure is in detail as follows.

. RtcmSc104Scanner sc sends a new SC-104 message to GpsDaemon gpsd

by invoking method receive () of its interface RtcmSc104Messagelistener.

GpsDaemon gpsd calls method getBytes () of message msg to retrieve its content
as an array of bytes.

6. Software design and implementation 39

lsc:thmSc104Scanner‘ l gpsd:GpsDaemDn‘ l msg:RtcmSc104Messa e‘ l gps:Outgu(Stream‘
T

1: receive(msg) n~_ I 2: getBytes() ‘ {
= |

- T
fffffffffff S E—

Figure 6.17: GpsDaemon forwards RTCM SC-104 messages to the GPS receiver.

3. GpsDaemon gpsd writes this array of bytes at once to OutputStream gps that
represents the [GPS| receiver’s input for correction data.

The Austrian Positioning Service [8] of the Austrian Bundesamt fiir Eich-
und Vermessungswesen provides SC-104 [2] correction data streams
over or Mobile Internet [4] via General Packet Radio Service /
Universal Mobile Telecommunication System (UMTS))). To keep the particularities of
[APOS hidden from the RtcmSc104Scanner, the classes exposed in Figure provide
the [APOS| correction data stream as an object of type InputStream.

<<interface>>
Nmea0183MessageListener

AN

AN

<<interface>>
IConnection

T
' . T 1
! <<realize>> InputStream :<<realize>>
. /\ /\ 1

l !
1
1 | AposGsm > ModemWorker |
1

T

i RV \V
1
1
l
1
\/ |

| Nmea0183Message |

Figure 6.18: Diagram of the classes accessing the APOS []] service.

Class AposNtrip is responsible for accessing the NTRIP|service of[APOS] When calling
method read() of an AposNtrip instance demands the first byte of correction data,
this method blocks until connecting to the service succeeds and the first byte
of correction data is available. AposNtrip implements the Nmea0183MessagelListener
interface to receive the approximate current vehicle position from the [GPS| receiver,
which the[APOS|service requires before sending correction data. AposNtrip establishes
the connection to [APOS] after the approximate current vehicle position is available.
Figure |6.19 shows the outlined behavior in detail.

The following describes the sequence depicted in Figure [6.19
1. RtcmSc104Scanner sc calls method read() of the InputStream interface imple-

mented by AposNtrip object rtem.

2. If not yet connected to an data stream, AposNtrip object rtcm calls its
connect () method.

6. Software design and implementation 40

10.
11.

12.

mp:NmeaO183MessageProvider‘ lsc:thmSclO4Scanner‘ l rtcm:AgosNtrip‘
{ o 1: read() S|
} } } 2: *[not connected] connect()
|
! | 3: *[startPosition == null] sleep()
I

4: receive(startPosition) B
777777777777777 T 5: new() '—_§Q:Tgp§g;kgt

6: getOutputStream()

11: readLine() |
;’ 12: *[not line complete] read()

[line = "ICY 200 OK"]
13: *[not empty line] readLine()

[;l 14: *[not line complete] read() B

[——— =

Figure 6.19: APOS NTRIP connection establishment.

Method connect () waits until the approximate location of the [GPS| receiver is
available.

Nmea0183MessageProvider mp, that is, the GpsDaemon instance, hands over the
current approximate location of the receiver to AposNtrip object rtcm by
calling method receive() of its interface Nmea0183MessageListener.

Thereafter, AposNtrip instance rtcm connects to the [NTRIP| data stream by
creating a new TcpSocket so.

AposNtrip object rtem requests of TcpSocket so its associated QutputStream
object.

TcpSocket so creates a new OQutputStream ao and returns it.

AposNtrip instance rtcm assembles the [N TRIP|request to initialize the correction
data stream and writes the entire request to OutputStream ao of the

connection.

Now, AposNtrip object rtem queries of TcpSocket so its associated InputStream
object.

TcpSocket so creates a new InputStream object ai and returns it.

AposNtrip object rtem reads the first line of the N'TRIP|data stream by calling
its own readLine () method.

Method readLine () reads bytes from InputStream a: until it reaches the end of
the current line.

6. Software design and implementation 41

13. If the retrieved line does not equal to "ICY 200 OK", method connect() re-
turns to method read(), which tries to reconnect. If the retrieved line equals
to "ICY 200 OK", connecting to the data stream succeeded. Method
connect () repeatedly calls method readLine(), to read all header lines sent
from the [NTRIP| server until an empty line arrives.

14. Method readLine () reads bytes from InputStream a: until it reaches the end of
the current line.

15. The transmission of correction data starts with the next byte read from
InputStream a:. AposNtrip object rtem reads a byte and returns it to the
RtcmSc104Scanner sc.

The sequence discussed ensures that a RtcmSc104Scanner instance gets SC-104
correction data from the [APOS|[NTRIP)| caster only if the approximate location of the
\GPS| receiver is available and the connection to the caster succeeded.

Class AposGsm works similar to AposNtrip, but establishes the connection to [APOS|
via a[GSM] mobile phone modem accessed by serial line or Bluetooth socket. To access
the modem, AposGsm employs instances of class ModemWorker.

Figure displays the diagram of the classes involved in simulating GPS messages.
Class GpsReceiverSimulator estimates new coordinates by reading position data from
an instance of TPositionProvider and modifying this data with inaccuracies. In order

<<interface>>

IPositionProvider java::util:: TimerTask

:))
| ! i
<<realize>> -
N - <<interface>>
GpsReceiverSimulator | - - - - - - > Icte ace;.
onnection

<<interface>>
IGeodeticSystem

<<realize>>

<<interface>>
java::lang::Runnable

A«realize» A <<realize>>
1 1 1

L L L
GpsReceiverSimulatorAdapter H MockJAviator |
T T

1 . 1 "
/<<realize>> \/<<realize>>
<<interface>> <<interface>>
ISensorDataListener [~~~ 7" 7] ISensorDataProvider

Figure 6.20: Class diagram of the GPS simulation.

to simulate satellite coherent inaccuracies, the simulator utilizes deviation information
from recorded GPS position data. Class GpsReceiverSimulator converts newly es-
timated coordinate, course, and velocity data into [NMEA] 0183 messages, which it
caches in an internal ring buffer. Class GpsReceiverSimulator implements interface
IConnection to grant access to the buffered messages by means of input streams. By
doing so, the simulator mimics the behavior of an opened connection to a GPS receiver.
Users may read the messages as quick as they like, because the input stream picks up

6. Software design and implementation 42

a message from the ring buffer and delivers it byte-by-byte until the whole message
has been sent. Slow readers will loose messages this way, but they will always get
complete messages. Every time the instance of the MockJAviator gets new actuator
data from the [FCS| it notifies registered ISensorDatalistener objects of new sensor
data. An instance of class GpsReceiverSimulatorAdapter is one of the registered
listeners, which runs as a separate thread. It converts received sensor data packets to
[33] coordinates and publishes them via the IPositionProvider interface to
the GPS receiver simulator. Additionally, class GpsReceiverSimulatorAdapter im-
plements a[TCP /IP|server that forwards the data stream of the GPS receiver simulator

to connected [TCP/IP| clients. Figure shows the described functionality.

} 7: [has speed over ground]
| getSpeedOverGround()
|
I
|

I
|
|
|
I
I
I
|
|
|
|

8: [has course over ground] }

getCourseOverGround() N |

|
N

———————— >
| | !

I
| I

11: { 12:
getinputStream() ~_ | new() PO —— }

13: getOutputStream(): ; ~ 114: new()w
o [T 7| cioususuea
t
loop 15: read() | !
|
— IR T

]
|
|
[not eof] < 16: write() 1 1 1
]
- ——————— t—————A————i————4 ————————— ?I]
|
|

e I T
/\ -+

Figure 6.21: GPS receiver simulator scenario.

The following details on the sequence depicted in Figure [6.21]

1. MockJAviator m cyclically sends to GpsReceiverSimulatorAdapter sa
SensorData objects, which contain z-, y-, and z-coordinates of the simulated
JAviator Plant, as well as their first derivatives. Additionally, the SensorData
objects convey [MU] provided values, especially the orientation of the vehicle over
ground.

2. Timer ti invokes method run() of GpsReceiverSimulator sim each time it
should generate a new set of NMEA] 0183 messages.

3. By calling method getCurrentPosition(), GpsReceiverSimulator sim queries
the current location from GpsReceiverSimulatorAdapter sa.

4. GpsReceiverSimulatorAdapter sa uses a configured reference position as an
origin. It calculates the current position by adding the content of the recently
received SensorData object to the origin by employing IGeodeticSystem gs.

6. Software design and implementation 43

10.

11.

12.

13.

14.
15.

16.

GpsReceiverSimulator sim prepares the strings necessary to compose the
0183 messages by calling its method estimateCoordinates().

By invoking method walk() of the current IGeodeticSystem instance gs,
GpsReceiverSimulator sim applies recorded deviations to the position fetched
from GpsReceiverSimulatorAdapter sa.

If available, GpsReceiverSimulator sim queries the current speed over ground
by calling GpsReceiverSimulatorAdapter sa’s method getSpeedOverGround().
GpsReceiverSimulator sim will simulate the value of the current speed over
ground, if necessary.

GpsReceiverSimulator sim queries the current course over ground by invok-
ing GpsReceiverSimulatorAdapter sa’s method getCourseOverGround(). If
not available, GpsReceiverSimulator sim will simulate the value of the cur-
rent course over ground. Thereafter, method run() assembles a new set of
0183 messages and caches them in an internal ring buffer of limited length.
Always the oldest messages in this ring buffer will be overwritten by new ones.

For every connecting client, GpsReceiverSimulatorAdapter sa creates
a separate WorkerThread wt.

Subsequently, GpsReceiverSimulatorAdapter sa starts new thread wt.

To gain access to the simulated 0183 messages, WorkerThread wt re-
quests a new InputStream from GpsReceiverSimulator sim by invoking method
getInputStream().

Method getInputStream() instantiates InputStream ms that has access to the
ring buffer cache of simulator sim.

Then, WorkerThread wt queries the OutputStream of Socket so by calling
getOutputStream().

Method getOutputStream() creates OutputStream cl.
WorkerThread wt reads one byte from InputStream ms.

WorkerThread wt writes the newly read byte to OutputStream cl. Now wt jumps
back to Step [L5| to read the next byte, as long as ms produces new bytes.

The sequence discussed ensures that new [NMEA] 0183 messages are available at each
time Timer {7 invokes GpsReceiverSimulator sim’s method run(), which always uses
the most recently received SensorData object for estimations. The sequence above
also ensures that an arbitrary number of clients can access the 0183 messages
via [TCP/IP| The usage of a ring buffer cache allows clients to read messages at any
speed they like without interfering with the creation of messages or the other clients.
However, slow clients may miss messages.

6. Software design and implementation 44

6.3.6 Module Location

This module converts linear coordinates provided by non{GPS| positioning systems to
133] coordinates, by applying Equation (4.4). Moreover, it calculates course
and speed over ground. A close-range location system must support coordinates in the
form of sentences. The general sentence format is:

$hhhhhh,d1,d2, .. .*ss<CR><LF>

The first six letters succeeding the $ are the message protocol header, which is followed
by a number of data fields, separated by commas, and a checksum. The delimiter
between the last data field and the checksum is an asterisk (*). Each sentence ends
with carriage return/linefeed. The checksum is the exclusive OR of all characters
beginning with the $ up to the asterisk. Table describes the current implemented
message format for receiving position updates from close-range location systems.

Name Example Units | Description

$ Start of sentence

Message ID | LOCPNQ Message protocol header

Tag type ULocationIntegration::Tag Location sensor type

Tag ID 00000000000020000021176 Location sensor ID

|UTC| time | 2009-05-24 00:08:50.462

Precision 0.00849146 meters | standard deviation

Status 1 O0=data not valid or
1=data valid

X 0.117011 meters | X coordinate

y 3.18593 meters | Y coordinate

z 0.84653 meters | Z coordinate

a 1.0 meters | Quaternion real part

b 0 meters | Quaternion imaginary part

¢ 0 meters | Quaternion imaginary part

d 0 meters | Quaternion imaginary part

Checksum | 4D

<CR><LF> End of message termination

Table 6.1: Message format for attaching close-range location systems.

Module Location requires the location of two sensors to calculate the course. The
message format described in Table allows conveying a quaternion for the movement
direction, but handling this is part of future enhancements.

Module Location comprises one Java archive, which exports the classes and inter-
faces LocationMessage, ILocationMessateProvider, ILocationMessagelistener,
LocationDaemon, and PositionProvider.

Figure displays the classes and interfaces of Module Location. An instance of class
LocationDaemon is responsible for receiving position updates from a close-range loca-
tion system and converting correct updates into LocationMessage objects, which it

6. Software design and implementation 45

forwards to registered ILocationMessageListener instances. Interested objects em-
ploy the ILocationMessateProvider interface to register with the daemon. Instances
of class PositionProvider receive the position updates of two different location sen-

<<interface>> <<interface>> LocationDaemon |_ <<interface>>
IGeodeticSystem ILocationMessageListener T T IConnection
1 1
T 1 1
5 - -
ObjectFactory <<realize>> | | LocationMessage | |java::|ang::Thread | | <<realize>>
1
1
) AN \v4
1 1 1 i
)) | <<realize>> <<interface>> <<interface>>
| PositionProvider |> -------- [> IPositionProvider ILocationMessageProvider

Figure 6.22: Class diagram of Module Location.

sors from the LocationDaemon and calculate course and speed over ground, as well as
the mean position between the location sensors. Other objects may poll the current po-
sition, course, and speed via interface IPositionProvider. Class PositionProvider
uses an instance of interface IGeodeticSystem for the calculations described earlier,
which it instantiates by means of static class ObjectFactory.

6.3.7 Module User Interface

This module implements a graphical user interface to visualize information that is not
shown in the [GCY| yet. It receives 0183 messages from the [GPS| receiver and
displays the current values of position, course over ground, speed over ground, [GPS|
time, as well as a birds-eye view of the trajectory. The design of this module allows
running the graphical user interface in a separate [JVM] irrespective of the [GCS]

Module User Interface comprises one Java archive, which exports the classes and in-
terfaces Altimeter, BirdsEyeFrame, BirdsEyeView, Clock, Compass, IAltitudeView,
ICoordinateView, ICourseView, INavigatorView, ISatelliteView, ISpeedView,
ITimeView, NmeaOl83MessageForwarder, NavigationFrame, NavigationMain,
Speedometer.

Figure [6.23] shows the diagram of the classes and interfaces of Module User Inter-
face. Class NavigationMain is the master routine of this module, which implements
a static main() method. When started as a program, it creates an instance of class
GpsDaemon by means of class GpsDaemonBuilder. Additionally, it creates instances
of classes BirdsEyeFrame and NavigationFrame. The instance of GpsDaemon con-
nects to the configured [GPS| receiver and forwards received 0183 messages
to registered instances of interface Nmea0183MessageListener. An instance of class
NmeaO183MessageForwarder receives the 0183 messages and distributes the
content among instances of interface INavigatorView. The instantiated class
NmeaO183MessageForwarder knows, which of the interfaces derived from
INavigatorView a registered instance implements. The Nmea0O183MessageForwarder
sends polar coordinates to instances of ICoordinateView, altitude values to instances
of TAltitudeView, speed values to instances of ISpeedView, course values to instances

6. Software design and implementation 46

Nmea0183MessageForwarder

<<interface>>
INavigatorView

T

0.* 0.* 0.* 0.* 0.* 0.*
<<interface>> <<interface>> <<interface>> <<interface>> <<interface>> <<interface>>
ICoordinateView IAltitudeView ITimeView ISpeedView ICourseView I1SatelliteView

AN AN AN AN

1 <<realize>> : <<realize>> : <<realize>> : <<realize>> : <<realize>>
1

BirdsEyeView
BirdsEyeFrame | NavigationFrame |
/|\ <<interface>>

| NavigationMain | IConnection

L L L L
|Altimeter | | Clock | |Speedometer | |Compass |

T T T

0 <<realize>>

<],___________________________________

<<interface>>

GpsDaemonBuilder | GpsDaemon [-~~~ "~~~ """ T""T"""T--T-o oo oo > Nmea0183MessageListener

Figure 6.23: Class diagram of Module User Interface.

of ICourseView, and satellite updates to instances of ISatelliteView. To instances of
ITimeView and to all other descendants of interface INavigatorView the instantiated
Nmea0O183MessageForwarder sends the timestamp of the corresponding 0183
message.

An instance of BirdsEyeFrame embeds one instance of class BirdsEyeView, which
displays the last 100 position updates of the trajectory as a set of dots. Instances of
NavigationFrame visualize instances of classes Altimeter, Clock, Speedometer, and
Compass. It is the running NavigationMain that registers the instantiated views of
BirdsEyeFrame and NavigationFrame with the NmeaO183MessageForwarder instance.
Hence, the frames and views are completely unaware of the providers of the data they
are visualizing.

6.3.8 Module JAviator Control

This module implements the controllers for manual and autonomous flights of the
JAviator, as developed in Chapter [5] It is the main module of the [FCS| running in
the on the JAviator's Gumstix, together with Modules Input/Output, Utilities,
Communication, Course, GPS, and Location.

Module JAwiator Control comprises one Java archive, which exports the classes
and interfaces IControlAlgorithm, IController, JControl, JControlMain,
PDDController, and PositionControlAlgorithm.

Figure visualizes the classes and interfaces of Module JAwiator Control. Class
JControlMain implements the main() routine to run the [FCS At startup it instan-
tiates a Dispatcher for dispatching messages, an ISetCourseSupplier to handle set

6. Software design and implementation 47

courses, an IPositionProvider for querying the current position, a JControl object
for flight control, a TransceiverAdapter to connect to the Plant, and a TcpServer
for incoming connections from the [GCS| Thereafter, JControlMain registers
the instances of TransceiverAdapter, JControl, and TcpServer with the instance
of Dispatcher. Finally, JControlMain spawns the TcpServer object off as a sepa-
rate thread and starts the timer to periodically invoke the JControl run() method.
Class JControl is responsible for instantiating the configured IControlAlgorithm.

<<interface>> JControlMain I TransceiverAdapter
ISetCourseSupplier ii:l

r - <<interface>>

<<interface>> Dispatcher I, oo {> |DataTransferObjectProvider
IPositionProvider <rdalize>> i
1 A«realize» y

1

/:\ X <<interface>>
| JControl b oo [> ISender

Vi
: PilotData k< N L >| NavigationData | | PDDController |
' <<interface>>
- P ! IControlAlgorithm : .
java::util:TimerTask ' | SensorData < F ->| ShutdownEvent v<<real|ze>>
1
1

\/ T <<realize>> i -
|Actuat0rData |<- - <| PositionControlAlgorithm |» e e m e - -> IController

<<realize>>

Figure 6.24: Class diagram of Module JAviator Control.

Instances of class JControl receive SensorData objects from the Plant, as well as
NavigationData, PilotData, and ShutdownEvent objects from the [GCS| When per-
forming manual flights, the JControl instance forwards the NavigationData and
SensorData objects to the IControlAlgorithm instance, which returns the new mo-
tor nominal values as an ActuatorData object. The [GCS|sends PilotData objects to
switch from manual to autonomous flights and vice versa. In autonomous-flight mode,
the JControl instance forwards sensor data, position, course over ground, speed over
ground, and set course data to the IControlAlgorithm instance, which also returns an
ActuatorData object. Every time the timer invokes the run() method, the JControl
instance sends the current ActuatorData object to the Dispatcher instance, which
routes it to the Plant.

Class PositionControlAlgorithm is currently the only implementation of interface
IControlAlgorithm. It is this class that realizes the controllers depicted in Figure|5.1
by creating IController instances for the roll, pitch, yaw, altitude, x position, and y
position as required by its configuration.

Class PDDController realizes interface IController by implementing a PD? con-
troller. It estimates the second derivative of the control variable internally, if not
available. The implementation allows configuring a controller saturation of both pro-
portional and derivative parts.

Figure[6.25/shows the initialization sequence of class JControlMain, which the following
enumeration explains in more detail.

1. JAviator control main class JControlMain instance cm creates a new Dispatcher
object dp.

6. Software design and implementation 48

cm:]ControlMain of:ObjectFactory

1 1: new() r 1N :Di her
L : : | | |
| <! InstantiateObject() , . ta-TransceiverAdapte
2: instantiateObject() SR | 3 new() ‘
T I
I _ ' 4:instantiateObject() I
} 5: new() Q bt:BufferedTransceiver ‘ }
|
| 6: new() | tr:Transceiver ‘ I
i : f I
|__,7: instantiateObject() 8 new(Connection }
-] FH-————-—1 F———-3 F-----4 |
S N e =N ; |
—————————————— t =] | |
e —— e — - > I | I |
—_——fm— e — e L
Kemmmmmm o= - T<T‘ I I : ! : }
s i i I : |
9: instantiateObject() 10: new() pp:IPositionProvider i |
€ mmm e —— - — L~]< ——————————————————————————————— ! I
i i i I . I |
11: instantiateObject() ~_ 12: new() celSetConreaSupplior | | }
- ————— — —— — i e T | | |
i i i - | I I
13: instantiateObject() ~_ | 14: new() icIControl 1 | | :
,,,,,,,,,,,,,,,,,,,,,,,,,, I I
< 15: setDtoProvider(dp) ! ~ | 16: *addDataTranlsferObjectListener() l l !
. . i P I R
17: setPositionProvider(pp) | ! | } I }
I DD ! I } I
< 7777777777777 PN r--T T T T T T T T T T T T T T | | ‘ |
18: setSetCourseSupplier(cs), I | ! |
e ‘r ,,,,,,,,,,,,,,, ?E‘] ‘ I } }
A . ; I | |
19: instantiateObject() ~_ | 20: new() } } } \ 1
,,,,,,,,,,,,,,,,,,,, |
< 21: setDtoProvider(dp) | ~ ‘ l 22: "‘addDataTrar{sferObjectListener() l l !
| v | | ! | >[:]
,,,,,,,,,,,,,,,, e - 1]
< 23: start() | < T\ : ‘r : !
! I I I I
Ke—mmmmm == Femm————— ?E:] I | I } I
! I I I | I

Figure 6.25: Initialization sequence of class JControlMain.
2. By employing ObjectFactory of, JControlMain cm creates a new instance of
class TransceiverAdapter to connect to the JAviator Plant.
3. ObjectFactory of instantiates a new TransceiverAdapter ta.

4. TransceiverAdapter ta uses ObjectFactory of to construct a new instance of
class BufferedTransceiver.

5. ObjectFactory of creates a new BufferedTransceiver bt.
6. BufferedTransceiver bt instantiates its underlying Transceiver tr.

7. Transceiver tr opens the connection to the JAviator Plant by calling method
instantiateObject () of ObjectFactory of.

8. ObjectFactory of constructs a new IConnection object co that represents the
connection to the JAviator Plant.

9. JControlMain cm instantiates the configured position provider by calling method
instantiateObject () of ObjectFactory of.

10. ObjectFactory of creates the requested position provider pp.

11. JControlMain cm constructs the configured set course supplier by calling method
instantiateObject () of ObjectFactory of.

12. ObjectFactory of creates the required set course supplier cs.

6. Software design and implementation

49

13.

14.
15.
16.
17.
18.
19.

20.
21.
22.

23.

JControlMain cm builds the configured JAviator controller by calling method
instantiateObject () of ObjectFactory of.

ObjectFactory of instantiates JAviator controller jc.

JControlMain cm registers Dispatcher dp with JControl jc.

JControl jc registers with Dispatcher dp for all types it needs to receive.
JControlMain cm registers IPositionProvider pp with JControl jc.
JControlMain cm registers ISetCourseSupplier cs with JControl je.

JControlMain c¢m builds the configured TcpServer instance by calling
ObjectFactory of’s method instantiateObject().

ObjectFactory of constructs the requested TcpServer object.
JControlMain cm registers Dispatcher dp with TcpServer ts.
TcpServer ts registers with Dispatcher dp for all[DTO|types it needs to forward.

JControlMain cm starts TcpServer ts as a separate thread.

The sequence discussed initializes all objects necessary to control the JAviator Plant
for manual and autonomous flights.

Figure depicts the sequence for manual and autonomous flight control.

l pp:IPositionProvider ‘ l sc:ISetCourseSu Iier‘ l co:PositionControlAlgorithm ‘ l dp:Dispatcher ‘
T ™= T T T =T =2
1%
runQ T 2: dispatch(:ActuatorData) ! ! 1 } |
| | | | | !
s 3: receive(:PilotData) I I]] !
| 4: [autonomous flight] ! ! ! } }
! VL loadSetCourse() | g | \ i
. P S J o A __1> !
| | | | | >—r— |
alternative J _; 5: receive(:SensorData) I I I ; o ;
6: getCurrentPosition() ! } } } }
[autonomous flight] 77777777777777?’:} | I I |
7: getCourseOverGround() . ! ! ! ! !
| | I I
Y w w ! !
8: getSpeedOverGround() ! } } | |
,,,,,,,,,,,,,,?’:} ! !
9: getSetCoursePosition() 1 ! ! | |
,,,,,,,,,,,,,,,, 1] | |
| T |
10: apply() | ! !
- actwatordan ______ . o _____ T l l
b S B DR R Bk Bttty >
F-—————= ———— g —————— i F—————————— o —— e il Sl SRRl
[manual flight] 11: receive(:NavigationData) | | | N |
]]]]
e —— E— E——
1 1 12: receive(:SensorData) } } } T e
13: appl | I
pply(. | |
l< _actuatorData _ _ _ ___ R — e D‘ I I
L et o A +>1 | !
I N ! T }

Figure 6.26: Flight control sequence.

In the following, the sequence shown Figure is explained in more detail.

6. Software design and implementation 50

10.

11.

12.
13.

. Timer 7 periodically invokes method run() of JControl object jc. The invoca-

tions cycle time of 20 ms is part of the configuration.

JControl instance jc sends the currently available actuator data, that is, the
revolution speed nominal values for the Plant’s motors, to the Dispatcher dp for
transmission to the JAviator Plant.

Dispatcher dp delivers a PilotData [DTO|to JControl object jc.

If the received PilotData is a message to start an autonomous flight,
JControl object jc instructs ISetCourseSupplier instance sc to load the corre-
sponding set course. If sc succeeds in loading the requested set course, jc switches
to autonomous-flight mode.

Steps 9| to [10| apply to autonomous flight control only. Dispatcher dp forwards
a SensorData [DTO] to JControl instance jc.

JControl instance jc queries the current location by calling method
getCurrenPosition() of IPositionProvider pp.

JControl instance jc retrieves the current course over ground by invoking method
getCourseOverGround () of IPositionProvider pp.

JControl instance jc determines the current speed over ground by accessing
method getSpeedOverGround() of IPositionProvider pp.

JControl instance jc ascertains the current set course position by calling method
getSetCoursePosition() of ISetCourseSupplier sc.

JControl instance jc calculates new actuator data by applying both the current
and the desired values, retrieved for position, speed, and course, to
PositionControlAlgorithm co.

Steps [11] to [13] apply to manual flight control only. Dispatcher dp delivers a

NavigationData to JControl instance jc. Object jc caches the for
further use.

Dispatcher dp routes a SensorData to JControl instance jc.

JControl instance jc computes new actuator data by applying the received ob-
jects of type NavigationData and SensorData to PositionControlAlgorithm
co.

The sequence discussed presents the details of manual and autonomous flight control
of the JAviator developed by this thesis.

6.4 Summary

This chapter presents the design and implementation of the JNavigator software. Af-
ter outlining the basic concepts, it explains the functional model and describes the
implemented software modules in detail.

7

Evaluation

This chapter exemplifies time responses of the designed controllers, interprets the path
following results, and investigates the behavior. It focuses on autonomous
flights, because a significant amount of work has been done already in the domain of

model [TAVk.

Figure [7.1] shows the test arrangement used with for Plant, [FCS], and [GCS|
The Plant executes instances of MockJAviator and GpsReceiverSimulator.
Every time an actuator data packet arrives at instance MockJAviator, it calculates
the new state of the virtual helicopter and sends a sensor data packet to both [FCY
and GpsReceiverSimulatorAdapter. Every 100 ms, instance GpsReceiverSimulator

Plant Flight Control System

GpsReceiverSimulator TcpSocket 3 GpsDaemon RollController
<tr—1- ----——---

A

| I

| |

| Mock|Aviator TcpSocket 1 Transceiver 1 | AltitudeController PitchController
| |

I I

I <tr—1- <— I

| |

I | A I

| \Vi | |

A A
| |

% GpsReceiverSimulatorAdapter % TransceiverAdapter 1 % Adapter | |
| |
| |
| |
| |
| |
|

A
\Vi !
TcpServer Dispatcher Control PositionControlAlgorithm
,,,,, <7 S
i -
A\

| | \l/

TransceiverAdapter 2 % SetCourseSupplier % X Controller

YawController

]
I
|
I
I
|
I
|
Ground Control System \l/

v v v
ControlTerminal TcpSocket 2 Transceiver 2 CoursePlanner WGS 84 Y Controller
—H--B k<

Figure 7.1: Test arrangement comprising separate JVMs for Plant, FCS, and GCS.

polls the current position from instance GpsReceiverSimulatorAdapter and creates

a new set of NMEA| 0183 messages, which the accesses via a connection.

7. Evaluation 52

Object GpsReceiverSimulator imitates an ideal location system and, for some tests,
applies deviation data to emulate position inaccuracies. The [GCS runs instance

ControlTerminal, which connects to the also via [TCP/IP|

JControl is the main component in the [FCS| It employs PositionControlAlgorithm,
GpsAdapter, and SetCourseSupplier instances to compute new actuator data for the
Plant in response to received sensor data. The communication between JControl and
Plant uses Dispatcher for delivering [DTOp, TransceiverAdapter_1 for transforming
packets to and back again, Transceiver_1 for packet assembling and disas-
sembling, and TcpSocket_1 for communication. Instance ControlTerminal
visualizes the current vehicle status by presenting gauges for altitude, roll, pitch, and
yaw, as well as a view of the vehicle. The communication path from [GCY to
JControl comprises TcpServer for connection establishment, TcpSocket 2 for ac-
tually interchanging data, Transceiver 2 for packet assembling and disassembling,
TransceiverAdapter 2 for transforming packets to and back again, and
Dispatcher for delivering DTOp. Object SetCourseSupplier uses instances WGS 84
and CoursePlanner to calculate nominal positions for autonomous flights. To
accomplish its task, the PositionControlAlgorithm utilizes instances of class
PDDController as sub controllers named RollController, PitchController,
YawController, AltitudeController, X_Controller, and Y_Controller.

7.1 Altitude flight control

The altitude controller is responsible for holding the helicopter at a certain height. It
should respond fast, but not overshoot the target value to avoid unexpected crashes
to ground and ceiling. It is critical to harmonize altitude and attitude controllers,
because a slow altitude controller and fast attitude controllers cause the vehicle to
lose height temporarily when the vehicle’s attitude changes. The parameters of the
controller were found by experimenting with the values for proportional and derivative
gains. Figure shows the helicopter’s responses to altitude steps (a) from 0.5 m to
1.5 m and (b) back again.

(a) (b)

1.5 1.5
E) E)
=1.0- =1.0-
S , < ,
= =
£ 0.5 = 0.5
< . <]
0.0 I I I I I 0.0 I I I I I
0 1 2 3 4 5 0 1 2 3 4 5
Time [s] Time [s]

Figure 7.2: The helicopter’s responses to a step input command (a) from 0.5 m to
1.5 m and (b) from 1.5 m to 0.5 m.

7. Evaluation 53

As visualized, the altitude controller adjusts 85% of the height difference within 1.5 s
and reaches 99% after 4.6 s.

7.2 Attitude flight control

The attitude controllers are concerned with stabilizing the angles roll, pitch, and yaw.
In order to quickly respond to new desired angle values, the controller may overshoot
up to 30%. This causes the helicopter to sway a little, but nevertheless makes no odds.
It is essential that the attitude controllers swiftly adapt to new nominal values for
rapidly following a set course. For the attitude controller tests, the virtual helicopter
evenly hovers at 0.5 m for some 10 s, before the attitude nominal values change. Again,
the controller parameters were found by experimenting with the values for proportional
and derivative gains. Figure visualizes the time responses to (a) a 10° roll, (b) a
10° pitch, and (c) a 20° yaw step input command. Moreover, Figure presents the

(a) (b) (c)

]] 25
_10- — 10- 20
=] 5 & 157
S] =] 5 N
5 5 10
]] 5
0 T [T [T [0 T [T | T [0 - T [T [T |
0o 1 2 3 o 1 2 3 0o 1 2 3
Time [s] Time [s] Time [s]
(d) (e) (f)
i0 20 ~— £0.50 £0.50
s g .
= = =
E 0-49 [T [T [T | E 0.49 | T [T | T [E 0.49 [T [T [T [
= 0 1 2 3 = 0 1 2 3 = 0 1 2 3
Time [s] Time [s] Time [s]

Figure 7.3: The helicopter’s attitude responses to (a) roll, (b) pitch, and (c) yaw step
input commands, as well as the corresponding altitude responses.

corresponding altitude time responses. The roll and pitch controllers compensate their
steps better than 90% within 1.5 s and reach 99% before 2 s. Within 1.6 s, the yaw
controller adjusts to the new nominal value better than 10% divergence and manages
1% before 3 s. Subfigures (d) and (e) indicate that the helicopter’s altitude wanes no
more than 5 mm on a 10° attitude change. Subfigure (f) visualizes that yaw changes
have no more than 1 mm impact to the JAviator’s altitude.

7. Evaluation 54

7.3 Position flight control

As developed in Chapter |5, two independent controllers manage the east and north
position of the helicopter. Once again, the parameters of the controllers were found by
experimenting with the values for proportional and derivative gains. Figure visual-
izes the time responses for (a) a 10 m move eastwards and (b) a 10 m move northwards,
without overshooting the desired target position. Subfigures (c) and (d) visualize roll
and pitch of the helicopter while moving eastwards and northwards, respectively. As
expected, the roll and pitch controllers cause the helicopter to sway a little. Subfig-
ures (e) and (f) indicate that the vehicle’s altitude falls off no more than 5 mm on a
10 m move. The east and north controllers reach 99% of the 10 m move within 10 s.

EFyTa EFyr

° 0 50 ___/J_,____V_/—N\/\ ° O 50 "\—\\—/_/_, \ A

o] — = i

= S

E 0.49 T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T E 0.49 T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T

= 01234567289 = 01234567289
Time [s] Time [s]

Figure 7.4: The helicopter’s position, attitude, and altitude responses to a 10 m step
input command for moving eastwards (left) and northward (right), respectively.

In addition to the time responses shown above, the controller ability to pin the JAviator
to a particular point is crucial. The following paragraphs investigate the performance
of the position controllers utilizing both ideal and inaccurate location systems.

When provided an ideal positioning system, the east and north position controllers are
able to keep the vehicle hovering within a 1.8 cm deviation circle. Figure visualizes
the recorded 34 s trajectory. The presented trajectory is rather square, due to the
fact that the simulated Plant, that is, the MockJAviator, provides position data only

7. Evaluation 55

| —Trajectory
15 18cm Error
1.0
— 0.5
£
L,
4’% 00 e — 1 PN A
S
0.5
—1.0
—1.5 1
-2.0 \ \ \ | \ \

|
-20-15-10-05 0.0 05 1.0 1.5
East [cm]

Figure 7.5: Position controller performance with an ideal positioning system applied
(1.8 cm error circle, 34 s flight time).

in millimeter precision. The real JAviator employs a receiver that provides a
position accuracy of eight decimal digits, which is approximately the same precision.

To simulate inaccuracies of real [GNSS| the [GPS| receiver simulator applies location
deviations recorded by real [GPS| receivers. It is important that the period of data
recording is equal to the period of simulating, because this enables the [GPS| receiver
simulator to deliver authentic data. The midpoint of the recorded locations becomes
deviation data origin. The data provided to the [GPS receiver simulator are deviations
of latitude, longitude, and altitude in meters. At startup time, the simulator loads its
deviation data into a ring list. Each time the simulator receives a location data packet
from the MockJAviator, it adds the current deviation data entry to the newly arrived
position and delivers the result. For each subsequent received location data packet,
the simulator advances one pace to the next deviation entry in the list to apply it.
Figure visualizes a 60 s [DGPY] rectified recording of the JAviator’s [GPS receiver
at 10 Hz update rate. The largest deviation between reported and actual positions is
1.4 m.

7. Evaluation 56

— Trajectory [
----- 1 m Error

North [m]

~1.0 ‘ -

-15 —-1.0 —-05 0.0 0.5 1.0
East [m]

Figure 7.6: 60 s DGPS corrected deviations recorded by the JAviator’s GPS receiver at
10 Hz update rate for emulating inaccuracies (1 m error circle, 1.4 m maximum error).

Figure shows a 60 s trajectory of the MockJAviator as the GPS receiver simulator
applies the deviation data depicted in Figure [7.6l As displayed, the helicopter’s tra-
jectory does not fit at all to the utilized deviation data. It is the inertia of the position

— Trajectory |
----- 1 m Error
0.5 '
E)
<= 0.0
3
e
—0.5
—-1.0 I T - T T T

-15 —-1.0 -05 0.0 0.5 1.0
East [m]

Figure 7.7: Position controller hover performance as the GPS receiver simulator applies

the recorded deviation data shown in Figure (1 m error circle, 60 s trajectory, 1.15 m
maximum error).

controller that causes these discrepancies. However, the helicopter keeps within the
1 m error circle better than the recorded deviation data suggest. The largest difference
between reported and actual positions is 1.15 m.

7. Evaluation 57

7.4 Autonomous flight control

This section presents results of three autonomous-flight experiments. The first two
experiments investigate how accurate the implemented position controller moves the
helicopter along a given set course dependent upon ideal and inaccurate location sys-
tems. The third experiment verifies the limitations of the position controller.

The applied set course is the same for all of the following experiments. It starts at the
origin and proceeds (1) 10 m eastwards, (2) 10 m northwards, (3) 20 m westwards, (4)
20 m southwards, (5) 20 m eastwards, and (6) diagonally back to the origin.

7.4.1 Experiment 1 - ideal location systems
In the first experiment, an ideal location system is connected to the position controller.
This test shows how exactly the controller stirs the vehicle along a given set course.

The average set course velocity is 0.5 m/s in this experiment. Figure depicts the
position controller performance when utilizing an ideal location system. The controller

(3)

— Trajectory (2)
~~~~~~ Set Course

_10; N

East [m]

Figure 7.8: Path following at 0.5 m /s average velocity utilizing an ideal location system.

is able to keep the vehicle’s flight path within a few centimeters of lateral difference
at following a linear set course. The helicopter’s trajectory does not reach the corners
stipulated by the set course, due to the inertia of the position controllers.



7. Evaluation 58

In addition to lateral variances, the deviation between set course position and vehicle
position is of particular interest. It is this deviation that rounds the vehicle’s trajectory
at square set courses. Figure [7.9] visualizes the follow-up error of the first experiment
regarding to time. As displayed, the deviation between helicopter and set course is less
than 2 m at an average speed of 0.5 m/s.

mo® e W B
2 : : : : :

ER :

5
E 0 hem e S R .......

:

A |

—17 — — North \xvvwdél

| | M : _

_2 T . T ‘ T . T ‘ T . T ‘ T . T ‘ T . T ‘ T . T ‘ T . T ‘ T . T ‘ T . T ‘ T .

0 20 40 60 80 100 120 140 160 180
Time [s]

Figure 7.9: East and north deviations during path following at 0.5 m/s.

As the set course position accelerates in Segment (1), the east deviation increases to
1.8 m after 21 s and the north deviation keeps smaller than 15 mm. Now, the set course
position enters Segment (2), but the has not yet mastered Segment (1). While
the set course position advances north, the [UAV] cuts the corner and tries to follow.
This causes the east deviation to shrink to less than 15 mm after 13 s. However, the
north deviation grows to 1.9 m at the end of Segment (2). This scenario repeats for
the other segments, as plotted in Figure [7.9

Besides position errors, larger deviations between set course position and vehicle cause
also timing errors. Because of the follow-up error, the vehicle is not at the desired
position in time. Hence, larger distances cause longer latencies. In this experiment the
set course ends after 191 s of flight time, but the vehicle is 1.1 m east and 1.1 m north
away from its target position. The vehicle arrives at its target position 13 s late.



7. Evaluation 59

7.4.2 Experiment 2 - inaccurate location systems

In the second experiment, an inaccurate positioning system delivers location updates.
The employed GPS receiver simulator performs inaccuracy emulation by utilizing the
deviation data shown in Figure [7.6] As visualized in Figure [7.10] the [UAV] trajectory
shows deviations of about approximately the same size as displayed in Figure [7.7]
Despite location system inaccuracies and controller inertness, the position controller

(3)
10 ] ................................................................

—— Trajectory 2)
------- Set Course :

—10 ) 0 ) 10
East [m]

Figure 7.10: Path following at 0.5 m/s average velocity utilizing an inaccurate location
system.

is able to stir the helicopter along the given set course. Because of the inaccuracies
of the applied location system, this experiment delivers no further insight into the
performance of the position controllers.

7.4.3 Experiment 3 - controller limitations

The third experiment investigates the interrelation between control deviation and set
course velocity. This test uses the same set course as the previous experiments, but
increases average segment speeds. Segment (1) starts at 0.625 m/s, Segment (2) con-
tinues with 1 m/s, Segment (3) proceeds with 1.3 m/s, Segment (4) advances to 2 m/s,
Segment (5) progresses to 2.2 m/s, and Segment (6) slows down to 1.4 m/s.

Figure [7.11] exhibits the helicopter’s trajectory corresponding to this accelerating set
course. Furthermore, it exemplifies the deviation between vehicle and set course at cer-
tain positions. As displayed, the deviation between helicopter and set course increases



7. Evaluation 60

10
. - - - Trajectory
1 L Set Course i
5 »—s Deviation . [(2) L.om/s
a * Set Course Position [
. x Helicopter Position
g ]
=0
55 ]
z
—5
—10 4
‘ T ‘ T T ‘ T T ‘ T T ‘
-1 — 1
0 ° Easi(:) [m] ) 0

Figure 7.11: Path following at miscellaneous velocities.

as the average velocity of the corresponding segment waxes. Figure depicts this
observation in detail. In Segment (1), the position controller keeps the north deviation
below 1.3 cm, but allows the east deviation grow up to 2.5 m. While the north devia-
tion increases to 3.8 m in Segment (2), the east deviation shrinks to 10 cm at its end.

m @ ® W G ©  Hwe

Time [s]
Figure 7.12: Deviation during path following at miscellaneous velocities.

Segment (3) causes the east deviation wax to 4.8 m after two thirds, while the north
deviation dwindles to 1 cm. In Segment (4) the east deviation diminishes to 13 cm, as
the north deviation rises to 9.6 m. Segment (5) allows the north deviation to drop off
faster than in the segments before, but causes an overshoot of 0.7 m. Meanwhile, the
east deviation jumps to 11.5 m. Because of the lower average speed in Segment (6),
the east and north deviations only reach 5.6 m and 5.3 m, respectively.



7. Evaluation 61

7.5 FCS JVM behavior

Figure [7.13| shows the experimental test bed used including an IBM ThinkPad T60p
laptop, a 100 Mbit/s network switch, and a 600 MHz Gumstix Verdex XL6P. The
laptop uses a standard Ubuntu 8.04.3 [9] installation and executes the MockJAvia-
tor as well as the in different SUN 1.5.0_16-b2 [36]. On the Gumstix,
gumstix-buildroot revision 1541 with real-time patches applied runs the [FCS|in IBM’s
[27]. To avoid side effects of slow flash memory, both [FCS|and |JVM]| have
been installed on RAM disk. A 100 Mbit/s network switch connects the Gumstix to
the laptop.

IBM ThinkPad T60p 100 Mbit/s Gumstix Verdex XL6P
(MockJAviator + GCS) Network Switch (FCS)

Figure 7.13: Experimental test bed.

To study the [JVM] behavior, the [FCS| should control the MockJaviator to hover at a
particular location. Garbage collecting should consume only 5% of available computing
power to reduce its effect to a minimum. Additionally, the is granted 52 MiB of
heap memory.

Figure [7.14h visualizes IBM’s memory utilization when running the
in autonomous-flight mode. At time 0s in the diagram, the [JVM] executes the [FCS|

about 30s. The [JVM] initiates [GCp at 93s, 226's, and 423 s. The first two [GCp
were triggered at approximately 50% of the granted memory. IBM'’s
[GC| Metronome decreases memory utilization quickly, but not abruptly to reduce its
influence. After 423 s, the memory consumption reaches its upper limit and Metronome
can no more guarantee its CPU utilization when collecting garbage. In other words,
Metronome needs more computing power to succeed.

Figure shows nominal and actual controller cycle times with respect to autono-
mous-flight time. The nominal cycle time is 20 ms, but the [FCS only manages approx-
imately 125 ms until 304 s of autonomous flight. Thereafter, the average cycle time
slumps to 50 ms until 348 s of flight time and memory utilization increases marginally
faster. After 348 s the average cycle time decreases to 30 ms, but memory utilization
ascends rapidly. After 423 s of autonomous flight, memory utilization reaches its upper
limit of 52 MiB and Metronome collects all the garbage at once. Thereafter, the cycle
time averages again at 125 ms. Cycle times that long also indicate that over 80% of
the actuator packets have been dropped.

An aggravating factor is that after starting the the system utilization reaches 100%
immediately, even without a connected [GCS| There is no more computing power left



7. Evaluation 62

—
&
N~—

4 Upper Limit : :
50 SRR R KA

40
30
20
10

0 I I I I I r 1 I I
0 50 100 150 200 250 300 350 400 450
Time [s]

Used Memory [MiB]

=

300

S

m.

[\

ot

o
|

[\)

o

e}
|

Cycle Time
—_ =
o Ot
S o
[ T

Nominal Value

1
[a=)
|

jen

T T T T
0 50 100 150 200 250 300 350 400 450

Time [s]

Figure 7.14: IBM’s WSRT-JVM running the FCS on Gumstix Verdex XLG6P.

that Metronome may claim. Hence, this experiment failed, because of system overload.
Garbage collecting is not the problem, but there are two other reasons for overload.
First, the [FCS|intensively uses double-precision arithmetic and Gumstix Verdex XL6P
boards lack a Floating Point Unit . Second, together with the real-time-patched
Linux kernel, IBM’s applies sophisticated algorithms to obtain predictable
response times, which cause additional overhead.

To show that the implemented [FCS| works properly, the Gumstix has been replaced by
a standard 3.3 GHz Intel Celeron PC for further experiments. On this hardware, a non-
real-time IBM Java 1.4.2[JVM]executes the FCS on Ubuntu 8.04.3 [9]. The initial JVM]
heap size is 16 MiB and the maximum heap size is 128 MiB. The following experiment
shows that the implemented works properly if provided enough computing power.
The subsequent experiment shows that memory utilization has an upper limit during
the JAviator’s maximum flight time, that is, about 40 min.

Figure visualizes (a) |JVM| memory utilization and (b) controller cycle time of a
480 s autonomous flight of the [FCS| in the described non-real-time environment. At
time O s in the diagram, the executes the for about 10 s. Memory utilization
has its lower limit at approximately 1.5 MiB and its upper limit at approximately
16 MiB, as shown in Subfigure (a). Although the JVM]is allowed to use much more
heap memory, its upper memory consumption is about the initial heap size.
initiated [GCp repeat at a cycle time of approximately 42 s.

Subfigure (b) visualizes that until 42 s flight time, the cycle time vigorously fluctuates
around an average of 22 ms. Then, the cycle time settles down to 21 ms in average and



7. Evaluation 63

—
&
N~—

m 15

z -

> 10

3

S -

[}

= 97

e i

%

= 0 L L A A B L B —
0 20 100 150 200 250 300 350 400 450

(b) Time [s]

£ 30

= 20

=104

Ei ]

o 0 | | | | | | | | |
0 20 100 150 200 250 300 350 400 450

Time [s]

Figure 7.15: Memory usage and cycle time when running the FCS on IBM’s Java 1.4.2
JVM on a 3.3 GHz Intel Celeron PC (non-real-time) for 480 s.

fluctuates much less. During this experiment the [FCS|induced average CPU utilization
is 1.1%.

Figure displays the [JVM| memory utilization during an 1 h autonomous flight,
which is 50% more than the real JAviator’s flight time.

@ 15

z _

> 10

@]

E ]

D]

= 97

) i

3

= 0 I I I I I I \

0 500 1000 1500 2000 2500 3000 3500
Time [s]

Figure 7.16: Memory usage when running the FCS on IBM’s Java 1.4.2 JVM on a
3.3 GHz Intel Celeron PC (non-real-time) for approximately 1 h.

Again, the upper limit is about the initial heap size of 16 MiB. However, more than
50% of the were triggered at about 8 MiB of allocated memory.

Although this two experiments ran on a non-real-time Linux system, they showed
that the implemented [FCS|is capable of controlling the JAviator if provided enough



7. Evaluation 64

computing power. These experiments depict that the required memory has an upper
limit at approximately the initial heap size of 16 MiB. The last two experiments were
successful, because the system running the was utilized only to 1.1% in average.
Controller cycle time inaccuracies are originated in non-real-time scheduling algorithms
of the applied Linux system.

To run the implemented [FCS| on an embedded system mounted on the JAviator, more
double-precision computing power is necessary. The employed Gumstix and Intel
Celeron systems are too dissimilar from each other to allow a reliable estimation of
required computing power for an embedded system without an [FPU|

It is this non-real-time setup of the last two experiments that delivered the results of
the previous sections in this chapter.

7.6 Summary

This chapter presents time responses of the developed controllers, analyzes the autono-
mous-flight results, and explores the behavior of the [FCS|[JVM]

The developed controllers are able to control altitude, attitude, and position of the
simulated helicopter in combination with both precise and inaccurate positioning sys-
tems. The controllers show their shortcomings when applied to “speedy” set courses.
The deviation between set course and helicopter increases with the set course velocity.

The implemented [FCS| needs more resources than supported by a 600 MHz Gumstix
Verdex XL6P when executing IBM’s on a Linux system with real-time
patches applied. A non-real-time test setup employing a 3.3 GHz Intel Celeron PC
shows that the implemented [FCS| works properly, but does not allow a reliable estima-
tion of required computing power regarding an embedded system without an [FPU]



8

Conclusion

This thesis has presented the design, implementation, and evaluation of the JNavigator
autopilot software. This chapter concludes the thesis by summarizing the current
implementation, outlining design strengths and weaknesses, and providing an outlook
to future work.

8.1 Current implementation

The software design focuses on flexibility and extensibility. It covers not only the JAvi-
ator’s requirements, but also easily adapts to other [UAVk. A hierarchical configuration
approach allows arbitrary reuse of components that are either included in the JNaviga-
tor or provided externally from additional libraries using the JNavigator programming
interfaces.

JNavigator substitutes the existing [FCS| and controls both manual and autonomous
flights. The[GCS|can interrupt an ongoing autonomous flight at any time. Interrupting
an autonomous flight is currently challenging for an operator, because she must provide
an appropriate vehicle altitude nominal value to avoid unintended crashes.

JNavigator verifies that the JAviator can fly a loaded set course and prepares an ac-
celeration plan before starting an autonomous flight. Creating a set course is presently
a laborious task, because low acceleration limits narrow the range of values for both
velocity and distance of sections in a flight plan.

For the determination of the current JAviator position, JNavigator employs the
0183 [I] messages from a receiver. For enhanced precision, JNavigator
can forward an available SC-104 version 2.3 [2] correction data stream to the
receiver. The correction data stream may be provided by an [4] caster,
a service or a directly connected SC-104 receiver socket, Blue-
tooth socket, or serial line). A newly implemented extension to the JAviator simulator
allows determining the current position via 0183 messages. This extension can
also be applied to convert coordinates of arbitrary positioning systems to 0183
messages.

Apart from eight calls to the operating system to access serial lines and Bluetooth
sockets, JNavigator is entirely written in the Java programming language. Calls to the

65



8. Conclusion 66

operating system are nicely abstracted to allow access to sockets, Bluetooth
sockets, and serial lines uniformly.

8.2 Design strengths and weaknesses

JNavigator’s experimental configuration described in Chapter [7]is a list of 92 parame-
ters. Many of these parameters are for initialization of instances of the same class, like,
for example, classes TcpSocket and PDDController. Employing a singleton object
that reads and verifies all configuration parameters for later use seemed unattractive,
because it adds unnecessary complexity and dependencies. This thesis suggested that
each component is provided a Properties object containing its configuration and veri-
fies the parameters itself in its initialization code. This applies to subcomponents also,
which receive their part of the configuration from their parent components. It is this
hierarchical configuration approach that allows arbitrarily reuse of components, which
are either included in the JNavigator or externally provided from additional libraries
using the JNavigator programming interfaces.

Another design strength is that components only need to know subcomponent inter-
faces. A generic object factory takes care of extracting subcomponent configurations
from the parent configuration and instantiating subcomponents via their class names.
This allows adding new components without adapting and rebuilding existing code.
Only the configuration changes. Besides of more flexibility in usage, components be-
come easily testable, because components and subcomponents are loosely coupled via
interfaces. To test a component, unit tests only have to support class names for mock
subcomponents in the component configuration.

The next design strength is that every component performs only one task. Components
employ subcomponents to execute complex jobs. This approach leads to components of
limited complexity. Together with reasonable component names, this approach results
in understandable, testable, and maintainable code.

JNavigator uses ring buffers for data exchange between threads. This is a design
strength, because threads can act independently from each other without being blocked
by others. JNavigator uses separate threads for reading and writing of each connection
stream, that is, there are two threads for handling the Plant interface, two threads for
handling the ground control interface, and two threads for handling the receiver
interface. Each reading thread receives bytes from its connection stream. Whenever
a package is complete, a reading thread forwards this packet to the dispatcher, which
routes the packet to all interested listeners. Thereafter, a reading thread continues
receiving bytes from its stream. Another thread cyclically distributes actuator data
packets to the dispatcher, which routes the packets to all interested listeners like the
writer threads of the Plant and [GCS| connections. The writer threads employ ring
buffers to allow the dispatcher passing packets without being blocked. A writer thread
takes an entire message from its ring buffer and sends it byte by byte. Reader and
writer threads are blocked when performing 1/O operations, but one thread never
blocks another thread.



8. Conclusion 67

Another design strength is that [DTOp are not changed after initialization. This allows
multiple threads to access a single [DTO] without the need of synchronization.

One design weakness is the resource utilization of this Java implementation, which
requires powerful onboard computers. The implemented software intensively needs
double-precision calculation power, which causes overload on embedded systems lacking
an [FPU|l Algorithms to enable real-time functionality in Java introduce additional
overhead.

8.3 Future work

There are several enhancements that this thesis leaves for future work. First of all,
a state estimator that integrates a location system and inertial sensors, as proposed
in [5], would provide better position information. This would allow faster position
controllers without introducing instabilities.

A future state estimator should also be able to handle two or more different location
systems concurrently. This would offer autonomous flights from inside to outside of
buildings and vice versa.

The position controller needs optimization to reduce the deviation between nominal
location and vehicle position when executing “speedy” set courses.

As mentioned earlier, creating set courses is a laborious task. Low acceleration limits
narrow the range of values for both velocity and distance of sections in a flight plan. A
future planning tool should enable an operator to quickly compose a valid set course.
Furthermore, this tool should provide a graphical user interface that allows planning
set courses via maps.

In contrast to set courses, a Vehicle Control Language would provide a higher
degree of freedom when assembling autonomous-flight plans. A future planning tool
could emit scripts to be uploaded to the m for execution. [40] exemplifies a
simple but effective [VCIL] implementation.

Currently, interrupting an ongoing autonomous flight raises high demands on an op-
erator. To avoid crashing the helicopter, synchronizing to the set course is necessary
before switching to manual flight. A future enhancement could mix manual and au-
tonomous control as follows. Whenever an operator wants to interfere an autonomous
flight, she could use the [GCSlattached joystick. The [FCS| would recognize this and
would switch to manual flight. Moreover, the [FCS would dampen altitude changes
until the operator gets a grip on controlling the altitude.

A nice extention to the [GCS| user interface would be an attitude indicator as known
from aircrafts. Another beneficial extention to the [GCSluser interface would be a bird’s
eye view that allows zooming.



References

1]

NMEA 0183, Standard for Interfacing Marine Electronic Devices, 1998. http:
//www.nmea.org,.

RTCM Recommended Standards for Differential GNSS Service, 1998.

GLOBAL NAVIGATION SATELLITE SYSTEM GLONASS, Interface Control
Document (version 5.0). http://www.glonass-ianc.rsa.ru/i/glonass/ICD02_
e.pdf], 2002.

RTCM Recommended Standards for Networked Transport of RTCM wvia Internet
Protocol (Ntrip), 2004.

Andrews, A. P., Grewal, S. M., and Weill, L. R.: Global Positioning Systems, In-
ertial Navigation, and Integration. John Wiley and Sons, Inc., New York, 2nd edi-
tion, 2007.

Auerbach, J., Bacon, D., Craciunas, S., Iercan, D., Kirsch, C., Rajan, V., Rock, H.,
and Trummer, R.: The JAviator Project. http://javiator.cs.uni-salzburg.at
(7.9.2009), 2006-2009.

Auerbach, Joshua, Bacon, David F., Iercan, Daniel, Kirsch, Christoph M., Rajan,
V. T., Rock, Harald, and Trummer, Rainer: Low-latency time-portable real-time

programming with exotasks. Trans. on Embedded Computing Sys., 8(2):1-48, 2009,
ISSN 1539-9087.

Bundesamt fiir Eich- und Vermessungswesen (BEV): APOS - Austrian Posi-
tioning Service. http://www.bev.gv.at/portal/page?_pageid=713,1571538&_
dad=portal&_schema=PORTAL (7.9.2009), April 2009.

Canonical Ltd.: Ubuntu. http://www.ubuntu.com (7.9.2009), September 2009.

CISRO ICT Centre: CSIRO Precision Location Technology (PLT). http://www.
ict.csiro.au/page.php?did=67&print=print (7.9.2009), 2009.

Conte, Gianpaolo, Duranti, Simone, and Merz, Torsten: Dynamic 3d path fol-
lowing for an autonomous helicopter. In Proceedings of the IFAC Symposium on
Intelligent Autonomous Vehicles., 2004.

Craciunas, S., Kirsch, C., Payer, H., Rock, H., Sokolova, A., Stadler, H.,
and Staudinger, R.: The Tiptoe Project. http://tiptoe.cs.uni-salzburg.at
(7.9.2009).

68


http://www.nmea.org
http://www.nmea.org
http://www.glonass-ianc.rsa.ru/i/glonass/ICD02_e.pdf
http://www.glonass-ianc.rsa.ru/i/glonass/ICD02_e.pdf
http://javiator.cs.uni-salzburg.at
http://www.bev.gv.at/portal/page?_pageid=713,1571538&_dad=portal&_schema=PORTAL
http://www.bev.gv.at/portal/page?_pageid=713,1571538&_dad=portal&_schema=PORTAL
http://www.ubuntu.com
http://www.ict.csiro.au/page.php?did=67&print=print
http://www.ict.csiro.au/page.php?did=67&print=print
http://tiptoe.cs.uni-salzburg.at

References 69

[13]

[14]

[15]

[16]

[25]

Crosby, Graeme K., Kraus, Donna K., Ely, William (Bill) S., Cashin, Timothy P.,
McPherson, Keith W., Bean, Kevin W., Stewart, Joy M., and Elrod, Dr. Bryant
D.: A Ground-based Regional Augmentation System (GRAS) - The Australian
Proposal. Presented at ION GPS2000, Salt Lake City, UT, September 2000.

Egerstedt, M., Hoffmann, F., Koo, T. J., and Sastry, S.: Path planning and flight
controller scheduling for an autonomous helicopter. Lecture Notes in Computer
Science, 1569:91-102, 1999.

EUROCONTROL: Ground-Based Augmentation System (GBAS). http://www.
ecacnav.com/Future_Applications/GBAS (7.9.2009), 2000—2008.

EUROCONTROL: Satellite-Based Augmentation Systems (SBAS). http://www.
ecacnav.com/Future_Applications/SBAS/SBAS_Home.html (7.9.2009), 2000-
2009.

European Commission, Transport: Galileo. http://ec.europa.eu/transport/
galileo/index_en.htm (7.9.2009), September 2009.

European Space Agency (ESA): The present - EGNOS Navigation. http://wuw.
esa.int/esaNA/egnos.html (7.9.2009), 2000-2009.

Federal Aviation Administration: Local Area Augmentation System - How It
Works. http://www.faa.gov/about/office_org/headquarters_offices/ato/
service_units/techops/navservices/gnss/laas/howitworks/ (7.9.2009),
August 20009.

Fregene, K., Lai, G., and Wang, D.: A control structure for autonomous model
helicopter navigation. In Canadian Conference on FElectrical and Computer Engi-
neering, volume 1, pages 103-107, Portoroz, Slowenien, April 2000.

Gumstix, Inc. http://www.gumstix.com/ (7.9.2009), August 2009.

Hoffmann, F., Koo, T. J., Shim, H., Sinopoli, B., and Sastry, S.: Hybrid control of
an autonomous helicopter. In IFAC' Workshop on Motion Control, pages 285-290.
AMS Press, 1998.

Hoffmann, Frank, Koo, Tak John, and Shakernia, Omid: Fvolutionary design of
a helicopter autopilot. In 3rd On-line World Conf. on Soft Computing (WSC3),
pages 201-214, 1998.

Hoffmann, Gabriel M., Jang, Jung Soon, Tomlin, Claire J., and Waslander, Steven
L.: Multi-agent quadrotor testbed control design: Integral sliding mode vs. rein-
forcement learning. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 468-473, Edmonton, AB, Canada, August
2005.

Hoffmann, Gabriel M., Tomlin, Claire J., and Waslander, Steven L.: Quadrotor
helicopter trajectory tracking control. In Proceedings of the AIAA Guidance, Navi-
gation, and Control Conference, Honolulu, HI, August 2008. ATAA Paper Number
2008-7410.


http://www.ecacnav.com/Future_Applications/GBAS
http://www.ecacnav.com/Future_Applications/GBAS
http://www.ecacnav.com/Future_Applications/SBAS/SBAS_Home.html
http://www.ecacnav.com/Future_Applications/SBAS/SBAS_Home.html
http://ec.europa.eu/transport/galileo/index_en.htm
http://ec.europa.eu/transport/galileo/index_en.htm
http://www.esa.int/esaNA/egnos.html
http://www.esa.int/esaNA/egnos.html
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/laas/howitworks/
http://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/laas/howitworks/
http://www.gumstix.com/

References 70

[26]

[27]

[28]

[29]

[30]

[31]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

International Business Machines Corp.: Metronome. http://researchweb.
watson.ibm.com/metronome/ (7.9.2009), June 2008.

International Business Machines Corp.: WebSphere Real Time. http://www.ibm.
com/software/webservers/realtime (7.9.2009), August 2009.

Johnson, Eric N. and DeBitetto, Paul A.: Modeling and simulation for small au-
tonomous helicopter development. ATAA, 1997.

Kim, H. J., Shim, D. H., and Sastry, S.: Flying robots: Sensing, Control and
Decision Making. In ICRA °02. IEEE International Conference on Robotics and
Automation, volume 1, pages 66—71, Washington, DC, USA, May 2002.

Kim, H. Jin and Shim, David H.: A flight control system for aerial robots: algo-
rithms and experiments. Control Engineering Practice, 11(12):1389-1400, Decem-
ber 2003.

Kottmann, Markus: Software for Model Helicopter Flight Control technical report
316. http://www.uav.ethz.ch/research/publications/316.pdf (7.9.2009),
March 1999.

Leishman, J. G.: Principles of Helicopter Aerodynamics. Cambridge University
Press, New York, 2nd edition, 2006.

NIMA: DoD World Geodetic System 1984 - Its Definition and Relationships
with Local Geodetic Systems. Technical Report TR8350.2, National Geospatial-
Intelligence Agency, 2000. http://earth-info.nga.mil/GandG/publications/
tr8350.2/wgs84fin.pdf (7.9.2009).

Priyantha, N., Chakraborty, A., and Balakrishnan, H.: The Cricket Location-
Support system. In Proceedings of the Sixth Annual ACM International Conference
on Mobile Computing and Networking (MOBICOM), Boston, MA, August 2000.

Singh, Arjun: GAGAN - A wisionary approach. http://www.mycoordinates.
org/gagan-july-05.php (7.9.2009), July 2005.

Sun Microsystems: Sun Developer Network. http://java.sun.com (7.9.2009),
February 2009.

Ubisense: Ubisense Precise Real-time Location. http://www.ubisense.net/
(7.9.2009), 2009.

U.S. Department of Homeland Security: GENERAL INFORMATION ON GPS.
http://www.navcen.uscg.gov/gps/default.htm (7.9.2009), September 2009.

Ward, A., Jones, A., and Hopper, A.: A New Location Technique for the Active
Office. IEEE Personal Communications, 4(5):42-47, October 1997.

Williams, Adam: Vicacopter autopilot. http://coptershyna.sourceforge.net/
(7.9.2009), June 20009.


http://researchweb.watson.ibm.com/metronome/
http://researchweb.watson.ibm.com/metronome/
http://www.ibm.com/software/webservers/realtime
http://www.ibm.com/software/webservers/realtime
http://www.uav.ethz.ch/research/publications/316.pdf
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://www.mycoordinates.org/gagan-july-05.php
http://www.mycoordinates.org/gagan-july-05.php
http://java.sun.com
http://www.ubisense.net/
http://www.navcen.uscg.gov/gps/default.htm
http://coptershyna.sourceforge.net/

References 71

[41] Yasuda, A.: Japan: Augmenting navigation. http://www.mycoordinates.org/
japan_augmenting navigation.php (7.9.2009), February 2008.

[42] Zogg, Jean Marie: Essentials of Satellite Navigation (u-blox Compendium). http:
//www.u-blox.com/technology/GPS-X-02007.pdf (7.9.2009), April 2007.


http://www.mycoordinates.org/japan_augmenting_navigation.php
http://www.mycoordinates.org/japan_augmenting_navigation.php
http://www.u-blox.com/technology/GPS-X-02007.pdf
http://www.u-blox.com/technology/GPS-X-02007.pdf

List of abbreviations

3-D
APOS
BEV
DGPS
DTO
EGNOS
FCS
FPU
GAGAN
GBAS
GC
GCS
GGA
GLONASS
GNSS
GPRS
GPS
GRAS
GSM
IMU
JRE
JVM

3-dimensional

Austrian Positioning Service

Bundesamt fiir Eich- und Vermessungswesen
Differential

Data Transfer Object

European Geostationary Navigation Overlay System
Flight Control System

Floating Point Unit

Aided Geo Augmented Navigation
Ground-Based Augmentation System

Garbage Collection

Ground Control System

Global Positioning System Fixed Data
Globalnaja Nawigazionnaja Sputnikowaja Sistema
Global Navigation Satellite System

General Packet Radio Service

Global Positioning System

Ground-Based Regional Augmentation System
Global System for Mobile Communications
Inertial Measurement Unit

Java Runtime Environment

Java Virtual Machine

72



List of abbreviations 73

LAAS
MSAS
MTSAT
NMEA
NTRIP
RMC
RTCM
RTK
SBAS
TCP/IP
UAV
UGV
UMTS
UTC
VCL
VTG
WAAS
WGS 84
WLAN

Local Area Augmentation System

IMTSAT] Satellite Augmentation System
Multifunctional Transport Satellite

National Marine Electronics Association

Networked Transport of via Internet Protocol
Recommended Minimum Specific Data

Radio Technical Commission for Maritime Services
Real-Time Kinematics

Space-Based Augmentation System

Transmission Control Protocol / Internet Protocol
Unmanned Aerial Vehicle

Unmanned Ground Vehicle

Universal Mobile Telecommunication System
Coordinated Universal Time

Vehicle Control Language

Course Over Ground and Ground Speed

Wide Area Augmentation System

Department of Defense World Geodetic System 1984

Wireless Local Area Network

WSRT JVM WebSphere Real Time Java Virtual Machine



	Table of contents
	List of figures
	List of tables
	Introduction
	Conceptual formulation
	Main contributions
	Thesis outline

	Related work
	JAviator
	System overview
	Software architecture
	Summary

	Location systems
	Satellite-based location systems
	Close-range location systems
	Coordinate transformation
	Summary

	Vehicle control
	Four-rotor helicopter dynamics
	Controller overview
	Altitude controller design
	Attitude controller design
	Position controller design
	Path following
	Summary

	Software design and implementation
	Basic concepts
	Object construction via properties
	Hierarchical configuration

	Functional model
	Use case ``Fly Manually''
	Use case ``Fly Autonomously''

	Implemented software modules
	Module Input/Output
	Module Utilities
	Module Communication
	Module Course
	Module GPS
	Module Location
	Module User Interface
	Module JAviator Control

	Summary

	Evaluation
	Altitude flight control
	Attitude flight control
	Position flight control
	Autonomous flight control
	Experiment 1 - ideal location systems
	Experiment 2 - inaccurate location systems
	Experiment 3 - controller limitations

	FCS JVM behavior
	Summary

	Conclusion
	Current implementation
	Design strengths and weaknesses
	Future work

	References
	List of abbreviations

