Giotto: A Time-Triggered Language for
Embedded Programming

THOMAS A. HENZINGER MEMBER, IEEE BENJAMIN HOROWITZ MEMBER, IEEE, AND
CHRISTOPH M. KIRSCH

Invited Paper

Giotto provides an abstract programmer's model for the Traditional control design happens at a mathematical level
implementation of embedded control systems with hard real-time of abstraction, with the control engineer manipulating differ-
constraints. A typical control application consists of periodic soft- ential equations and mode-switching logic using tools such

ware tasks together with a mode-switching logic for enabling and . - A
disabling tasks. Giotto specifies time-triggered sensor readings, as Matlab or MatrixX. Typical activities of the control en-

task invocations, actuator updates, and mode switchesindependengineer include modeling of the plant behavior and distur-
of any implementation platform. Giotto can be annotated with bances, deriving and optimizing control laws, and validating
platform constraints such as task-to-host mappings, and task andfunctionality and performance of the model through analysis
communication schedules. The annotations are directives for the and simulation. If the validated design is to be implemented

Giotto compiler, but they do not alter the functionality and timing . - .
of a Giotto program. By separating the platform-independent from in software, itis then handed off to a software engineer who

the platform-dependent concerns, Giotto enables a great deal of Writes code for a particular platform (we use the word “plat-
flexibility in choosing control platforms as well as a great deal form” to stand for a hardware configuration together with a
of automation in the validation and synthesis of control software. real-time operating system). Typical activities of the software
The time-triggered nature of Giotto achieves timing predictability, - apgineer include decomposing the necessary computational
which makes Giotto particularly suitable for safety-critical appli- . - -
cations. activities into periodic tasks, assigning tasks to CPUs and
setting task priorities to meet the desired hard real-time con-

straints under the given scheduling mechanism and hardware
performance, and achieving the desired degree of fault tol-
erance through replication and error correction. While lim-
|. INTRODUCTION ited automation for these activities is available in the form
d of code-generation tools, the software engineer has final au-
thority over putting the implementation together through an
often iterative process of code integration, testing, and opti-
mization.

Giotto provides an intermediate level of abstraction, which
1) permits the software engineer to communicate more ef-

. . . __fectively with the control engineer; and 2) keeps the im-
Manuscript received December 20, 2001; revised August 31, 2002. This

work was supported in part by the Air Force Office of Scientific Research plementatlon _and Its properties more clos.ely ahgne_q with
Multidisciplinary University Research Initiative under Grant F49620-00-1- the mathematical model of the control design. Specifically,

0327; in part by the Defense Advanced Research Projects Agency Soft- Gjotto defines a software architecture of the implementation
ware Enabled Control program under Grant F33615-C-98-3614; in part by

the MARCO Gigascale Silicon Research Center under Grant 98-DT-660; WhICh S_peCIerS ItS_ f_unctlonallty and timing. Fun_ctlonallty
and in part the National Science Foundation under Grant CCR-0208875. and timing are sufficient and necessary for ensuring that the

A preliminary version of this paper appeared_iecture N‘otes in Computer implementation is consistent with the mathematical model.
Science, Embedded Softwareidelberg, Germany: Springer-Verlag, 2001, . .
vol. 2211, pp. 166-184. On the other hand, Giotto abstracts away from the realiza-

The authors are with the Department of Electrical Engineering and tion of the software architecture on a specific platform, and
Computer Sciences, University of California, Berkeley, CA 94720-1770 frees the software engineer from Worrying about issues such
USA (e-mail: tah@eecs.berkeley.edu; bhorowit@cs.berkeley.edu; . . .
cm@eecs.berkeley.edu). as hardware performance and scheduling mechanism while

Digital Object Identifier 10.1109/JPROC.2002.805825 communicating with the control engineer. After writing a

Keywords—€ontrol systems, embedded software, programming
languages, real-time systems.

Giotto provides a programming abstraction for har
real-time applications that exhibit time-periodic and
multimodal behavior, as in automotive, aerospace, and
manufacturing control.

0018-9219/03$17.00 © 2003 |IEEE

84 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Giotto program, the second task of the software engineer Control design ¢ plant modeling
remains, of course, to implement the program on the given o control law derivation
platform. In Giotto, this second task, which requires no in- 4

teraction with the control engineer, is effectively decoupled e functionality and timing
_from the first, and canin Iarge parts be. au.tomated by increas- Giotto program « periodic software tasks
ingly powerful compilers. Giotto compilation guarantees the and mode switches
preservation of functionality and timing, and thus removes M

the need for a tedious and error-prone iteration of code eval-

uation ar_]d optlml_zatlon. Code for real-time
The Giotto design flow is shown in Fig. 1. The separation platform puta _

of logical correctness concerns (functionality and timing) munication scheduling

from physical realization concerns (mapping and scheduling) g, 1 Giotto-based control-systems development.

has the added benefit that a Giotto program is entirely plat-

formindependent and can be compiled on different, even het-
erogeneous, platforms. another. Tasks communicate with each other, as well as with

Motivating Example. sensors and actuators, by so-caltgters, which is code

Giotto is designed specifically for embedded control appli- that transports and converts values betwperts While a
cations. Consider a typical fly-by-wire flight control system task represents application-level computation that consumes
[1], [2], which consists of three types of interconnected com- & honnegligible amount of CPU time, a driver is bounded
ponents (see Fig. 2): sensors, CPUs for computing controlcode that can be executed essentially instantaneously on
laws, and actuators. The sensors include an inertial measurethe system level, with environment interrupts disabled
ment unit (IMU), for measuring linear acceleration and an- (more precisely, drivers satisfy trgynchrony assumption
gular velocity; a global positioning system (GPS), for mea- [3], that they can be executed before the environment state
suring position; an air data measurement system, for mea-changes). In this way, the Giotto abstraction integrates
suring such quantities as air pressure; and the pilot's controls,scheduled computation (tasks) and synchronous commu-
such as the pilot’s stick. Each sensor has its own timing prop- hication (drivers). The periodic invocation of tasks, the
erties: the IMU, for example, outputs its measurement 1000 reading of sensor values, the writing of actuator values,
times/s, whereas the pilot’s stick outputs its measurementand the mode switching are all triggered by real time.
only 500 times/s. Three separate control laws—for pitch, lat- FOr example, one task may be invoked every 2 ms and
eral, and throttle control—need to be computed. The systemread a sensor value on each invocatioanother taski;
has four actuators: two for the ailerons, one for the tailplane, Mmay be invoked every 3 ms and write an actuator value on
and one for the rudder. The timing requirements on the con- €ach completion; and a mode switch may be contemplated
trol laws and actuator tasks are also shown in Fig. 2. The every 6 ms. This time-triggered semantics enables efficient
reader may wonder why the actuator tasks need to run more'€asoning about the timing behavior of a Giotto program, in
frequently than the control laws. The reason is that the ac- Particular, whether it conforms to the timing requirements of
tuator tasks are responsible for the stabilization of quickly @ mathematical (e.g., Matlab) model of the control design.
moving mechanical hardware, and thus need to be an order A Giotto program does not specify where, how, and when
of magnitude more responsive than the control laws. tasks are scheduled. The Giotto program with taskand

We have just described one operational mode of the {2 can be compiled on platforms that have a single CPU
fly-by-wire flight control system, namely, the cruise mode. (by time sharing the two tasks) as well as on platforms with
There are four additional modes: the takeoff, landing, two CPUs (by parallelism); it can be compiled on platforms
autopilot, and degraded modes. In each of these modesWith preemptive priority scheduling (such as most real-time
additional sensing tasks, control laws, and actuating tasksoPerating systems) as well as on truly time-triggered plat-
need to be executed, as well as some of the cruise taskdorms [such as the time-triggered architecture (TTA) [4]].
removed. For example, in the takeoff mode, the landing gearA” the Giotto compiler needs to ensure is that the seman-
must be retracted. In the autopilot mode, the control systemtics of the program—i.e., functionality and timing—is pre-
takes inputs from a supervisory flight planner, instead of served. To this end, the compiler needs to solve a possibly
from the pilot's stick. In the degraded mode, some of the distributed scheduling problem. This can be difficult, and to
sensors or actuators have suffered damage; the contromake the job of the compiler easier, a Giotto program can be
System Compensates by not a”owing maneuvers which areannotated with Compiler directives in the form mjhtform

as aggressive as those permitted in the cruise mode. constraints A platform constraint may map a particular task
The Giotto Abstraction. to a particular CPU, assign a particular priority to a particular

Giotto provides a programmer’s abstraction for speci- task, or schedule a particular communication event between

fying control systems that are structured like the previous tasks in a particular time slot. Such annotations, however, in
fly-by-wire example. The basic functional unit in Giotto

is thetask which is a periodically executed piece of, say, - o a0

C code. Several concurrent taSk'_S m_ake UIp]GIie Tasks 2While any choice of time unitis possible, we use milliseconds throughout
can be added or removed by switching from one mode to the paper.

hardware mapping

computation and com-

1Since drivers cannot depend on each other, no issues of fixed-point se-

HENZINGERet al: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 85

flight control system
Sensors sensor drivers control laws act. drivers actuators
. IMU pitch aileron 1 [T)
L T T
MU 1000 Hz 500 Hz 1000 Hz |l || aileronl
GPS lateral aileron 2 1)
[ot [N P ¢
GPS I 20 Hz 250 Hz [] 1000 Hz |J, || @ileron2
™) air data throttle tailplane [)]
air data 4000 1y [TT7T] 250 Hz [[[7| 1000 Hz I, || tailplane
)) pilot stick rudder [T
pilot stick ——T 500 Hz [T ‘T 1000 Hz | rudder

aircraft dynamics =

Fig. 2. A fly-by-wire flight control system.

no way modify the functionality and timing of a Giotto pro- T Priv
gram; they simply aid the compiler in realizing the semantics
of the program.

Outline of the Paper.

We first give an informal introduction to Giotto in Sec-
tion 11, followed by a formal definition of the language in
Section Ill. In Section IV, we define an abstract version of
the scheduling problem that needs to be solved by the Giotto
compiler, and we illustrate how a program can be annotated
to guide distributed code generation. In Section V, we give
pointers to current Giotto implementations and relate Giotto
to the literature. Fig. 4. An invocation of task.

In t Out

Fig. 3. Ataskt.

Out

Il. INFORMAL DESCRIPTION OFGIOTTO private ports whose values are inaccessible outside the task.

Ports. The state of is denoted byriv. Finally, the task has a func-

In Giotto all data is communicated through ports. A port tion £ from its input ports and its current state to its output
represents a typed variable with a unique location in a glob- ports and its next state. The task functibis implemented
ally shared name space. We use the global hame space foby a sequential program, and can be written in an arbitrary
ports as a virtual concept to simplify the definition of Giotto. programming language. Itis important to note that the execu-
An implementation of Giotto is not required to be a shared- tion of £ has no internal synchronization points and cannot
memory system. Every port is persistent in the sense that thebe terminated prematurely; in Giotto all synchronization is
port keeps its value over time, until it is updated. There are specified explicitly outside of tasks. For a given platform, the
mutually disjoint sets of sensor ports, actuator ports, and taskGiotto compiler will need to know the worst case execution
ports in a Giotto program. The sensor ports are updated by thetime of £ on each available CPU.
environment; all other ports are updated by the Giotto pro- Task Invocations.
gram. The task ports are used to communicate data between Giotto tasks are periodic tasks: they are invoked at reg-
concurrent tasks. Task ports can also be used to transfer datalarly spaced points in time. An invocation of a tasks
from one mode to the next: task ports can be designated ashown in Fig. 4. The task invocation has a frequengy
mode ports of a given mode, and assigned a value every timegiven by a nonzero natural number; the real-time frequency

the mode is entered. will be determined later by dividing the real-time period of
Tasks. the current mode by.q.. The task invocation specifies a
A typical Giotto task is shown in Fig. 3. The taskhas a driver d which provides values for the input porta. The

setIn of two input ports and a seut of two output ports, all first input port is loaded with the value of some other port

of which are depicted by bullets. The input portg aefe dis- and the second input port is loaded with the constant value

tinct from all other ports in the Giotto program. The output «. In general, a driver is a function that converts the values
ports oft may be shared with other tasks as long as the tasksof sensor ports and mode ports of the current mode to values
are not invoked in the same mode. In general, a task mayfor the input ports, or loads the input ports with constants.
have an arbitrary number of input and output ports. A task Drivers can be guarded: the guard of a driver is a predicate
may also maintain a state, which can be viewed as a set ofon sensor and mode ports. The invoked task is executed only

86 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

01 02 03 04 O3
. *o o0
JoL Lt
i S dg TV
*——9 - a
: : dy Wact =L 1
. Instantaneous Scheduled [4y r
;. Communication : Computation ' !
— Z \ l
Tstart = Tsltm«t Tstop :
]
Fig. 5. The time line for an invocation of task ‘ - r- -
if the driver guard evaluates to true; otherwise, the task exe- g 7 = 10ms

cution is skipped.

The time line for an invocation of the tagkis shown Fig. 6. A modem.
in Fig. 5. The invocation starts at some timg,,; with a
communication phase in which the driver guard is evaluated
and the input-port values are loaded. The Giotto semantics
prescribes that the communication phase—i.e., the execu-
tion of the driverd—is performed inogically zero timeln
other words, a Giotto driver is an atomic unit of computa-
tion that cannot be interrupted. The synchronous communi-
cation phase is followed by a scheduled computation phase.
The Giotto semantics prescribes that at timg,, the state
and output ports of are updated to the (deterministic) result
of £ applied to the state and input ports@it timer,;,,. The
length of the interval between;..« andy., is determined . ; g : ; Lo
by the frequencyw;.s. We say that the taskis logically 0= T4 n= 7 Ty = T
runningfrom time 7y, to timey,,. The Giotto logical ab- :
straction does not specify when, where, and how the actual
computation oft is physically performed betweety.... and
Tutop- HOWever, the time at which the task output ports are up- Fig- 7 The time line for a round of mode:.
dated is determined; and, therefore, for any given real-time
trace of sensor values, all values that are communicated beprogram is in moden; it can be used to transfer a value from
tween tasks and to the actuator ports are determined [5]. In-a previous mode to mode. In addition too; , all output ports
stantaneous communication and time-deterministic compu- of tasks invoked in the modess, 03, 04, andos—are, by
tation are the two essential ingredients of the Giotto logical default, also mode ports; they must be initialized on entering
abstraction. A compiler must be faithful to this abstraction; modem. The mode ports are visible outside the scopepf
for example, task inputs may be loaded after timeg.:, and as indicated by the dashed lines. A mode switch may copy the
the execution of may be preempted by other tasks, as long values at these ports to mode ports of a successor mode. The
as at timer;,,, the values of the task output ports are those invocation of task; in modem has the frequency; = 1,
specified by the Giotto semantics. which means that; is invoked once every 10 ms while the

Modes. program is in moden. The invocation of; in modem has

A Giotto program consists of a set of modes, each of which the driverd;, which copies the value of the mode pojit
repeats the invocation of a fixed set of tasks. The Giotto pro- into 4; and the value of the output par of ¢, into i5. The
gram is in one mode at a time. Possible transitions from invocation of tasks, has the frequenays = 2, which means
a mode to other modes are specified by mode switches. Athatt, is invoked once every 5 ms as long as the program is
mode switch can remove some tasks, and add others. in modem. The invocation ofts has the driver,, which

Formally, a mode consists of a period, a set of mode ports, connects the output post of ¢; to i3, the sensor port to
a set of task invocations, a set of actuator updates, and a set,, and the output por; of ¢5 to i5. The moden has one
of mode switches. Fig. 6 shows a modewhich contains actuator update, which is a drivés that copies the value of
invocations of two tasks,; andt¢s. The periodr of m is the output porb- of ¢; to the actuator port with the actuator
10 ms; that is, while the program is in modg its execution frequencyw,.; = 1; that is, once every 10 ms.
repeats the same pattern of task invocations every 10 ms. The Fig. 7 shows the exact timing of a single round of mode
taskt; has two input ports, andi,, two output portsy, and m, which takes 10 ms. As long as the program is in mode
03, a StatePrivy, and a functiorf,. The taskt, is defined m, one such round follows another. The round begins at the
in a similar way. Moreover, there is one sensor porone time instantry with an instantaneous communication phase
actuator port;, and a mode pow;, which is not updated by for the invocations of taskg andt,, during which the two
any task in moden. The value ob; stays constant while the driversd; andd, are executed. The Giotto semantics does

fo

- 7= 10ms ——»

HENZINGERet al: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 87

02 03 04 Og

7' = 10ms

Fig. 8. A modem’.

not specify how the computations of the task functidans
andf, are physically scheduled; they could be scheduled in
any order on a single CPU, or in parallel on two CPUs. The
Giotto semantics specifies only that after 5 ms, at time instant
71, the results of the scheduled computatiort fare made
available at the output ports of. The second invocation of

to begins with another execution of driver, still at timer,

which samples the most recent value from the sensor port

s. However, the two invocations af, start with the same
value at input ports, because the value storeddg is not
updated until time instant, = 10 ms, no matter whether or
not £, finishes its actual computation before. According

to the Giotto semantics, the output values of the invocation of
t1 must not be available beforg. Any implementation that
schedules the invocation tf before the first invocation af

01 02 03 04 Os

Wswitch = 2

Fig. 9. A mode switchy from modem to modem’.

T2

1

m = 10ms

Fig. 10. The time line for the mode switch at timer; .

or not the switch occurs. The exit condition is evaluated pe-
riodically, as specified by the switch frequency. As usual, the
switch frequency of two means that the exit conditionigf

is evaluated every 5 ms, in the middle and at the end of each
round of modem. The exit condition is a Boolean-valued

must therefore keep available two sets of values for the outputcondition on sensor ports and the mode portsioff the exit

ports of¢;. The round is finished after writing the output
values of the invocation of; and of the second invocation
of ¢, to their output ports at time,, and after updating the
actuator portz at the same time. The beginning of the next
round shows that the input po# is loaded with the new
value produced by, .

Mode Switches.

To give an example of mode switching, we introduce a
second moden’, shown in Fig. 8. The main difference be-
tweenm andm’ is thatm’ replaces the task by a new task
t3, which has a frequencys of 4 in m/. Note thatt; has
a new output porbg, but also uses the same output poyt
asts. Moreover,t; has a new driveti,, which connects the
output portos of ¢; to the input portg, the sensor port to
17, and the output poxg of ¢3 to ig. The task; in modem/’

condition evaluates to true, then a switch to the target mode
m' is performed. The mode switch happens by executing the
driver d5, which provides values for all mode ports of ;
specifically,ds loads the constant into oy, the value of the
mode porto; into og, and ensures thab, o3, andoy keep
their values (this is omitted from Fig. 9 to avoid clutter). Like
all drivers, mode switches are performed in logically zero
time.

Fig. 10 shows the time line for the mode switghper-
formed at timer;. The program is in mode: until 7, and
then enters mode:’. Note that until timer;, the time line
corresponds to the time line shown in Fig. 7. At timefirst
the invocation of tasks is completed, then the mode driver
ds is executed. This finishes the mode switch. All subsequent
actions follow the semantics of the target medeindepen-

has the same frequency and uses the same driver as in modéently of whether the program entered just now through

m. The period ofm/, which determines the length of each
round, is again 10 ms. This means that in medethe task
t1 is invoked once per round, every 10 ms; the tasls in-
voked four times per round, every 2.5 ms; and the actuator
is updated once per round, every 10 ms.

A mode switch describes the transition from one mode to

a mode switch, at 5 ms into a round, or whether it started the
current round already in mode’. Specifically, the driver
for the invocation of task; is executed, still at time;. Note

that the output porbg of t3 has just received the value of
the output portos from taski, by the mode driverls. At
time 7, taskts is invoked a second time, and at timg the

another mode. For this purpose, a mode switch specifies around is finished, because this is the earliest time after the

switch frequency, a target mode, and a driver. Fig. 9 shows
a mode switchy from modem to target moden’ with the
switch frequencywitcn = 2 and the drivetls. The guard of

the driver is called thexit condition as it determines whether

88

mode switch at which a complete new round of medecan
begin. Now the input pout; of taskt; is loaded with the con-
stantx from the mode poré; . In this way, task; can detect
that a mode switch occurred.

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

A mode switch may occur while a task is logically run-
ning; in this case, we say that the mode switngically in-
terruptsthe task invocation. For a mode switch to be legal,

the target mode is constrained so that all task invocations that

may be logically interrupted by a mode switch can be con-
tinued in the target mode. In our example, the mode switch
n can occur at 5 ms into a round of mode while the task

t1 is logically running. Hence the target mode must also
invoket;. Moreover, since the period af’ is 10 ms, as for
modem, the frequency of; in m’ must be identical to the
frequency oft; in m, namely, one. If, alternatively, the pe-
riod of m’ were 20 ms, then the frequencyiefin m’ would
have to be two.

I1l. FORMAL DEFINITION OF GIOTTO

A. Syntax

Rather than specifying a concrete syntax for Giotto, we
formally define the components of a Giotto program in
a more abstract way. In practice, Giotto programs can be
written in a concrete, C-like syntax.

A Giotto programconsists of the following components.

1) A set of port declarations A port declaration
(p, Type, init) consists of a port namg, a type
Type, and an initial valueinit € Type. We require
that all port names are uniquely declared; that is, if
(p, -, -) and (p’, -, -) are distinct port declarations,
thenp # p’. The setPorts of declared port names
is partitioned into a seensePorts of sensor ports

a setActPorts of actuator ports a setInPorts of
task input portsa setOutPorts of task output ports
and a sePrivPorts of task private portsGiven a
portp € Ports, we use notation such agpe[p] for
the type ofp, andinit[p] for the initial value ofp. A
valuationfor a setP C Ports of ports is a function
that maps each poft € P to a value inType[p]. We
write Vals|P] for the set of valuations far.

A set of task declarations A task declara-
tion (¢, In, Out, Priv, f) consists of a task
namet, a setIn C InPorts of input ports
a setOut C OutPorts of output ports a set
Priv C PrivPorts of private ports and atask
function£: Vals[In U Priv] — Vals[[]ut U Priv].

If (¢, In, Out, Priv, -) and (¢, In’, Out’, Priv/,)
are distinct task declarations, then we require that
t #t' andIn N In’ = Priv N Priv’ = (). Tasks may
share output ports as long as the tasks are not invoked
in the same mode, as discussed later. We \Writek s
for the set of declared task names.

A set of driver declarations A driver declara-
tion (d, Src, g, Dst, h) consists of a driver name
d, a setSrc C Ports of source ports a driver
guard g: Vals[Src] — B, a setDst C Ports
of destination ports and a driver function h:
Vals[Src] — Vals[Dst]. When the driverd is
called, the guarg is evaluated, and if the result is
true, then the functioh is executed. We require that

2)

3)

HENZINGERet al: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAM

all driver names are uniquely declared, and we write
Drivers for the set of declared driver names.

A set of mode declarationsA mode declaration
(m, w, ModePorts, Invokes, Updates, Switches)
consists of a mode name:, a positive mode pe-
riod 7 € QT, a setModePorts C OutPorts of
mode portsa setInvokes of task invocationsa set
Updates of actuator updatesand a sefwitches of
mode switchesWe require that all mode names are
uniquely declared, and we writ®des for the set of
declared mode names.

a) Each task invocation (wiask, t, d) €
Invokes[m] consists of atask frequency
wiask € N, a taskt € Tasks such
that Out[t] C ModePorts[m]|, and a
task driver d € Drivers such that
Src[d] C ModePorts|[m| U SensePorts
andDst[d] = In[t]. The invoked task only
updates mode and private ports; the task driver
d reads only mode and sensor ports, and updates
the input ports of. If (-, ¢, -) and(-, ¢/, -) are
distinct task invocations irlnvokes[m], then
we require thabut[t] N Out[t'] = ; that is,
tasks sharing output ports must not be invoked
in the same mode.

b) Each actuator updatev,.;, d) € Updates[m)]
consists of aractuator frequency,.; € N,
and an actuator driver d € Drivers
such thatSrc[d] C ModePorts[m| and
Dst[d] C ActPorts. The actuator drivel
reads only mode ports, no sensor ports, and
updates only actuator ports. (i, d) and(-, d’)
are distinct actuator updates ifpdates|m],
then we require thdist[d] N Dst[d'] = 0; that
is, in each mode, an actuator can be updated by
at most one driver.

c) Each mode switch (wawiten, ', d) €
Switches[m] consists of a mode-switch
frequencywswitcn € N, atarget modem’ €
Modes, and amode driverd € Drivers such
thatSrc[d] C ModePorts[m] U SensePorts
and Dst[d] ModePorts[m’]. The mode
driver d reads only mode and sensor ports,
and updates the mode ports of the target mode
m'. If (-, -, d) and(-, -, d') are distinct mode
switches in Switches[m|, then we require
that for all valuation® € Vals[Ports] either
gld](v) = false org[d'](v) = false. It follows
that all mode switches are deterministic.

4)

5) A start modestart € Modes.

The program isvell-timedif for all modesm € Modes,
all task invocations(wiask, t, -) € Invokes[m], and
all mode switches(wswiten, ™',) € Switches[m],
if wiask/wswiten ¢ N, then there exists a task invoca-
tion (wf, .t -) € Invokes[m'] with m[m]/wiask
w[m']/wi,q.- The well-timedness condition ensures that
mode switches do not terminate tasks: if a mode switch

MING 89

occurs when a task is logically running, then the same task
must be present also in the target mode.

B. Semantics

A program configuratiorC' = (m, 6, v, Tactive; T) CON-
sists of a moden € Modes, amode timeS € Q, a valuation
v € Vals[Ports] for all ports, a sebt,.tive C Tasks of ac-
tive tasksand atime stampr € Q. The setr,.(jve C Tasks
contains all tasks that are logically running, whether or not
they are physically running by expending CPU time. The
numbers > 0 measures the amount of time that has elapsed
since the last mode switch, unless some tasks were logically
running at the time of the last mode switch, in which case
6 “dates back” the mode switch to the closest time instant
before the mode switch when the current mode could have
started from its beginning with all its tasks. For a program
configurationC and a seP C Ports, we writeC[P] for the
valuation invals|P] that agrees withC' on the values of all
ports inP.

The mode frequencieef a modem € Modes include:
1) the task frequencies.q for all task invocations
(wrask, *,) € Invokes[m]; 2) the actuator frequencies..
for all actuator updatew,ct, -) € Updates[m]; and 3)
the mode-switch frequenciesit.. for all mode switches
(Wswitchs *,) € Switches[m]. Let wmax[m] be the least
common multiple of the mode frequencies xf During
an execution, as long as the program is in medethe
program configuration is updated everlyn|/wmax[m] time
units. Each update results from a sequence of five types of
events: first, some tasks are completed (i.e., removed from

1) [Update Task Output and Private Portg Let

Ocompleted D€ the set of task$ such that a task
invocation of the form(-, ¢,) € Invokes[m)]

is completed at configuratio. Consider a port

p € OutPorts UPrivPorts. If p € Out[t] UPriv]t]

for some taskt € Ocompleted, then define
vtask(p) = £[t](C[Inft] U Priv([t])(p); other-
wise, defineviask(p) = v(p). This gives the new
values of all task output and private ports. Note that
ports are persistent in the sense that they keep their
values unless they are modified. L€, be the
configuration that agrees with .., on the values of
OutPorts U PrivPorts, and otherwise agrees with
C

2) [Update Actuator Ports] Consider a port

p € ActPorts. If p € Dst[d] for some actuator update
(-, d) € Updates[m] that is enabled at configuration
Clask, then definev,..(p) = h[d](Ctask[STc[d]])(p);
otherwise, define,..(p) = v(p). This gives the new
values of all actuator ports. Lét,.; be the configura-
tion that agrees with,.; on the values ofctPorts,
and otherwise agrees with .y .

3) [Update Sensor Porty Consider a portp €

SensePorts. Let vsense(p) be any value iype|p];
that is, sensor ports change nondeterministically.
This is not done by the Giotto program, but by the
environment. All other parts of a configuration are
updated deterministically, by the Giotto program. Let
Csense b€ the configuration that agrees with ;. on

the values oBensePorts, and otherwise agrees with

act-

the active set); second, some actuators are updated; third, 4) [Update Mode If a mode switch(-, miarget,) €

some sensors are read; fourth, a mode switch may occur;
fifth, some new tasks are activated.

Let us be more precise. Consider a program configuration
C = (m, b, v, Tactive, 7). We need the following auxiliary
definitions.

1) Atask invocationwtask, t, -) € Invokes[m] is com-
pletedat configurationC if ¢ € o,ctive, @andé is an
integer multiple ofr[m]/wiask.

2) An actuator updatéu,., d) € Updates[m] is eval-
uatedat configurationC' if § is an integer multiple of
w[m]/wact.-

3) A mode switch(wswitch, -, d) € Switches[m] is
evaluatedat configuration”' if 4 is an integer multiple
Of W[m]/wswitch-

4) Ataskinvocatiofwyagk, -, d) € Invokes|[m] iseval-
uatedat configurationC' if § is an integer multiple of
w[m)]/Wiask -

The actuator updat@u,.t, d), mode switch(wswitch, , d),
or task invocatiofwy,sk, -, d) is enabledat configuratior”'
if it is evaluated aC andg[d](v) = true.

The program configuratiof,.. is asuccessor configura-
tionof C'if Cyy.. results fromC by the following nine steps,
calledGiotto micro stepsThese are the steps a Giotto pro-
gram performs whenever it is invoked, initially with= 0,
Cactive = 0, andr = 0.

90

Switches[m] is enabled at configuratiofise,se., then
definem’ = myarger; Otherwise, definen’ = m. This
determines if there is a mode switch. Recall that at
most one mode switch can be enabled at any configu-
ration. LetCa,qer b€ the configuration with mode:’

that otherwise agrees with, 5.

5) [Update Mode Portg Consider a porp € OutPorts.

If p € Dst[d] for some mode switch{-, -, d) €
Switches[m] that is enabled at configuratiaii.,se,
then definevmode(p) = h[d](Crarget[STc[d]])(p);
otherwise, defin@mode(p) = Ctarget|OutPorts](p).
This gives the new values of all mode ports of the
target mode. Note that mode switching updates also
the output ports of all tasksthat are logically run-
ning. This does not affect the executiontoMWhent
completes, its output ports are again updated, byt
Cuode be the configuration that agrees with,q. on
the values ofdutPorts, and otherwise agrees with
Ctarget-

6) [Update Mode Timg If no mode switch in

Switches[m] is enabled at configuratiorCsense,
then definey’ = §. Otherwise, suppose that a mode
switch is enabled at configuratiof.,se t0 the
target mOdle- Let Orunning — Oactive \ Ocompleted -
If 0running = 0, then defineé’ = 0. Otherwise,
let v be the least common multiple of the set

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

sensor

port s1 type R

port sz type {0,1}
actuator

port a type R init 0
input

port 71 type R

port iz type R

port i3 type R
output

port o1 type R init 0

port oz type R init 0
private

port p; type R init 0

port p2 type R init 0

port p3 type R init 0

task {1 input ?; output o; private p; function h
task t2 input 72 output 02 private p2 function fa
task t3 input 73 output 02 private ps function I3

Fig. 11. The abstract syntax of a Giotto program with two modes.

{m[m]/wiask | (Wtasks t, -) € Invokes[m] for some

t € Orunning } Of task periods for running tasks; then
~ is the time it takes during a round of mode
to complete all running tasks simultaneously. ket
be the least integer multiple of such thate > §;
thene — 6 is the time until the next simultaneous
completion point. Definé’ = «[m/] — (¢ — §). Thus,

driver d;

source 02 guard g; destination ¢; function hi1
driver do»

source s; guard g; destination ¢ function ha
driver d3

source s; guard g; destination ¢3 function h3
driver d4

source 01 guard g; destination @ function hy
driver ds

source sz guard gs destination 01, 02 function hs

mode m; period 6 ports 01, 02
frequency 1 invoke ¢; driver d;
frequency 2 invoke ¢z driver da
frequency 1 update d4
frequency 2 switch mgy driver ds

mode m2 period 12 ports o1, 02
frequency 2 invoke ¢; driver d1
frequency 3 invoke ¢3 driver ds
frequency 2 update ds
frequency 3 switch m; driver ds

start my

be the configuration with mode tim&,.. and time
stamprguc. that otherwise agrees with, .¢;ve-

An executiomof a Giotto program is an infinite sequence
Cy, C1, Cy, ... of program configuration§’; such that: 1)
Cy = (start, 0, v, 0, 0) with v(p) = init[p] for all ports
p € Ports; and 2)C;, 1 is a successor configuration 6f
for all # > 0. Note that there can be a mode switch at the

a mode switch always jumps as close as possible to start time of the program, but there can never be two mode

the end of a round of the target mode. l&t...; be
the configuration with mode timé’ that otherwise
agrees wWithCp0de-

7) [Update Task Input Ports] Consider a port

p € InPorts. If p € Dst[d] for some task
invocation (-,-,d) € Invokes[m’] that is
enabled at configuration C\,ca, then define
Vinput(P) = h[d](Clocar[STc[d]])(p); otherwise,

definevin,ut (p) = v(p). This gives the new values of
all task input ports. LeC;,,+ be the configuration
that agrees withy, ¢, 0N the values ofnPorts, and
otherwise agrees with',c.;-

8) [Update Active Taskg§ Let oenaniea b€ the set
of taskst such that a task invocation of the form
(nt,-) € 1Invokes[m'] is enabled at config-
uration Cjoca;. The new set of active tasks is

/
O 4ctive (Uactive \ U(‘,ompleted) U Cenabled- Let
of

Cactive b€ the configuration with the set]
active tasks that otherwise agrees With ¢ .
9) [Advance Timg Let 6s,.. be the least integer multiple
of w[m']/wmax[m'] such thaths,.. > 6'; this is the
time of the next event (task invocation, actuator update,
or mode switch) in mode:’. The next time instant at
which the Giotto program is invoked #5,.. — 6’ time
units in the future; an implementation may use a timer
interrupt for this. Letyee = 7+ Osuce — 0 LT Clnee

ctive

HENZINGERet al: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING

switches in a row without any time passing.

C. Example

We use the simple Giotto program from Fig. 11 to illus-
trate Giotto’'s semantics. This program contains two modes,
my andmsy. Mode m, has a period of 6 ms, and invokes
two tasks,t; andty, with frequencies of one and two, re-
spectively. Moden, has a period of 12 ms, and invokis
and the tasks, with frequencies of two and three, respec-
tively. The tasks, andts both read the sensor port and
write to the same output post. This is possible because
andt; are invoked in different modes. The taskreadsos
and writes to the output pod, which is read by the actu-
ator driverd, to write the actuator pott. In both modes, the
actuator update occurs every 6 ms. Madgevaluates a pos-
sible mode switch to mode., every 3 msyn, contemplates
switching back tan, every 4 ms. These mode switches are
controlled by the drivetls, which reads the sensor pad.

A mode change occurs b contains the value 1. Both mode
switches, when enabled, write the postsand o,. We as-
sume that with the exception ¢f, the guardg; of all other
drivers are always true. The initial values of the sensor and
input ports are omitted from the figure, as they are written
before being read.

To illustrate the semantics of this program, consider an ex-
ecutionk = Cop, C1, Cs, ... that begins with the following

91

0 0 4 4 6 6 88909 121

Fig. 12. The time line for an execution of the program from Fig. 11.

program configurations: IV. PLATFORM CONSTRAINTS FORGIOTTO
C() :(ml, 0, *y @, 0) . .)
To compile a Giotto program, the compiler needs two ad-
Cr = (ma2, 2, -, {t1, ta}, 2) ditional pieces of information: 1) platform specification
Cy =(ma, 4, -, {t1, t3}, 4) which defines the number and topology of hosts (CPUs), and
Cs =(ma, 6, -, {t1, t3}, 6) worst case execution times for all Giotto activities (tasks,
Cy = (ma, 8, -, {t, t3}, 8) dnve_rg, and sensor readings); an_d mtar toleranf:e which
specifies how much the actual timing can deviate from the
Cs =(m1, 3, -, {t1}, 9) Giotto semantics. The jitter tolerance is needed because it
Cs = (m1, 6, -, {t1, t2}, 12) may be impossible to implement the Giotto semantics ex-
Cr =(my, 9, -, {t1, t2}, 15). actly. For example, if according to Giotto semantics, several
. actuators are written at the same painin time, and there
The executiont starts in moden,, but switches imme- 5 only one host, then the actual writes cannot all occur ex-

diately to modem,. At configurationCy, the execution ety at timer. The Giotto compiler takes a Giotto program,
switches back to mode; (note that a mode switch in a 3 platform specification, and a jitter tolerance, and if pos-
configurationC; is reflected only in the successor config- sjple, generates platform code that lies within the jitter tol-

uration C;41). The execution remains in mode; until erance of Giotto semantics. Specifically, for every program
configurationC7. . execution, the compiler must attempt to produce a schedule
Fig. 12 shows an initial segment of the time line forAt that indicates when and where the Giotto activities are per-
0 ms, the porb, is used to update the actuator portThe formed. Such a schedule may not exist, because the sched-
sensor pors; is read by the mode drivel. The guard ofl; uling problem can be overconstrained. An overconstrained

evaluates to true, indicating a mode change; thus, theyport - scheduling problem may become solvable without changing
is updated (poré; is also updated but not used; therefore, it the Giotto program, by a combination of the following: in-

is omitted in the figure). Port, provides the input to task . crease the number of hosts, decrease the worst case execu-
The sensos; provides the input to task. At4 ms, taskis tion times, or increase the jitter tolerance.

completes; the sensor pertis updated, but no mode change

occurs; and the sensey provides input to a new invocation

of taskts. At 6 ms, taski; completes; the actuator partis A. Scheduling Giotto
updated using the output of; and a new invocation of task]))

the guard of the mode drivel; evaluates to true, indicating Problem is abstract, as we include only scheduling con-
a switch to moden, and updating ports; andos (neither straints that need to be met by all Giotto implementations.
port is used:; therefore, both are omitted in the figure). At 9 Any particular,concreteimplementation may have to take
ms, Sensoe, is updated again, but no mode change occurs; into account additional scheduling constraints.

sensors; is updated; and an invocation of taskbegins. At Jobs.

12 ms, both tasks, andt, complete;a, s, ands; are all Let G be a Giotto program. Aob of G is a pairj[k] con-
updated; and new invocations@fandi, start. Note thatat sisting of ajob action;j and ajob instancek € Z, chosen
the time of the mode switch at 8 ms, the mode time of the from some index sef. We distinguish betweenomputa-
target moden; is 2 ms, because tagk has been logically tion jobsandcommunication johsThe action of a computa-
running for 2 ms. For the duration of 1 ms, tasks the only tion job is either a task € Tasks, or true(d) or false(d)
running task, until at mode time 3 ms (real time 9 ms), an for a driverd € Drivers, or read(s) for a sensor port
invocation of task, is added. At mode time 6 ms (realtime s € SensePorts. The actiont executes the task the ac-

12 ms), the partial round of mode; is finished, and anew tionstrue(d) andfalse (d) represent the execution of drivér
round begins. in cases where the outcome of the driver guard is true or false,

92 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

respectively; the actioread(s) loads a new sensor value into
the ports. We write

Jobs =Tasks
U {true(d), false(d) |d € Drivers}
U {read(s)|s € SensePorts}

for the set of computation actions. For every computation
actionj € Jobs, the setr(j) C Ports of read portsand the
setw(j) C Ports of written portsare defined as follows.

1) If j = tfort € Tasks, thenr(j) = In[t] U Priv[t]
andw(j) = Out[t] U Priv]t].
2) If j = true(d), thenr(j)
Dst[d].

3) If j = false(d), thenr(j) = Szc[d] andw(j) = 0.

4) If j = read(s), thenr(j) = 0 andw(j) = {s}.
The action of a communication job has the forend (p), for
a portp € Ports, and its purpose is to broadcast the value of
p over a network to all hosts of the platform. Other models
of communication are possible, but not addressed here.

Let £ = Cy, Cq, C5, ... be an execution off. For each
position: > 0 andl < ¢ <9, we writeC; , for the program
configuration obtained fronC; by performing the Giotto
micro steps 1 through as defined in Section 111-B. The exe-
cution E gives rise to a sefr of computation jobs. For these
jobs we use the index s& = (N U {0}) x {1, ..., 9},
where the index, ¢) refers to the program configuration
C;, ¢ We write < for the lexicographic order ofig; that is,
(i1, £1) < (i2, £2) if eitheri; < io, or bothi; = iy and
{1 < . The set7g is the smallest set of jobs containing the
following.

1) [Task JobkIf (-, t, -) is a task invocation that is com-
pleted at configuratiod;, thent[:, 1] € Jg.

2) [Actuator JobslIf (-, d) is an actuator update thatis en-
abled at configuratiod@; 1, thentrue(d)[i, 2] € Jk.

If (-, d) is evaluated but not enabled @&t ;, then
false(d)[i, 2] € Tk.

3) [Sensor Johidf (-, -, d) is a mode switch that is eval-
uated at configuratio; s, or (-, -, d) is a task in-
vocation that is evaluated at configuratioh ¢, and
s € Srcld] for a sensor port € SensePorts, then
read(s)[i, 3] € Jg.

4) [Mode-Driver JobklIf (-, -, d) is a mode switch that
is enabled at configuratiofi; 3, thentrue(d)[i, 4] €
Je. If (-, -, d) is evaluated but not enabled at config-
urationC; s, thenfalse(d)[i, 4] € Jk.

5) [Task-Driver JobkIf (-, -, d) is a task invocation that
is enabled at configuratiof; ¢, thentrue(d)[i, 7] €
Jg. If (-, -, d) is evaluated but not enabled @t g,
thenfalse(d)[i, 7] € JTE.

The jobs inJg are called the&eomputation jobs induced by
the executiort’ of the programG.

The interaction between the jobs jfir constrains the
order in which these jobs can be performed: if jpbsup-
plies a value to jolJ, via a port, then/; must finish before
Jy can begin. For two jobd; = ji[k1] and.Js = jalks]
in Jg and a portp € Ports, we say that/; writesp to
Jy (in symbols,.J; <% Jo) if: 1) p € w(j1) N r(j2) and

Src[d] andw(j)

HENZINGERet al: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING

1

task
drivers

mode

tasks R
drivers

-

sensor
ports

actuator
drivers

| | |
T; — € Ti Ti + €

Fig. 13. The precedence and timing constraints for computation
jobs.

k1 < ko; and 2) there is no jobs = j3[ks] in Jg such that

p € w(js) andk; < k3 < ko. We write.J; <g J» if there

is some porp such that/; <%, J,. Note from the definition

of Jg that a task joli[i, 1] is added ta7g with 7 set to the
configuration number of the job’s completion in order to
make the relatiork g capture the fact that the output ports
of ¢ are written when the task completes. Fig. 13 shows the
precedence constraints between the johgzin

Platform Specifications.

A Giotto program can in principle be run on a single
sufficiently fast CPU, independent of the number of modes
and tasks. However, taking into account performance
constraints, the timing requirements of a program may
or may not be achievable on a single CPU. We therefore
consider distributed platforms. For simplicity, we restrict
our attention to platforms that connect a set of hosts through
a broadcast channel, called thetwork for example, all
hosts may be on a common busplatform specificatiorior
the progran(is a triple H = (Hosts, wcet, wcct).

1) Hosts is a finite set ohosts which represent the pro-
cessing elements on which computation jobs may exe-
cute. We writélostsy = Hosts U { N} for the set of
hosts together with the network, which is denoféd
wcet: Jobs x Hosts — Q1 is a function that assigns
to each paifj, h), wherej is a computation action and

h is a host, avorst case execution tim&hich rep-
resents an upper bound on the time required for pro-
cessing a job of the fori-] on hosth. For driver jobs

of the form#rue(d)[-, -], the worst case execution time
takes into account both the guard and the function of
driver d; for driver jobs of the fornyalse(d)[-, -], only

the driver guard. Methods for obtaining worst case ex-
ecution times can be found, for example, in [6], [7].
wcet: Ports — Q7 is a function that assigns to each
portp aworst case communication tim&hich repre-
sents an upper bound on the time required for broad-
casting the value gf over the network.

Jitter Tolerance.

A jitter tolerancee € QT is a positive rational number.
Intuitively, e represents the maximal tolerable difference be-
tween the actual time of an actuator write (or sensor read),
and the time at which the write (or read) is supposed to occur
according to the Giotto semantics. In particular, if Giotto
specifies an actuator write at 12 ms, then an implementa-
tion that conforms with the jitter toleraneemust write the
actuator in the intervdll2 — ¢, 12]; and if Giotto specifies

2)

3)

93

a sensor read at 12 ms, then a conforming implementationexecution £ of G to a scheduleSg that realizest' on

must read the sensor in the inter{e?, 12 + ¢] (cf. Fig. 13).
Schedules.

H in conformance withe. The scheduling functiors is
feasibleif for any two executions® and E’ that agree on

A schedule specifies a possible timing for the jobs that are the values of all sensor ports up to time the schedules

induced by a program execution. Formallgchedulef the
programG on the setiosts is a functionS: R x Hostsy —
J that maps every time € R and hosth € Hostsy (in-
cluding the network) to a job in some &t An elementin7
may represent a computation or communication jo&'pbr

a non-Giotto activity. We require that jobs do not migrate be-

tween hosts: if(r, h) = S(/, h’), thenh = h’. We alsore-
quire that schedules are finitely varying: for alE Hostsy,
there is no bounded infinite sequenge< 75 < 73 < .- - Of
reals such tha$(ry, h) # S(ma, h) # S(73, h) # - - -.
Given a schedul§ and jobJ € J, we say that/ occursin
S if there existr € R andh € Hostsy such thatS(r, h) =
J; in this case, we define hagt/) = h and the following.

1) Thestart timestart(.J) of the job.J in the schedule
Sisinf{r € R|S(r, -) = J}. The start time may be
—0Q.

2) Thefinish timefing(J) of the job.J in the schedule
issup{r € R|S(r, -) = J}. The finish time may be
+o00.

3) The execution timeexeg(.J) of the job J in the
scheduleS is f.te{TeRw(T;.):J}l. The execution
time may be infinite.

Let E be an execution of the prograt, and letH be

a platform specification fof7. The schedule& realizesthe
program executiory on a platform specified by if the
following conditions hold.

1) [Computation Jod€veryjobJ € Jg occursinS and
host(J) # N.Second, if/ = j[-]and hos§(.J) = h,
then exeg(J) = wcet(yj, h). Third, for all jobs.J;,
Jy € Jg, if J1 <g Jo and hos§(.J;) = hosi(J2),
then fing(J;) < stark(.J2).

2) [Communication JoRd-or all jobs J1, Jo € Jg, if
Ji <% J, and hos§(.J;) # host(.J2), then there ex-
ists a communication jold = send(p)[.J1] such that:
1) J occurs inS and hos§(J) = N; 2) exeg(J) =
weet(p); and 3) fing(J1) < starts(J) and fins(J) <
stars(.J2). In this case, we say thdtis acommunica-
tion predecessoof .J,.

Sg and Sg: are identical up to timer; more precisely,
if £ = Co, C1,Cy,...and E' = C{, C{, C%, ... and
C;[SensePorts] = C![SensePorts] for all i < k, then
Sg(r, h) = Sp(r, h) forall 7 < 7, and allh € Hosts,
whereTy, is the time stamp of configuratiofi;,. Feasibility
rules out clairvoyant scheduling functions, which can pre-
dict future sensor values. Thetbstract Giotto scheduling
problemasks, given&, H, ande, if there exists a feasible
scheduling function. If not, then the scheduling problem
(G, H, €) is overconstrained

The scheduling constraints presented in this section are in-
tended to capture a minimal set of constraints: precedences,
sensor and actuator timing, and execution and communica-
tion times. These constraints are necessary for any imple-
mentation of Giotto, but they may not be sufficient. For ex-
ample, a particular implementation may restrict the amount
of information on which a scheduler can base its decisions
(according to our definitions, a scheduling decision may de-
pend on all past sensor values), or it may bound the buffer
size for storing previous values of a port (according to our
definitions, a schedule may send any number of values of a
port over the network before any of the values is used), or it
may require the transmission of mode-change messages be-
tween hosts, etc. By considering the constraints of concrete
implementations, the abstract Giotto scheduling problem can
be refined into a number of different concrete scheduling
problems.

B. Giotto Annotations

An ideal compiler must solve a Giotto scheduling problem
by producing a feasible scheduling function or determining
that the given problem instance is overconstrained. How-
ever, for distributed platforms, the abstract Giotto scheduling
problem is NP-hard (it is a generalizationrafiltiprocessor
scheduling8]). Algorithms and heuristics for solving similar
distributed scheduling problems can be found, for example,
in [9]-[12]. In practice, a compiler will have a third outcome,
namely, that it succeeds neither in generating code nor in
proving nonschedulability. To aid the compiler in finding a

Note that becaus®is a schedule, rather than an actual run of feasiple scheduling function in difficult situations, we intro-
the Giotto program, it allocates the worst case execution time g4,ce the concept of Giotto annotations.

for each computation job, and the worst case communication The most basic Giotto annotation is the mapping annota-

time for each communication job. The schedfleonforms
to the jitter tolerance if the following conditions hold.

1) [Actuator Timing For every actuator jobJ =
true(d)[i, 2] or J = false(d)[i, 2] in Jg, whered is
an actuator driver, we have — ¢ < star(.J) and
fing(J) < 7. Here,r; is the time stamp of théth
configuration of the program executidn

2) [Sensor Timing For every sensor jobJ =
read(s)[i, 3] in Jg, wheres is a sensor port, we
haver; < starg(J) and fing(J) < 7; + .

Given a Giotto progrant7, a platform specificatiornf/,

and a jitter tolerance, a scheduling functiols maps every

94

tion. A particular application may require that tasks be lo-
cated on specific hosts, e.g., close to the physical processes
that the tasks control, or on processors particularly suited for
the operations of the tasks. A mapping annotation can be used
to express such constraints, and also to reduce the size of the
space in which the compiler must look for a feasible sched-
uling function. LetG be a Giotto program, and Iéf be a
platform specification foiG. A mapping annotatiorior G

on H is a partial functiorhost: Jobs — Hosts that assigns

a host ofH to some computation actions 6f The mapping
annotation icompletdf the functionhost is total. Consider

a schedules that realizes an executiall of G on H. The

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

scheduleS conformsto the mapping annotatidiost if for Giotto scheduling problerasks, given a Giotto progra,
all jobsJ € Jg, if J = j[] and hosty) is defined, then a platform specificatiorf/, a jitter tolerance, and a (map-
hostg(J) = host(j). ping or scheduling) annotatiof, if there is a feasible sched-

A more detailed Giotto annotation is the scheduling uling functionS such that for every executiol of &, the
annotation. The exact form of scheduling annotations scheduleSg conforms to the annotatioA. If the abstract
depends on the platform: a scheduling annotation specifiesGiotto scheduling problertG, H, ¢) has a solution, but the
task priorities, relative deadlines, or time slots, depending annotated problertG, H, e, A) does not, then the annota-
on whether the underlying real-time operating system tion A is invalid. Invalid annotations constrain the program
uses a priority-driven, deadline-driven, or time-triggered in a way that rules out all feasible scheduling functions.
scheduler. We choose an uncomplicated platform—with ~ Mapping and scheduling annotations, as previously de-
preemptive priority scheduling of tasks, and round-robin fined, provide only one example of how a Giotto program
time-slice scheduling of messages on the network—in can be mapped onto a particular kind of platform. According
order to demonstrate that a precise definition of scheduling to the definitions, mapping annotations occur strictly prior to
annotations is possible; more elaborate annotations wouldscheduling annotations. In general, we believe that it is ad-
require longer definitions, but not a fundamental change in vantageous to arrange Giotto annotations in multiple levels.
approach. One can define partial scheduling annotations,Such a structured view supports the incremental refinement
which leave some decisions to the system scheduler, but forof a Giotto program into an executable image. The multilay-
simplicity, we define only a complete form of scheduling ered approach suggests a modular architecture for the Giotto

annotation. To be precise, scheduling annotatiorfor compiler with separate modules for, say, mapping and sched-
the programG on a platform specified byH is a tuple uling. The compiler may attempt to solve the scheduling
(host, priority, slot, §). problem on any annotation level, and if it fails to do so, it
1) [Mapping The functionhost: Jobs — Hosts is a may ask for more detailed annotations at a lower level. At
complete mapping annotation 6 on H. every Ievel,_the anno?atlon must be f:hecked for yalldlty, that

2) [Task Prioritie§ The functionpriority: Tasks — N is, for consistency with the annotations at the higher levels
assigns a priority to every task. and with the Giotto semantics. Such a compiler can be eval-

3) [Communication Timés For simplicity, we as- uateq along several dimensions: 1) how many a_nnotations it
sume that all communication proceeds in rounds, requires to genergte code; and 2) \(vhat the cost s of the gen-
with each round providing a time slot to every erated_cpd_e. Fq_r instance, a compiler can use a cost function
port. The value of a porty can be broadcast that minimizes jitter of the actuator updates.
once per round, in the slot provided tp. Let

= |Ports| be the number of ports. The function
slot: Ports — {0,1,..., P — 1} is a bijection To illustrate the flexibility afforded to the Giotto compiler,
that assigns a slot number to every port. The positive We present several possible schedules for an execution of
rationals € @ is the duration of each time slot. We the Giotto program from Fig. 11. The platform specifica-
assume that only one broadcast is possible per timetion H = (Hosts, wcet, wcct) consists of a single host
slot; that iswcct(p) = & for all portsp € Ports. (Hosts = {h}) and the following worst case execution
times:

C. Example

Consider a schedulg that realizes an executidi of G on
H. The scheduleS conformsto the scheduling annotation

t(read(sy), h) =0.25
(host, priority, slot, §) if S conforms to the mapping e (’ d< v }i) B :
annotatiorhost and the following conditions hold. weet(read(sz), h) =0.25
1) [Task Prioritie§ Consider a jobJ that occurs in the weet(ty, h) =0.25
scheduleS. The job.J is completedn S at timer if wcet(tz, h) =05
fing(J) < 7. The job.J is enabledin S at timer if wcet(ts, h) =1.0
for all jobs J” that occur inS, if J" <p JorJ'isa weet(true(dy), h) =0.25
communication predecessor.bfthenJ’ is completed t(true(ds), h) = 0.5
atr. For all timesr € R, all hostsh € Hosts, and all weetlirueldz), i) =10
task jobsJ; = t1[iy, 1] and.Jy = tfiz, 1] in Jg, if wcet(true(ds), h) =1
S(r, h) = J; andhost(t2) = h and.J; is enabled in weet(true(dy), h) =1
S attimer, thenpriority(t;) > priority(ts). wcet(true(ds), h) =wcet(false(ds), h) = 0.5.

2) [Communication Timé&or every communication job
J = send(p)[] that occurs inS, there exists around SinceHosts is a singleton set, we need not definect. The
numbern € NU{0} suchthab - (n- P +slot(p)) < jitter tolerance ist = 1.
starts(J) and fing(J) < 6 - (n- P+ slot(p) +1). Consider the sample executidn pictured in Fig. 12. In
A Giotto program with annotations is a formal refinement £, sensors are read and actuators are written at precisely the
of the program: the Giotto semantics, as defined in Section time instants specified by the Giotto semantics. This preci-
I1I-B, is not changed by the annotations, but the number of sion is clearly impossible to attain if sensor reads and ac-
feasible scheduling functions may be reduced.ditmeotated tuator writes take a nonnegligible amount of time. Further,

HENZINGERet al: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 95

true(ds)[0.4]
true(dy)[0,7) true(d;)[3,7)
t1(3,1] false(ds)[2.4]

true(ds)[4,4] false(ds)[5,4]

w true(d,)[6,2]
\

TG:12

Ry
true(ds)[0,2] Ry
1]

[

T():O

o 15[2,1]

-

true(ds)[0,7] true(ds)[2,7)

true(ds)[5,7)

£06,1]

Fig. 14. The precedence and timing constraints for the program execution of Fig. 121+ése
an abbreviation foread(s)[0, 3]. Similarly, R., ..., R; are, respectively, abbreviations

for read(s2)[0. 3], read(s1)[2, 3], read(sz2)[2. 3], read(s2)[4, 3], read(s1)[5, 3], and
read(s2)[5, 3].

read(s2)[4,3]

true(dy)[0,2]
read(sy1)[0,3]
read(s2)[0,3]
true(ds)[0,4]
true(dy)[0,7]
true(ds)[0,7]

true(dy)[3,7]
t,6,1]
read(s1)[2,3]
read(sy)[2,3]
false(ds)[2,4]
true(dy)[3,2]
true(ds)[2,7]

true(ds)[4,4]
read(s1)[5,3]
read(sz2)[5,3]
false(ds)[5,4]
true(ds)[5,7]
t5[6,1]
true(d,)[6,2]

‘ #[3.1]
|

ICTT TFeal I

\ | | | | \
-1 0 1 2 3 4 5 6 7 8

(T el I T

I \ | I \ \ \ I
10 11 12

©

Fig. 15. A schedule for the program execution of Fig. 12.

in £, the second invocation of tagk executes between 6 interval from—1 to 3.5. First the actuator jobrue(dy)[0, 2]
and 12 ms. This requirement may be too strict, and if in- executes; this job updates the actuator pofthen the sensor
sisted upon would prevent some Giotto programs from being jobs read(s1)[0, 3] and read(s2)[0, 3] execute; these jobs
schedulable. Instead, what is required is that the second invo-update the sensor portg ands,. Next, the mode-driver job
cation oft; executes after all its input port values are avail- true(ds)[0, 4] executes, indicating a mode change, followed
able, and before any job that needs its output port values. by the task-driver jobsrue(d;)[0, 7] and true(d,)[0, 7].

Fig. 14 shows the constraints on timing and precedencesFinally, the task job$;[3, 1] andt3[2, 1], corresponding to
for the computation jobs that are induced by the executipn the first invocations of tasks, andt;, execute. Note that
these are the constraints that appear in the definition of thethe driver job for the second invocation of task namely
realization of an execution, and in the definition of confor- true(d;)[3, 7], as well as the task itself; [6, 1], execute in
mance with the jitter tolerance. Boxes with a double border advance of 6 ms. This is permissible, becatrse(d;)[3, 7]
represent sensor and actuator jobs. These jobs are speciaheeds only the value of post produced by the first invo-
because their execution is constrained to happen at specificcationts[2, 1] of taskt¢s, which is complete at 3.5 ms. The
times. The remaining boxes are jobs that execute tasks,schedule of Fig. 15 conforms to a scheduling annotation with
mode drivers, and task drivers. These jobs may execute atpriority(¢1) > priority(ts): for example, at 2.25 ms,
any time, provided they meet all precedence constraints. Fort, [3, 1] and¢3[2, 1] are both enabled, buf[3, 1] executes.
example, read(s1)[0, 3] precedestrue(ds)[0, 7], because Fig. 16 shows a second schedule that realizes the
the sensor jobread(s)[0, 3] provides the sensor value to execution 2 on a platform specified byl and con-
the task-driver joktrue(ds)[0, 7]. Note also that in Fig. 14, forms to the jitter tolerance? 1. The schedule
jobs of the formfulse(ds)[-, -] do not precede other jobs, of Fig. 16 conforms to a scheduling annotation with
as a driver does not write any ports if its guard evaluates to priority(t3) > priority(¢1). Fig. 17 shows a third
false. schedule for the same execution, conforming to a scheduling

Fig. 15 shows a schedule that realizes the execiiion a annotation withpriority(¢1) > priority(¢s). In this
platform specified by and conforms to the jitter tolerance schedule, task; is preempted at 2.5 ms by the driver for
¢ = 1. To understand what Fig. 15 represents, consider thetask#; and then by task; itself.

96 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

#[3,1]

true(dy)[0,2]
read(s1)[0,3]
read(s2)[0,3]
true(ds)[0,4]
true(d:)[0,7]
true(ds)[0,7]

true(dy)[3,7]
£16,1]
read(s1)[2,3]
read(s2)[2,3]
false(ds)[2,4]
true(dy)(3,2]
t]rue(dg)[277]

read(s;)[4,3]

true(ds)[4,4]
read(s1)[5,3]
read(ss)[5,3]
false(ds)[5,4]
true(ds)[5,7]
t5[6,1]

true(d,)[6,2]
|

t3(2,1]

ML Jel

| | | | \
4 5 6 7 8

Fig. 16. A second schedule for the program execution of Fig. 12.

true(dy)[0,2]

read(s1)[0,3]
read(s2)[0,3]
true(ds)[0,4]
true(ds)[0,7]
t3(2,1]

true(d;)[0,7]
t1[3,1]
t3[2,1]

true(dy)[3,7]
t4(6,1]
read(sy)[2,3]
read(sz)[2,3]
false(ds)[2,4]
true(dy)[3,2]
true(ds)[2,7]

O —

10 11 12

read(sz)[4,3]

true(ds)[4,4]
read(s1)[5,3)
read(s2)[5,3]
false(ds)[5.4]
true(ds)[5,7]
£2[6,1]
true(d,)[6,2]

]][I |

i | | 1 \ | l | |
-1 0 1 2 3 4 5 6 7 8 10 11 12

©

Fig. 17. A third schedule for the program execution of Fig. 12.

V. DISCUSSION given a real-time trace of sensor valuations, the corre-
sponding real-time trace of actuator valuations produced by
a Giotto program is uniquely determined [5]. The separation
rived from the literature, we believe that the study of strictly of reactivity from schedulability has several important
time-triggered task invocation together with strictly time- ramifications. First, the reactive (i.e., functional and timing)
triggered mode switching as a possible organizing principle properties of a Giotto program may be subject to formal
for abstract, platform-independent real-time programming is verification against a mathematical model of the control
an important step toward separatimgctivity from schedu- design [13]. Second, a Giotto program specifies reactivity
lability. The term reactivity expresses what we mean by con- in a modular fashion, which facilitates the exchange and
trol-systems aspects: the system’s functionality, in particular, addition of functionality. For example, functionality code
the control laws, and the system’s timing requirements. The (i.e., tasks and driver functions) can be packaged as software
term schedulability expresses what we mean by platform- components and reused. Third, as increasingly powerful
dependent aspects, such as platform performance, platfornGiotto compilers become available, the embedded-software
utilization (scheduling), and fault tolerance. Giotto decom- development effort is significantly reduced. The tedious
poses the development process of embedded control softprogramming of scheduling code is replaced by compilation,
ware into high-level real-time programming of reactivity and which eliminates a common source of errors. Fourth, Giotto
low-level real-time scheduling of computation and commu- is compatible with any scheduling strategy, which therefore
nication. Programming in Giotto is real-time programming becomes a parameter of the Giotto compiler. There are
in terms of the requirements of control designs, i.e., their re- essentially two reasons why even the best Giotto compiler
activity, not their schedulability. may fail to generate executable code: 1) not enough platform
The strict separation of reactivity from schedulability is utilization; or 2) not enough platform performance. Then,

achieved in Giotto through time- and value-determinism: independently of the program’s reactivity, utilization can be

While many of the individual elements of Giotto are de-

HENZINGERet al: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 97

improved by a better scheduling module, and performance project, we implemented the Embedded Machine on top of
can be improved by faster or more parallel hardware or HelyOS.
leaner functionality code. We also implemented a Giotto-based electronic throttle
controller on a single Motorola MPC-555 processor running
the real-time operating system OSEKWorks. For this pur-
pose, we ported the Embedded Machine to OSEKWorks,
We briefly review the existing Giotto implementations. which is widely used in the automotive industry. In addi-
The first implementation of Giotto was a simplified Giotto tion to these real-time versions of the Embedded Machine,
run-time system on a distributed platform of Lego Mind- non-real-time implementations of the Embedded Machine
storms robots. The robots used infrared transceivers for com-are available for Linux and Windows.
munication. Then we implemented a full Giotto run-time
system ona d|str|bu'Fed platform of Intel x86 robots running B. Related Work
the real-time operating system VxWorks. The robots used
wireless Ethernet for communication. We also implemented Giotto is inspired by the TTA [4], which first realized
a Giotto program running on five robots, three Lego Mind- the time-triggered paradigm for meeting hard real-time con-
storms and two x86-based robots, to demonstrate Giotto’sstraints in safety-critical distributed settings. However, while
applicability for heterogeneous platforms. The communica- the TTA encompasses a hardware architecture and commu-
tion between the Mindstorms and the x86 robots was done nication protocols, Giotto provides a hardware-independent
by an infrared-Ethernet bridge implemented on a PC. Anin- and protocol-independent abstract programmer’s model for
formal discussion of these implementations, and embeddedtime-triggered applications. Giotto can be implemented on
control-systems development with Giotto in general, can be any platform that provides sufficiently accurate clock primi-
found in [14]. tives or supports a clock synchronization scheme. The TTA
In collaboration with Marco Sanvido and Walter is thus a natural platform for Giotto programs.
Schaufelberger at ETH Zirich (Zirich, Switzerland), we Giotto is similar to architecture description languages
built a high-performance implementation of a Giotto system (ADLs) [19]. Like Giotto, ADLs shift the programmer’s per-
on a single StrongARM SA-110 processor that controls spective from small-grained features such as lines of code to
an autonomously flying model helicopter [15]. We started large-grained features such as tasks, modes, and inter-com-
from an existing implementation of the helicopter control ponent communication, and they allow the compilation of
system [16], which included a custom-designed real-time scheduling code to connect tasks written in conventional
operating system called HelyOS and control software programming languages. The design methodology for the
written in a subset of Oberon [17] suited for embedded Mars system, a predecessor of the TTA, distinguishes in a
real-time systems. We reimplemented the existing software similar way “programming in the large” from “programming
as a combination of a Giotto program and Oberon code in the small’ [20]. The inter-task communication semantics
that implements the task and driver functions. Much of the of Giotto is particularly similar to the MetaH language [21],
existing functionality code could be reused. The Giotto [22], which is designed for real-time, distributed avionics
program for the helicopter consists of six Giotto modes such applications. MetaH supports periodic real-time tasks, mul-
as “takeoff” and “hover.” The hover mode, for example, timodal control, and distributed implementations. Giotto can
contains a 40-Hz controller task and a 200-Hz data-fusion be viewed as capturing a time-triggered fragment of MetaH
task. in an abstract and formal way. Unlike MetaH, Giotto does
For this project, we developed a Giotto compiler that not constrain the implementation to a particular scheduling
targets a virtual real-time machine, called thenbedded scheme.
Machine[5]. Embedded Machine code, also callEdode The goal of Giotto—to provide a platform-independent
supervises the timing of functionality code, which can be programming abstraction for real-time systems—is shared
written in any conventional programming language such as also by the synchronous reactive programming languages
C. An Embedded Machine-based Giotto run-time system [3], such as Esterel [23], Lustre [24], and Signal [25].
consists of an implementation of the Embedded Machine While the synchronous reactive languages are designed
together with the scheduler of a real-time operating system. around zero-delay value propagation, Giotto is based on the
While E code is interpreted by the Embedded Machine, formally weaker notion of unit-delay value propagation,
functionality code is native code that is scheduled for exe- because in Giotto, scheduled computation (i.e., the execution
cution by the system scheduler. For E code that is generatedf tasks) takes time, and synchronous computation (i.e., the
from a Giotto source program, the scheduling problem execution of drivers) consists only of independent, noninter-
is more constrained than the abstract Giotto scheduling acting processes. This decision shifts the focus and the level
problem defined in Section IV-A, but still independent of of abstraction in essential ways. In particular, for analysis
any particular system scheduler; it is only required that the and compilation, the burden for the well-definedness of
scheduler be compatible with the schedulability test of the values is shifted from logical fixed-point considerations to
Giotto compiler [18]. E code produced by the compiler physical scheduling constraints (in Giotto all values are,
can be executed on any platform for which an Embedded semantically, always well-defined). Thus, Giotto can be seen
Machine implementation is available. For the helicopter as identifying a class of synchronous reactive programs that

A. Current Giotto Implementations

98 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

support typical real-time control applications and efficient
code generation [5].

ACKNOWLEDGMENT

The authors would like to thank R. Majumdar for imple-
menting a prototype Giotto compiler for Lego Mindstorms
robots. They would like to thank D. Derevyanko and W.
Williams for building the Intel x86 robots; and E. Lee and X.
Liu for help with implementing Giotto as a “model of com-
putation” in Ptolemy 11 [26]. Finally, they would also like to
thank M. Sanvido for his suggestions on the design of the
Giotto drivers; and P. Griffiths for implementing the func-
tionality code of the electronic throttle controller.

REFERENCES
(1

D. Langer, J. Rauch, and M. RoRler, “Fly-by-wire systems for mili-
tary high-performance aircraft,” iReal-Time Systems: Engineering
and Applications Norwell, MA: Kluwer, 1992, pp. 369-395.

R. Collinson, “Fly-by-wire flight control,"Comput. Contr. Engvol.

10, no. 4, pp. 141-152, 1999.

N. Halbwachs, Synchronous Programming of Reactive Sys-
tems Norwell, MA: Kluwer, 1993.

H. Kopetz, Real-Time Systems: Design Principles for Distributed
Embedded Applications Norwell, MA: Kluwer, 1997.

T. Henzinger and C. Kirsch, “The Embedded Machine: Predictable,
portable real-time code,” iRroc. ACM SIGPLAN Conf. Program.
Lang. Design Implementatip2002, pp. 315-326.

S. Malik and Y.-T. Li,Performance Analysis of Real-Time Embedded
Software Norwell, MA: Kluwer, 1999.

H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and precise WCET
prediction by separated cache and path analyZesdl-Time Syst.
vol. 18, no. 2-3, pp. 157-179, 2000.

M. Garey and D. Johnsoomputers and Intractability: A Guide to
the Theory of NP-CompletenessNew York: Freeman, 1979.

K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systemdylicroprocess. Microprogramvol.

40, pp. 117-134, 1994.

P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Process
scheduling for performance estimation and synthesis of hard-
ware/software systems,” iRroc. EUROMICRO Conf.1998, pp.

(2]
(3]
(4]
(5]

(6]
(7]

(8]
El

[10]

168-175.

[11] P. Brucker, Scheduling Algorithms Berlin, Germany:
Springer-Verlag, 2001.

[12] M. Pinedo, Scheduling: Theory, Algorithms, and

Systems Englewood Cliffs, NJ: Prentice-Hall, 2002.

T. Henzinger, “Masaccio: A formal model for embedded com-
ponents,” in Lecture Notes in Computer Science, Theoretical
Computer Science: Exploring New Frontiers of Theoretical Infor-
matics Heidelberg, Germany: Springer-Verlag, 2000, vol. 1872,
pp. 549-563.

T. Henzinger, B. Horowitz, and C. Kirsch, “Embedded control sys-
tems development with Giotto,” iRroc. ACM SIGPLAN Workshop
Lang., Compilers, Tools Embedded $2601, pp. 64-72.

C. Kirsch, M. Sanvido, T. Henzinger, and W. Pree, “A Giotto-based
helicopter control system,” ihecture Notes in Computer Science,
Embedded Software Heidelberg, Germany: Springer-Verlag,
2002, vol. 2491, pp. 46-60.

J. Chapuis, C. Eck, M. Kottmann, M. Sanvido, and O. Tanner, “Con-
trol of helicopters,” inControl of Complex SystemsBerlin, Ger-
many: Springer-Verlag, 1999, pp. 359-392.

N. Wirth and J. GutknechBroject Oberon: The Design of an Oper-
ating System and Compiler New York: ACM, 1992.

T. Henzinger, C. Kirsch, R. Majumdar, and S. Matic, “Time-safety
checking for embedded programs,” irecture Notes in Com-
puter Science, Embedded Softwaréleidelberg, Germany:
Springer-Verlag, 2002, vol. 2491, pp. 76-92.

P. Clements, “A survey of architecture description languages,” in
Proc. Int. Workshop Software Specification Desi®96, pp. 16—25.

[13]

[14]

[15]

[16]

[17]

(18]

[29]

HENZINGERet al: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING

[20] H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner, and W.
Schitz, “The design of real-time systems: From specification to
implementation and verification Softw. Eng. J.vol. 6, no. 3, pp.
72-82, 1991.

S. Vestal and P. Binns, “Scheduling and communication in MetaH,”
in Proc. 14th Annu. Real-Time Syst. Syn893, pp. 194-200.

S. Vestal, “MetaH support for real-time multi-processor avionics,” in
Proc. 5th Int. Workshop Parallel Distributed Real-Time Sys897,

pp. 11-21.

G. Berry, “The foundations of Esterel,” iroof, Language and In-
teraction: Essays in Honor of Robin Milne6. Plotkin, C. Stir-
ling, and M. Tofte, Eds. Cambridge, MA: MIT Press, 2000, pp.
425-454.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous dataflow programming language Lustreroc. |IEEE

vol. 79, pp. 1305-1320, Sept. 1991.

A. Benveniste, P. Guernic, and C. Jacquemot, “Synchronous pro-
gramming with events and relations: The Signal language and its
semantics,'Sci. Comput. Programvol. 16, pp. 103-149, 1991.

J. Davis, M. Goel, C. Hylands, B. Kienhuis, E. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y.
Xiong, “Ptolemy II: Heterogeneous concurrent modeling and design
in Java,” Univ. California, Berkeley, Tech. Rep. UCB/ERL-M99/44,
1999.

[21]

[22]

(23]

[24]

[25]

[26]

Thomas A. Henzinger(Member, IEEE) received
the Dipl.-Ing. degree in computer science from
Kepler University, Linz, Austria; the M.S. degree
in computer and information sciences from the
University of Delaware, Newark; and the Ph.D.
degree in computer science from Stanford Uni-
versity, Stanford, CA, in 1991.

From 1992 to 1995, he was an Assistant Pro-
fessor of Computer Science at Cornell Univer-
sity, Ithaca, NY. In 1999, he was a Director of
the Max-Planck Institute for Computer Science,
Saarbriicken, Germany. He is currently a Professor of Electrical Engineering
and Computer Sciences at the University of California, Berkeley. His re-
search interests are formalisms and tools for the design, implementation,
and verification of reactive, real-time, and hybrid systems.

Benjamin Horowitz (Member, IEEE) received
the B.A. degree in philosophy from Wesleyan
University, Middletown, CT, in 1994. From 1995
to 1997, he was in the Department of Computer
Science, University of Massachusetts, Amherst.
He is currently a Ph.D. degree candidate in
the Department of Electrical Engineering and
Computer Sciences, University of California,
Berkeley.

His research interests include real-time
programming languages, scheduling theory, and
the design of embedded systems.

Christoph M. Kirsch received the Dipl.-Inform.
degree and the Ph.D. degree in computer science
from the University of the Saarland, Saarbrticken,
Germany, in 1996 and 1999, respectively.

He was with the Max-Planck Institute for
Computer Science, Saarbrucken, Germany.
He is currently a Postdoctoral Researcher in
the Department of Electrical Engineering and
Computer Sciences, University of California,
Berkeley. His research interests are formalisms
and tools for the design and implementation of
real-time and embedded systems.

99

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

