
Giotto: A Time-Triggered Language for
Embedded Programming

THOMAS A. HENZINGER, MEMBER, IEEE, BENJAMIN HOROWITZ, MEMBER, IEEE, AND

CHRISTOPH M. KIRSCH

Invited Paper

Giotto provides an abstract programmer’s model for the
implementation of embedded control systems with hard real-time
constraints. A typical control application consists of periodic soft-
ware tasks together with a mode-switching logic for enabling and
disabling tasks. Giotto specifies time-triggered sensor readings,
task invocations, actuator updates, and mode switches independent
of any implementation platform. Giotto can be annotated with
platform constraints such as task-to-host mappings, and task and
communication schedules. The annotations are directives for the
Giotto compiler, but they do not alter the functionality and timing
of a Giotto program. By separating the platform-independent from
the platform-dependent concerns, Giotto enables a great deal of
flexibility in choosing control platforms as well as a great deal
of automation in the validation and synthesis of control software.
The time-triggered nature of Giotto achieves timing predictability,
which makes Giotto particularly suitable for safety-critical appli-
cations.

Keywords—Control systems, embedded software, programming
languages, real-time systems.

I. INTRODUCTION

Giotto provides a programming abstraction for hard
real-time applications that exhibit time-periodic and
multimodal behavior, as in automotive, aerospace, and
manufacturing control.

Manuscript received December 20, 2001; revised August 31, 2002. This
work was supported in part by the Air Force Office of Scientific Research
Multidisciplinary University Research Initiative under Grant F49620-00-1-
0327; in part by the Defense Advanced Research Projects Agency Soft-
ware Enabled Control program under Grant F33615-C-98-3614; in part by
the MARCO Gigascale Silicon Research Center under Grant 98-DT-660;
and in part the National Science Foundation under Grant CCR-0208875.
A preliminary version of this paper appeared inLecture Notes in Computer
Science, Embedded Software, Heidelberg, Germany: Springer-Verlag, 2001,
vol. 2211, pp. 166–184.

The authors are with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA 94720-1770
USA (e-mail: tah@eecs.berkeley.edu; bhorowit@cs.berkeley.edu;
cm@eecs.berkeley.edu).

Digital Object Identifier 10.1109/JPROC.2002.805825

Traditional control design happens at a mathematical level
of abstraction, with the control engineer manipulating differ-
ential equations and mode-switching logic using tools such
as Matlab or MatrixX. Typical activities of the control en-
gineer include modeling of the plant behavior and distur-
bances, deriving and optimizing control laws, and validating
functionality and performance of the model through analysis
and simulation. If the validated design is to be implemented
in software, it is then handed off to a software engineer who
writes code for a particular platform (we use the word “plat-
form” to stand for a hardware configuration together with a
real-time operating system). Typical activities of the software
engineer include decomposing the necessary computational
activities into periodic tasks, assigning tasks to CPUs and
setting task priorities to meet the desired hard real-time con-
straints under the given scheduling mechanism and hardware
performance, and achieving the desired degree of fault tol-
erance through replication and error correction. While lim-
ited automation for these activities is available in the form
of code-generation tools, the software engineer has final au-
thority over putting the implementation together through an
often iterative process of code integration, testing, and opti-
mization.

Giotto provides an intermediate level of abstraction, which
1) permits the software engineer to communicate more ef-
fectively with the control engineer; and 2) keeps the im-
plementation and its properties more closely aligned with
the mathematical model of the control design. Specifically,
Giotto defines a software architecture of the implementation
which specifies its functionality and timing. Functionality
and timing are sufficient and necessary for ensuring that the
implementation is consistent with the mathematical model.
On the other hand, Giotto abstracts away from the realiza-
tion of the software architecture on a specific platform, and
frees the software engineer from worrying about issues such
as hardware performance and scheduling mechanism while
communicating with the control engineer. After writing a

0018-9219/03$17.00 © 2003 IEEE

84 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003



Giotto program, the second task of the software engineer
remains, of course, to implement the program on the given
platform. In Giotto, this second task, which requires no in-
teraction with the control engineer, is effectively decoupled
from the first, and can in large parts be automated by increas-
ingly powerful compilers. Giotto compilation guarantees the
preservation of functionality and timing, and thus removes
the need for a tedious and error-prone iteration of code eval-
uation and optimization.

The Giotto design flow is shown in Fig. 1. The separation
of logical correctness concerns (functionality and timing)
from physical realization concerns (mapping and scheduling)
has the added benefit that a Giotto program is entirely plat-
form independent and can be compiled on different, even het-
erogeneous, platforms.

Motivating Example.
Giotto is designed specifically for embedded control appli-

cations. Consider a typical fly-by-wire flight control system
[1], [2], which consists of three types of interconnected com-
ponents (see Fig. 2): sensors, CPUs for computing control
laws, and actuators. The sensors include an inertial measure-
ment unit (IMU), for measuring linear acceleration and an-
gular velocity; a global positioning system (GPS), for mea-
suring position; an air data measurement system, for mea-
suring such quantities as air pressure; and the pilot’s controls,
such as the pilot’s stick. Each sensor has its own timing prop-
erties: the IMU, for example, outputs its measurement 1000
times/s, whereas the pilot’s stick outputs its measurement
only 500 times/s. Three separate control laws—for pitch, lat-
eral, and throttle control—need to be computed. The system
has four actuators: two for the ailerons, one for the tailplane,
and one for the rudder. The timing requirements on the con-
trol laws and actuator tasks are also shown in Fig. 2. The
reader may wonder why the actuator tasks need to run more
frequently than the control laws. The reason is that the ac-
tuator tasks are responsible for the stabilization of quickly
moving mechanical hardware, and thus need to be an order
of magnitude more responsive than the control laws.

We have just described one operational mode of the
fly-by-wire flight control system, namely, the cruise mode.
There are four additional modes: the takeoff, landing,
autopilot, and degraded modes. In each of these modes,
additional sensing tasks, control laws, and actuating tasks
need to be executed, as well as some of the cruise tasks
removed. For example, in the takeoff mode, the landing gear
must be retracted. In the autopilot mode, the control system
takes inputs from a supervisory flight planner, instead of
from the pilot’s stick. In the degraded mode, some of the
sensors or actuators have suffered damage; the control
system compensates by not allowing maneuvers which are
as aggressive as those permitted in the cruise mode.

The Giotto Abstraction.
Giotto provides a programmer’s abstraction for speci-

fying control systems that are structured like the previous
fly-by-wire example. The basic functional unit in Giotto
is the task, which is a periodically executed piece of, say,
C code. Several concurrent tasks make up amode. Tasks
can be added or removed by switching from one mode to

Fig. 1. Giotto-based control-systems development.

another. Tasks communicate with each other, as well as with
sensors and actuators, by so-calleddrivers, which is code
that transports and converts values betweenports. While a
task represents application-level computation that consumes
a nonnegligible amount of CPU time, a driver is bounded
code that can be executed essentially instantaneously on
the system level, with environment interrupts disabled
(more precisely, drivers satisfy thesynchrony assumption
[3], that they can be executed before the environment state
changes1 ). In this way, the Giotto abstraction integrates
scheduled computation (tasks) and synchronous commu-
nication (drivers). The periodic invocation of tasks, the
reading of sensor values, the writing of actuator values,
and the mode switching are all triggered by real time.
For example, one task may be invoked every 2 ms and
read a sensor value on each invocation;2 another task
may be invoked every 3 ms and write an actuator value on
each completion; and a mode switch may be contemplated
every 6 ms. This time-triggered semantics enables efficient
reasoning about the timing behavior of a Giotto program, in
particular, whether it conforms to the timing requirements of
a mathematical (e.g., Matlab) model of the control design.

A Giotto program does not specify where, how, and when
tasks are scheduled. The Giotto program with tasksand

can be compiled on platforms that have a single CPU
(by time sharing the two tasks) as well as on platforms with
two CPUs (by parallelism); it can be compiled on platforms
with preemptive priority scheduling (such as most real-time
operating systems) as well as on truly time-triggered plat-
forms [such as the time-triggered architecture (TTA) [4]].
All the Giotto compiler needs to ensure is that the seman-
tics of the program—i.e., functionality and timing—is pre-
served. To this end, the compiler needs to solve a possibly
distributed scheduling problem. This can be difficult, and to
make the job of the compiler easier, a Giotto program can be
annotated with compiler directives in the form ofplatform
constraints. A platform constraint may map a particular task
to a particular CPU, assign a particular priority to a particular
task, or schedule a particular communication event between
tasks in a particular time slot. Such annotations, however, in

1Since drivers cannot depend on each other, no issues of fixed-point se-
mantics arise.

2While any choice of time unit is possible, we use milliseconds throughout
the paper.

HENZINGERet al.: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 85



Fig. 2. A fly-by-wire flight control system.

no way modify the functionality and timing of a Giotto pro-
gram; they simply aid the compiler in realizing the semantics
of the program.

Outline of the Paper.
We first give an informal introduction to Giotto in Sec-

tion II, followed by a formal definition of the language in
Section III. In Section IV, we define an abstract version of
the scheduling problem that needs to be solved by the Giotto
compiler, and we illustrate how a program can be annotated
to guide distributed code generation. In Section V, we give
pointers to current Giotto implementations and relate Giotto
to the literature.

II. I NFORMAL DESCRIPTION OFGIOTTO

Ports.
In Giotto all data is communicated through ports. A port

represents a typed variable with a unique location in a glob-
ally shared name space. We use the global name space for
ports as a virtual concept to simplify the definition of Giotto.
An implementation of Giotto is not required to be a shared-
memory system. Every port is persistent in the sense that the
port keeps its value over time, until it is updated. There are
mutually disjoint sets of sensor ports, actuator ports, and task
ports in a Giotto program. The sensor ports are updated by the
environment; all other ports are updated by the Giotto pro-
gram. The task ports are used to communicate data between
concurrent tasks. Task ports can also be used to transfer data
from one mode to the next: task ports can be designated as
mode ports of a given mode, and assigned a value every time
the mode is entered.

Tasks.
A typical Giotto task is shown in Fig. 3. The taskhas a

set of two input ports and a set of two output ports, all
of which are depicted by bullets. The input ports ofare dis-
tinct from all other ports in the Giotto program. The output
ports of may be shared with other tasks as long as the tasks
are not invoked in the same mode. In general, a task may
have an arbitrary number of input and output ports. A task
may also maintain a state, which can be viewed as a set of

Fig. 3. A task t.

Fig. 4. An invocation of taskt.

private ports whose values are inaccessible outside the task.
The state of is denoted by . Finally, the task has a func-
tion from its input ports and its current state to its output
ports and its next state. The task functionis implemented
by a sequential program, and can be written in an arbitrary
programming language. It is important to note that the execu-
tion of has no internal synchronization points and cannot
be terminated prematurely; in Giotto all synchronization is
specified explicitly outside of tasks. For a given platform, the
Giotto compiler will need to know the worst case execution
time of on each available CPU.

Task Invocations.
Giotto tasks are periodic tasks: they are invoked at reg-

ularly spaced points in time. An invocation of a taskis
shown in Fig. 4. The task invocation has a frequency
given by a nonzero natural number; the real-time frequency
will be determined later by dividing the real-time period of
the current mode by . The task invocation specifies a
driver which provides values for the input ports . The
first input port is loaded with the value of some other port,
and the second input port is loaded with the constant value

. In general, a driver is a function that converts the values
of sensor ports and mode ports of the current mode to values
for the input ports, or loads the input ports with constants.
Drivers can be guarded: the guard of a driver is a predicate
on sensor and mode ports. The invoked task is executed only

86 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003



Fig. 5. The time line for an invocation of taskt.

if the driver guard evaluates to true; otherwise, the task exe-
cution is skipped.

The time line for an invocation of the taskis shown
in Fig. 5. The invocation starts at some time with a
communication phase in which the driver guard is evaluated
and the input-port values are loaded. The Giotto semantics
prescribes that the communication phase—i.e., the execu-
tion of the driver —is performed inlogically zero time. In
other words, a Giotto driver is an atomic unit of computa-
tion that cannot be interrupted. The synchronous communi-
cation phase is followed by a scheduled computation phase.
The Giotto semantics prescribes that at time the state
and output ports of are updated to the (deterministic) result
of applied to the state and input ports ofat time . The
length of the interval between and is determined
by the frequency . We say that the task is logically
runningfrom time to time . The Giotto logical ab-
straction does not specify when, where, and how the actual
computation of is physically performed between and

. However, the time at which the task output ports are up-
dated is determined; and, therefore, for any given real-time
trace of sensor values, all values that are communicated be-
tween tasks and to the actuator ports are determined [5]. In-
stantaneous communication and time-deterministic compu-
tation are the two essential ingredients of the Giotto logical
abstraction. A compiler must be faithful to this abstraction;
for example, task inputs may be loaded after time , and
the execution of may be preempted by other tasks, as long
as at time the values of the task output ports are those
specified by the Giotto semantics.

Modes.
A Giotto program consists of a set of modes, each of which

repeats the invocation of a fixed set of tasks. The Giotto pro-
gram is in one mode at a time. Possible transitions from
a mode to other modes are specified by mode switches. A
mode switch can remove some tasks, and add others.

Formally, a mode consists of a period, a set of mode ports,
a set of task invocations, a set of actuator updates, and a set
of mode switches. Fig. 6 shows a modewhich contains
invocations of two tasks, and . The period of is
10 ms; that is, while the program is in mode, its execution
repeats the same pattern of task invocations every 10 ms. The
task has two input ports, and , two output ports, and

, a state , and a function . The task is defined
in a similar way. Moreover, there is one sensor port, one
actuator port , and a mode port , which is not updated by
any task in mode . The value of stays constant while the

Fig. 6. A modem.

Fig. 7. The time line for a round of modem.

program is in mode ; it can be used to transfer a value from
a previous mode to mode. In addition to , all output ports
of tasks invoked in the mode—, , , and —are, by
default, also mode ports; they must be initialized on entering
mode . The mode ports are visible outside the scope of,
as indicated by the dashed lines. A mode switch may copy the
values at these ports to mode ports of a successor mode. The
invocation of task in mode has the frequency ,
which means that is invoked once every 10 ms while the
program is in mode . The invocation of in mode has
the driver , which copies the value of the mode port
into and the value of the output port of into . The
invocation of task has the frequency , which means
that is invoked once every 5 ms as long as the program is
in mode . The invocation of has the driver , which
connects the output port of to , the sensor port to

, and the output port of to . The mode has one
actuator update, which is a driver that copies the value of
the output port of to the actuator port with the actuator
frequency ; that is, once every 10 ms.

Fig. 7 shows the exact timing of a single round of mode
, which takes 10 ms. As long as the program is in mode
, one such round follows another. The round begins at the

time instant with an instantaneous communication phase
for the invocations of tasks and , during which the two
drivers and are executed. The Giotto semantics does

HENZINGERet al.: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 87



Fig. 8. A modem .

not specify how the computations of the task functions
and are physically scheduled; they could be scheduled in
any order on a single CPU, or in parallel on two CPUs. The
Giotto semantics specifies only that after 5 ms, at time instant

, the results of the scheduled computation ofare made
available at the output ports of. The second invocation of

begins with another execution of driver, still at time ,
which samples the most recent value from the sensor port
. However, the two invocations of start with the same

value at input port , because the value stored in is not
updated until time instant ms, no matter whether or
not finishes its actual computation before. According
to the Giotto semantics, the output values of the invocation of

must not be available before. Any implementation that
schedules the invocation ofbefore the first invocation of
must therefore keep available two sets of values for the output
ports of . The round is finished after writing the output
values of the invocation of and of the second invocation
of to their output ports at time , and after updating the
actuator port at the same time. The beginning of the next
round shows that the input port is loaded with the new
value produced by .

Mode Switches.
To give an example of mode switching, we introduce a

second mode , shown in Fig. 8. The main difference be-
tween and is that replaces the task by a new task

, which has a frequency of 4 in . Note that has
a new output port , but also uses the same output port
as . Moreover, has a new driver , which connects the
output port of to the input port , the sensor port to

, and the output port of to . The task in mode
has the same frequency and uses the same driver as in mode

. The period of , which determines the length of each
round, is again 10 ms. This means that in mode, the task

is invoked once per round, every 10 ms; the taskis in-
voked four times per round, every 2.5 ms; and the actuator
is updated once per round, every 10 ms.

A mode switch describes the transition from one mode to
another mode. For this purpose, a mode switch specifies a
switch frequency, a target mode, and a driver. Fig. 9 shows
a mode switch from mode to target mode with the
switch frequency and the driver . The guard of
the driver is called theexit condition, as it determines whether

Fig. 9. A mode switch� from modem to modem .

Fig. 10. The time line for the mode switch� at time� .

or not the switch occurs. The exit condition is evaluated pe-
riodically, as specified by the switch frequency. As usual, the
switch frequency of two means that the exit condition of
is evaluated every 5 ms, in the middle and at the end of each
round of mode . The exit condition is a Boolean-valued
condition on sensor ports and the mode ports of. If the exit
condition evaluates to true, then a switch to the target mode

is performed. The mode switch happens by executing the
driver , which provides values for all mode ports of ;
specifically, loads the constant into , the value of the
mode port into , and ensures that , , and keep
their values (this is omitted from Fig. 9 to avoid clutter). Like
all drivers, mode switches are performed in logically zero
time.

Fig. 10 shows the time line for the mode switchper-
formed at time . The program is in mode until and
then enters mode . Note that until time , the time line
corresponds to the time line shown in Fig. 7. At time, first
the invocation of task is completed, then the mode driver

is executed. This finishes the mode switch. All subsequent
actions follow the semantics of the target modeindepen-
dently of whether the program entered just now through
a mode switch, at 5 ms into a round, or whether it started the
current round already in mode . Specifically, the driver
for the invocation of task is executed, still at time . Note
that the output port of has just received the value of
the output port from task by the mode driver . At
time , task is invoked a second time, and at time, the
round is finished, because this is the earliest time after the
mode switch at which a complete new round of modecan
begin. Now the input port of task is loaded with the con-
stant from the mode port . In this way, task can detect
that a mode switch occurred.

88 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003



A mode switch may occur while a task is logically run-
ning; in this case, we say that the mode switchlogically in-
terruptsthe task invocation. For a mode switch to be legal,
the target mode is constrained so that all task invocations that
may be logically interrupted by a mode switch can be con-
tinued in the target mode. In our example, the mode switch

can occur at 5 ms into a round of mode, while the task
is logically running. Hence the target mode must also

invoke . Moreover, since the period of is 10 ms, as for
mode , the frequency of in must be identical to the
frequency of in , namely, one. If, alternatively, the pe-
riod of were 20 ms, then the frequency ofin would
have to be two.

III. FORMAL DEFINITION OF GIOTTO

A. Syntax

Rather than specifying a concrete syntax for Giotto, we
formally define the components of a Giotto program in
a more abstract way. In practice, Giotto programs can be
written in a concrete, C-like syntax.

A Giotto programconsists of the following components.

1) A set of port declarations. A port declaration
consists of a port name, a type

, and an initial value . We require
that all port names are uniquely declared; that is, if

and are distinct port declarations,
then . The set of declared port names
is partitioned into a set of sensor ports,
a set of actuator ports, a set of
task input ports, a set of task output ports,
and a set of task private ports. Given a
port , we use notation such as for
the type of , and for the initial value of . A
valuation for a set of ports is a function
that maps each port to a value in . We
write for the set of valuations for.

2) A set of task declarations. A task declara-
tion consists of a task
name , a set of input ports,
a set of output ports, a set

of private ports, and a task
function : .
If and
are distinct task declarations, then we require that

and . Tasks may
share output ports as long as the tasks are not invoked
in the same mode, as discussed later. We write
for the set of declared task names.

3) A set of driver declarations. A driver declara-
tion consists of a driver name
, a set of source ports, a driver

guard : , a set
of destination ports, and a driver function :

. When the driver is
called, the guard is evaluated, and if the result is
true, then the function is executed. We require that

all driver names are uniquely declared, and we write
for the set of declared driver names.

4) A set of mode declarations. A mode declaration
( , , , , , )
consists of a mode name , a positivemode pe-
riod , a set of
mode ports, a set of task invocations, a set

of actuator updates, and a set of
mode switches. We require that all mode names are
uniquely declared, and we write for the set of
declared mode names.

a) Each task invocation
consists of a task frequency
, a task such

that , and a
task driver such that

and . The invoked task only
updates mode and private ports; the task driver

reads only mode and sensor ports, and updates
the input ports of . If and are
distinct task invocations in , then
we require that ; that is,
tasks sharing output ports must not be invoked
in the same mode.

b) Each actuator update
consists of anactuator frequency ,
and an actuator driver
such that and

. The actuator driver
reads only mode ports, no sensor ports, and
updates only actuator ports. If and
are distinct actuator updates in ,
then we require that ; that
is, in each mode, an actuator can be updated by
at most one driver.

c) Each mode switch
consists of a mode-switch

frequency , a target mode
, and amode driver such

that
and . The mode
driver reads only mode and sensor ports,
and updates the mode ports of the target mode

. If and are distinct mode
switches in , then we require
that for all valuations either

false or false. It follows
that all mode switches are deterministic.

5) A start mode .

The program iswell-timedif for all modes ,
all task invocations , and
all mode switches ,
if , then there exists a task invoca-
tion with

. The well-timedness condition ensures that
mode switches do not terminate tasks: if a mode switch

HENZINGERet al.: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 89



occurs when a task is logically running, then the same task
must be present also in the target mode.

B. Semantics

A program configuration con-
sists of a mode , amode time , a valuation

for all ports, a set of ac-
tive tasks, and atime stamp . The set
contains all tasks that are logically running, whether or not
they are physically running by expending CPU time. The
number measures the amount of time that has elapsed
since the last mode switch, unless some tasks were logically
running at the time of the last mode switch, in which case

“dates back” the mode switch to the closest time instant
before the mode switch when the current mode could have
started from its beginning with all its tasks. For a program
configuration and a set , we write for the
valuation in that agrees with on the values of all
ports in .

The mode frequenciesof a mode include:
1) the task frequencies for all task invocations

; 2) the actuator frequencies
for all actuator updates ; and 3)
the mode-switch frequencies for all mode switches

. Let be the least
common multiple of the mode frequencies of. During
an execution, as long as the program is in mode, the
program configuration is updated every time
units. Each update results from a sequence of five types of
events: first, some tasks are completed (i.e., removed from
the active set); second, some actuators are updated; third,
some sensors are read; fourth, a mode switch may occur;
fifth, some new tasks are activated.

Let us be more precise. Consider a program configuration
. We need the following auxiliary

definitions.

1) A task invocation is com-
pletedat configuration if , and is an
integer multiple of .

2) An actuator update is eval-
uatedat configuration if is an integer multiple of

.
3) A mode switch is

evaluatedat configuration if is an integer multiple
of .

4) A task invocation is eval-
uatedat configuration if is an integer multiple of

.

The actuator update , mode switch ,
or task invocation is enabledat configuration
if it is evaluated at and true.

The program configuration is asuccessor configura-
tion of if results from by the following nine steps,
calledGiotto micro steps. These are the steps a Giotto pro-
gram performs whenever it is invoked, initially with ,

, and .

1) [Update Task Output and Private Ports] Let
be the set of tasks such that a task

invocation of the form
is completed at configuration . Consider a port

. If
for some task , then define

; other-
wise, define . This gives the new
values of all task output and private ports. Note that
ports are persistent in the sense that they keep their
values unless they are modified. Let be the
configuration that agrees with on the values of

, and otherwise agrees with
.

2) [Update Actuator Ports] Consider a port
. If for some actuator update

that is enabled at configuration
, then define ;

otherwise, define . This gives the new
values of all actuator ports. Let be the configura-
tion that agrees with on the values of ,
and otherwise agrees with .

3) [Update Sensor Ports] Consider a port
. Let be any value in ;

that is, sensor ports change nondeterministically.
This is not done by the Giotto program, but by the
environment. All other parts of a configuration are
updated deterministically, by the Giotto program. Let

be the configuration that agrees with on
the values of , and otherwise agrees with

.
4) [Update Mode] If a mode switch

is enabled at configuration , then
define ; otherwise, define . This
determines if there is a mode switch. Recall that at
most one mode switch can be enabled at any configu-
ration. Let be the configuration with mode
that otherwise agrees with .

5) [Update Mode Ports] Consider a port .
If for some mode switch

that is enabled at configuration ,
then define ;
otherwise, define .
This gives the new values of all mode ports of the
target mode. Note that mode switching updates also
the output ports of all tasks that are logically run-
ning. This does not affect the execution of. When
completes, its output ports are again updated, by. Let

be the configuration that agrees with on
the values of , and otherwise agrees with

.
6) [Update Mode Time] If no mode switch in

is enabled at configuration ,
then define . Otherwise, suppose that a mode
switch is enabled at configuration to the
target mode . Let .
If , then define . Otherwise,
let be the least common multiple of the set

90 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003



Fig. 11. The abstract syntax of a Giotto program with two modes.

for some
of task periods for running tasks; then

is the time it takes during a round of mode
to complete all running tasks simultaneously. Let
be the least integer multiple of such that ;
then is the time until the next simultaneous
completion point. Define . Thus,
a mode switch always jumps as close as possible to
the end of a round of the target mode. Let be
the configuration with mode time that otherwise
agrees with .

7) [Update Task Input Ports] Consider a port
. If for some task

invocation that is
enabled at configuration , then define

; otherwise,
define . This gives the new values of
all task input ports. Let be the configuration
that agrees with on the values of , and
otherwise agrees with .

8) [Update Active Tasks] Let be the set
of tasks such that a task invocation of the form

is enabled at config-
uration . The new set of active tasks is

. Let
be the configuration with the set of

active tasks that otherwise agrees with .
9) [Advance Time] Let be the least integer multiple

of such that ; this is the
time of the next event (task invocation, actuator update,
or mode switch) in mode . The next time instant at
which the Giotto program is invoked is time
units in the future; an implementation may use a timer
interrupt for this. Let . Let

be the configuration with mode time and time
stamp that otherwise agrees with .

An executionof a Giotto program is an infinite sequence
of program configurations such that: 1)

with for all ports
; and 2) is a successor configuration of

for all . Note that there can be a mode switch at the
start time of the program, but there can never be two mode
switches in a row without any time passing.

C. Example

We use the simple Giotto program from Fig. 11 to illus-
trate Giotto’s semantics. This program contains two modes,

and . Mode has a period of 6 ms, and invokes
two tasks, and , with frequencies of one and two, re-
spectively. Mode has a period of 12 ms, and invokes
and the task , with frequencies of two and three, respec-
tively. The tasks and both read the sensor port and
write to the same output port . This is possible because
and are invoked in different modes. The taskreads
and writes to the output port , which is read by the actu-
ator driver to write the actuator port. In both modes, the
actuator update occurs every 6 ms. Modeevaluates a pos-
sible mode switch to mode every 3 ms; contemplates
switching back to every 4 ms. These mode switches are
controlled by the driver , which reads the sensor port.
A mode change occurs if contains the value 1. Both mode
switches, when enabled, write the portsand . We as-
sume that with the exception of , the guards of all other
drivers are always true. The initial values of the sensor and
input ports are omitted from the figure, as they are written
before being read.

To illustrate the semantics of this program, consider an ex-
ecution that begins with the following

HENZINGERet al.: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 91



Fig. 12. The time line for an execution of the program from Fig. 11.

program configurations:

The execution starts in mode , but switches imme-
diately to mode . At configuration , the execution
switches back to mode (note that a mode switch in a
configuration is reflected only in the successor config-
uration ). The execution remains in mode until
configuration .

Fig. 12 shows an initial segment of the time line for. At
0 ms, the port is used to update the actuator port. The
sensor port is read by the mode driver . The guard of
evaluates to true, indicating a mode change; thus, the port
is updated (port is also updated but not used; therefore, it
is omitted in the figure). Port provides the input to task .
The sensor provides the input to task . At 4 ms, task
completes; the sensor port is updated, but no mode change
occurs; and the sensor provides input to a new invocation
of task . At 6 ms, task completes; the actuator portis
updated using the output of; and a new invocation of task

starts. At 8 ms, task completes; sensor is updated; and
the guard of the mode driver evaluates to true, indicating
a switch to mode and updating ports and (neither
port is used; therefore, both are omitted in the figure). At 9
ms, sensor is updated again, but no mode change occurs;
sensor is updated; and an invocation of taskbegins. At
12 ms, both tasks and complete; , , and are all
updated; and new invocations ofand start. Note that at
the time of the mode switch at 8 ms, the mode time of the
target mode is 2 ms, because task has been logically
running for 2 ms. For the duration of 1 ms, taskis the only
running task, until at mode time 3 ms (real time 9 ms), an
invocation of task is added. At mode time 6 ms (real time
12 ms), the partial round of mode is finished, and a new
round begins.

IV. PLATFORM CONSTRAINTS FORGIOTTO

To compile a Giotto program, the compiler needs two ad-
ditional pieces of information: 1) aplatform specification,
which defines the number and topology of hosts (CPUs), and
worst case execution times for all Giotto activities (tasks,
drivers, and sensor readings); and 2) ajitter tolerance, which
specifies how much the actual timing can deviate from the
Giotto semantics. The jitter tolerance is needed because it
may be impossible to implement the Giotto semantics ex-
actly. For example, if according to Giotto semantics, several
actuators are written at the same pointin time, and there
is only one host, then the actual writes cannot all occur ex-
actly at time . The Giotto compiler takes a Giotto program,
a platform specification, and a jitter tolerance, and if pos-
sible, generates platform code that lies within the jitter tol-
erance of Giotto semantics. Specifically, for every program
execution, the compiler must attempt to produce a schedule
that indicates when and where the Giotto activities are per-
formed. Such a schedule may not exist, because the sched-
uling problem can be overconstrained. An overconstrained
scheduling problem may become solvable without changing
the Giotto program, by a combination of the following: in-
crease the number of hosts, decrease the worst case execu-
tion times, or increase the jitter tolerance.

A. Scheduling Giotto

We define anabstract Giotto scheduling problem. The
problem is abstract, as we include only scheduling con-
straints that need to be met by all Giotto implementations.
Any particular,concreteimplementation may have to take
into account additional scheduling constraints.

Jobs.
Let be a Giotto program. Ajob of is a pair con-

sisting of ajob action and ajob instance , chosen
from some index set . We distinguish betweencomputa-
tion jobsandcommunication jobs. The action of a computa-
tion job is either a task , or true or false

for a driver , or read for a sensor port
. The action executes the task; the ac-

tionstrue andfalse represent the execution of driver
in cases where the outcome of the driver guard is true or false,

92 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003



respectively; the actionread loads a new sensor value into
the port . We write

true false

read

for the set of computation actions. For every computation
action , the set of read portsand the
set of written portsare defined as follows.

1) If for , then
and .

2) If true , then and
.

3) If false , then and .
4) If read , then and .

The action of a communication job has the formsend , for
a port , and its purpose is to broadcast the value of

over a network to all hosts of the platform. Other models
of communication are possible, but not addressed here.

Let be an execution of . For each
position and , we write for the program
configuration obtained from by performing the Giotto
micro steps 1 through, as defined in Section III-B. The exe-
cution gives rise to a set of computation jobs. For these
jobs we use the index set ,
where the index refers to the program configuration

. We write for the lexicographic order on ; that is,
if either , or both and

. The set is the smallest set of jobs containing the
following.

1) [Task Jobs] If is a task invocation that is com-
pleted at configuration , then .

2) [Actuator Jobs] If is an actuator update that is en-
abled at configuration , thentrue .
If is evaluated but not enabled at , then
false .

3) [Sensor Jobs] If is a mode switch that is eval-
uated at configuration , or is a task in-
vocation that is evaluated at configuration , and

for a sensor port , then
read .

4) [Mode-Driver Jobs] If is a mode switch that
is enabled at configuration , thentrue

. If is evaluated but not enabled at config-
uration , thenfalse .

5) [Task-Driver Jobs] If is a task invocation that
is enabled at configuration , thentrue

. If is evaluated but not enabled at ,
thenfalse .

The jobs in are called thecomputation jobs induced by
the execution of the program .

The interaction between the jobs in constrains the
order in which these jobs can be performed: if jobsup-
plies a value to job via a port, then must finish before

can begin. For two jobs and
in and a port , we say that writes to

(in symbols, ) if: 1) and

Fig. 13. The precedence and timing constraints for computation
jobs.

; and 2) there is no job in such that
and . We write if there

is some port such that . Note from the definition
of that a task job is added to with set to the
configuration number of the job’s completion in order to
make the relation capture the fact that the output ports
of are written when the task completes. Fig. 13 shows the
precedence constraints between the jobs in.

Platform Specifications.
A Giotto program can in principle be run on a single

sufficiently fast CPU, independent of the number of modes
and tasks. However, taking into account performance
constraints, the timing requirements of a program may
or may not be achievable on a single CPU. We therefore
consider distributed platforms. For simplicity, we restrict
our attention to platforms that connect a set of hosts through
a broadcast channel, called thenetwork; for example, all
hosts may be on a common bus. Aplatform specificationfor
the program is a triple .

1) is a finite set ofhosts, which represent the pro-
cessing elements on which computation jobs may exe-
cute. We write for the set of
hosts together with the network, which is denoted.

2) : is a function that assigns
to each pair , where is a computation action and

is a host, aworst case execution time, which rep-
resents an upper bound on the time required for pro-
cessing a job of the form on host . For driver jobs
of the formtrue , the worst case execution time
takes into account both the guard and the function of
driver ; for driver jobs of the formfalse , only
the driver guard. Methods for obtaining worst case ex-
ecution times can be found, for example, in [6], [7].

3) : is a function that assigns to each
port aworst case communication time, which repre-
sents an upper bound on the time required for broad-
casting the value of over the network.

Jitter Tolerance.
A jitter tolerance is a positive rational number.

Intuitively, represents the maximal tolerable difference be-
tween the actual time of an actuator write (or sensor read),
and the time at which the write (or read) is supposed to occur
according to the Giotto semantics. In particular, if Giotto
specifies an actuator write at 12 ms, then an implementa-
tion that conforms with the jitter tolerancemust write the
actuator in the interval ; and if Giotto specifies

HENZINGERet al.: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 93



a sensor read at 12 ms, then a conforming implementation
must read the sensor in the interval (cf. Fig. 13).

Schedules.
A schedule specifies a possible timing for the jobs that are

induced by a program execution. Formally, ascheduleof the
program on the set is a function :

that maps every time and host (in-
cluding the network) to a job in some set. An element in
may represent a computation or communication job of, or
a non-Giotto activity. We require that jobs do not migrate be-
tween hosts: if , then . We also re-
quire that schedules are finitely varying: for all ,
there is no bounded infinite sequence of
reals such that .

Given a schedule and job , we say that occursin
if there exist and such that
; in this case, we define host and the following.

1) Thestart timestart of the job in the schedule
is . The start time may be

.
2) Thefinish timefin of the job in the schedule

is . The finish time may be
.

3) The execution timeexec of the job in the
schedule is . The execution
time may be infinite.

Let be an execution of the program, and let be
a platform specification for . The schedule realizesthe
program execution on a platform specified by if the
following conditions hold.

1) [Computation Jobs] Every job occurs in and
host . Second, if and host ,
then exec . Third, for all jobs ,

, if and host host ,
then fin start .

2) [Communication Jobs] For all jobs , , if
and host host , then there ex-

ists a communication job send such that:
1) occurs in and host ; 2) exec

; and 3) fin start and fin
start . In this case, we say thatis acommunica-
tion predecessorof .

Note that becauseis a schedule, rather than an actual run of
the Giotto program, it allocates the worst case execution time
for each computation job, and the worst case communication
time for each communication job. The scheduleconforms
to the jitter tolerance if the following conditions hold.

1) [Actuator Timing] For every actuator job
true or false in , where is
an actuator driver, we have start and
fin . Here, is the time stamp of theth
configuration of the program execution.

2) [Sensor Timing] For every sensor job
read in , where is a sensor port, we
have start and fin .

Given a Giotto program , a platform specification ,
and a jitter tolerance, a scheduling function maps every

execution of to a schedule that realizes on
in conformance with . The scheduling function is

feasibleif for any two executions and that agree on
the values of all sensor ports up to time, the schedules

and are identical up to time ; more precisely,
if and and

for all , then
for all and all ,

where is the time stamp of configuration . Feasibility
rules out clairvoyant scheduling functions, which can pre-
dict future sensor values. Theabstract Giotto scheduling
problemasks, given , , and , if there exists a feasible
scheduling function. If not, then the scheduling problem

is overconstrained.
The scheduling constraints presented in this section are in-

tended to capture a minimal set of constraints: precedences,
sensor and actuator timing, and execution and communica-
tion times. These constraints are necessary for any imple-
mentation of Giotto, but they may not be sufficient. For ex-
ample, a particular implementation may restrict the amount
of information on which a scheduler can base its decisions
(according to our definitions, a scheduling decision may de-
pend on all past sensor values), or it may bound the buffer
size for storing previous values of a port (according to our
definitions, a schedule may send any number of values of a
port over the network before any of the values is used), or it
may require the transmission of mode-change messages be-
tween hosts, etc. By considering the constraints of concrete
implementations, the abstract Giotto scheduling problem can
be refined into a number of different concrete scheduling
problems.

B. Giotto Annotations

An ideal compiler must solve a Giotto scheduling problem
by producing a feasible scheduling function or determining
that the given problem instance is overconstrained. How-
ever, for distributed platforms, the abstract Giotto scheduling
problem is NP-hard (it is a generalization ofmultiprocessor
scheduling[8]). Algorithms and heuristics for solving similar
distributed scheduling problems can be found, for example,
in [9]–[12]. In practice, a compiler will have a third outcome,
namely, that it succeeds neither in generating code nor in
proving nonschedulability. To aid the compiler in finding a
feasible scheduling function in difficult situations, we intro-
duce the concept of Giotto annotations.

The most basic Giotto annotation is the mapping annota-
tion. A particular application may require that tasks be lo-
cated on specific hosts, e.g., close to the physical processes
that the tasks control, or on processors particularly suited for
the operations of the tasks. A mapping annotation can be used
to express such constraints, and also to reduce the size of the
space in which the compiler must look for a feasible sched-
uling function. Let be a Giotto program, and let be a
platform specification for . A mapping annotationfor
on is a partial function : that assigns
a host of to some computation actions of. The mapping
annotation iscompleteif the function is total. Consider
a schedule that realizes an execution of on . The

94 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003



schedule conformsto the mapping annotation if for
all jobs , if and host is defined, then

.
A more detailed Giotto annotation is the scheduling

annotation. The exact form of scheduling annotations
depends on the platform: a scheduling annotation specifies
task priorities, relative deadlines, or time slots, depending
on whether the underlying real-time operating system
uses a priority-driven, deadline-driven, or time-triggered
scheduler. We choose an uncomplicated platform—with
preemptive priority scheduling of tasks, and round-robin
time-slice scheduling of messages on the network—in
order to demonstrate that a precise definition of scheduling
annotations is possible; more elaborate annotations would
require longer definitions, but not a fundamental change in
approach. One can define partial scheduling annotations,
which leave some decisions to the system scheduler, but for
simplicity, we define only a complete form of scheduling
annotation. To be precise, ascheduling annotationfor
the program on a platform specified by is a tuple

.

1) [Mapping] The function : is a
complete mapping annotation for on .

2) [Task Priorities] The function :
assigns a priority to every task.

3) [Communication Times] For simplicity, we as-
sume that all communication proceeds in rounds,
with each round providing a time slot to every
port. The value of a port can be broadcast
once per round, in the slot provided to. Let

be the number of ports. The function
: is a bijection

that assigns a slot number to every port. The positive
rational is the duration of each time slot. We
assume that only one broadcast is possible per time
slot; that is, for all ports .

Consider a schedule that realizes an execution of on
. The schedule conformsto the scheduling annotation

if conforms to the mapping
annotation and the following conditions hold.

1) [Task Priorities] Consider a job that occurs in the
schedule . The job is completedin at time if
fin . The job is enabledin at time if
for all jobs that occur in , if or is a
communication predecessor of, then is completed
at . For all times , all hosts , and all
task jobs and in , if

and and is enabled in
at time , then .

2) [Communication Times] For every communication job
send that occurs in , there exists a round

number such that
start and fin .

A Giotto program with annotations is a formal refinement
of the program: the Giotto semantics, as defined in Section
III-B, is not changed by the annotations, but the number of
feasible scheduling functions may be reduced. Theannotated

Giotto scheduling problemasks, given a Giotto program,
a platform specification , a jitter tolerance , and a (map-
ping or scheduling) annotation, if there is a feasible sched-
uling function such that for every execution of , the
schedule conforms to the annotation. If the abstract
Giotto scheduling problem has a solution, but the
annotated problem does not, then the annota-
tion is invalid. Invalid annotations constrain the program
in a way that rules out all feasible scheduling functions.

Mapping and scheduling annotations, as previously de-
fined, provide only one example of how a Giotto program
can be mapped onto a particular kind of platform. According
to the definitions, mapping annotations occur strictly prior to
scheduling annotations. In general, we believe that it is ad-
vantageous to arrange Giotto annotations in multiple levels.
Such a structured view supports the incremental refinement
of a Giotto program into an executable image. The multilay-
ered approach suggests a modular architecture for the Giotto
compiler with separate modules for, say, mapping and sched-
uling. The compiler may attempt to solve the scheduling
problem on any annotation level, and if it fails to do so, it
may ask for more detailed annotations at a lower level. At
every level, the annotation must be checked for validity, that
is, for consistency with the annotations at the higher levels
and with the Giotto semantics. Such a compiler can be eval-
uated along several dimensions: 1) how many annotations it
requires to generate code; and 2) what the cost is of the gen-
erated code. For instance, a compiler can use a cost function
that minimizes jitter of the actuator updates.

C. Example

To illustrate the flexibility afforded to the Giotto compiler,
we present several possible schedules for an execution of
the Giotto program from Fig. 11. The platform specifica-
tion consists of a single host

and the following worst case execution
times:

read

read

true

true

true

true

true false

Since is a singleton set, we need not define . The
jitter tolerance is .

Consider the sample executionpictured in Fig. 12. In
, sensors are read and actuators are written at precisely the

time instants specified by the Giotto semantics. This preci-
sion is clearly impossible to attain if sensor reads and ac-
tuator writes take a nonnegligible amount of time. Further,

HENZINGERet al.: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 95



Fig. 14. The precedence and timing constraints for the program execution of Fig. 12. HereR is
an abbreviation forread(s )[0; 3]. Similarly,R ; . . . ; R are, respectively, abbreviations
for read(s )[0; 3], read(s )[2; 3], read(s )[2; 3], read(s )[4; 3], read(s )[5; 3], and
read(s )[5; 3].

Fig. 15. A schedule for the program execution of Fig. 12.

in , the second invocation of task executes between 6
and 12 ms. This requirement may be too strict, and if in-
sisted upon would prevent some Giotto programs from being
schedulable. Instead, what is required is that the second invo-
cation of executes after all its input port values are avail-
able, and before any job that needs its output port values.

Fig. 14 shows the constraints on timing and precedences
for the computation jobs that are induced by the execution;
these are the constraints that appear in the definition of the
realization of an execution, and in the definition of confor-
mance with the jitter tolerance. Boxes with a double border
represent sensor and actuator jobs. These jobs are special,
because their execution is constrained to happen at specific
times. The remaining boxes are jobs that execute tasks,
mode drivers, and task drivers. These jobs may execute at
any time, provided they meet all precedence constraints. For
example,read precedestrue , because
the sensor jobread provides the sensor value to
the task-driver jobtrue . Note also that in Fig. 14,
jobs of the formfalse do not precede other jobs,
as a driver does not write any ports if its guard evaluates to
false.

Fig. 15 shows a schedule that realizes the executionon a
platform specified by and conforms to the jitter tolerance

. To understand what Fig. 15 represents, consider the

interval from to 3.5. First the actuator jobtrue
executes; this job updates the actuator port. Then the sensor
jobs read and read execute; these jobs
update the sensor ports and . Next, the mode-driver job
true executes, indicating a mode change, followed
by the task-driver jobstrue d1 0 7 and true d .
Finally, the task jobs and , corresponding to
the first invocations of tasks and , execute. Note that
the driver job for the second invocation of task, namely
true , as well as the task itself, , execute in
advance of 6 ms. This is permissible, becausetrue

needs only the value of port produced by the first invo-
cation of task , which is complete at 3.5 ms. The
schedule of Fig. 15 conforms to a scheduling annotation with

: for example, at 2.25 ms,
and are both enabled, but executes.

Fig. 16 shows a second schedule that realizes the
execution on a platform specified by and con-
forms to the jitter tolerance . The schedule
of Fig. 16 conforms to a scheduling annotation with

. Fig. 17 shows a third
schedule for the same execution, conforming to a scheduling
annotation with . In this
schedule, task is preempted at 2.5 ms by the driver for
task and then by task itself.

96 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003



Fig. 16. A second schedule for the program execution of Fig. 12.

Fig. 17. A third schedule for the program execution of Fig. 12.

V. DISCUSSION

While many of the individual elements of Giotto are de-
rived from the literature, we believe that the study of strictly
time-triggered task invocation together with strictly time-
triggered mode switching as a possible organizing principle
for abstract, platform-independent real-time programming is
an important step toward separatingreactivity from schedu-
lability. The term reactivity expresses what we mean by con-
trol-systems aspects: the system’s functionality, in particular,
the control laws, and the system’s timing requirements. The
term schedulability expresses what we mean by platform-
dependent aspects, such as platform performance, platform
utilization (scheduling), and fault tolerance. Giotto decom-
poses the development process of embedded control soft-
ware into high-level real-time programming of reactivity and
low-level real-time scheduling of computation and commu-
nication. Programming in Giotto is real-time programming
in terms of the requirements of control designs, i.e., their re-
activity, not their schedulability.

The strict separation of reactivity from schedulability is
achieved in Giotto through time- and value-determinism:

given a real-time trace of sensor valuations, the corre-
sponding real-time trace of actuator valuations produced by
a Giotto program is uniquely determined [5]. The separation
of reactivity from schedulability has several important
ramifications. First, the reactive (i.e., functional and timing)
properties of a Giotto program may be subject to formal
verification against a mathematical model of the control
design [13]. Second, a Giotto program specifies reactivity
in a modular fashion, which facilitates the exchange and
addition of functionality. For example, functionality code
(i.e., tasks and driver functions) can be packaged as software
components and reused. Third, as increasingly powerful
Giotto compilers become available, the embedded-software
development effort is significantly reduced. The tedious
programming of scheduling code is replaced by compilation,
which eliminates a common source of errors. Fourth, Giotto
is compatible with any scheduling strategy, which therefore
becomes a parameter of the Giotto compiler. There are
essentially two reasons why even the best Giotto compiler
may fail to generate executable code: 1) not enough platform
utilization; or 2) not enough platform performance. Then,
independently of the program’s reactivity, utilization can be

HENZINGERet al.: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 97



improved by a better scheduling module, and performance
can be improved by faster or more parallel hardware or
leaner functionality code.

A. Current Giotto Implementations

We briefly review the existing Giotto implementations.
The first implementation of Giotto was a simplified Giotto
run-time system on a distributed platform of Lego Mind-
storms robots. The robots used infrared transceivers for com-
munication. Then we implemented a full Giotto run-time
system on a distributed platform of Intel x86 robots running
the real-time operating system VxWorks. The robots used
wireless Ethernet for communication. We also implemented
a Giotto program running on five robots, three Lego Mind-
storms and two x86-based robots, to demonstrate Giotto’s
applicability for heterogeneous platforms. The communica-
tion between the Mindstorms and the x86 robots was done
by an infrared-Ethernet bridge implemented on a PC. An in-
formal discussion of these implementations, and embedded
control-systems development with Giotto in general, can be
found in [14].

In collaboration with Marco Sanvido and Walter
Schaufelberger at ETH Zürich (Zürich, Switzerland), we
built a high-performance implementation of a Giotto system
on a single StrongARM SA-110 processor that controls
an autonomously flying model helicopter [15]. We started
from an existing implementation of the helicopter control
system [16], which included a custom-designed real-time
operating system called HelyOS and control software
written in a subset of Oberon [17] suited for embedded
real-time systems. We reimplemented the existing software
as a combination of a Giotto program and Oberon code
that implements the task and driver functions. Much of the
existing functionality code could be reused. The Giotto
program for the helicopter consists of six Giotto modes such
as “takeoff” and “hover.” The hover mode, for example,
contains a 40-Hz controller task and a 200-Hz data-fusion
task.

For this project, we developed a Giotto compiler that
targets a virtual real-time machine, called theEmbedded
Machine[5]. Embedded Machine code, also calledE code,
supervises the timing of functionality code, which can be
written in any conventional programming language such as
C. An Embedded Machine–based Giotto run-time system
consists of an implementation of the Embedded Machine
together with the scheduler of a real-time operating system.
While E code is interpreted by the Embedded Machine,
functionality code is native code that is scheduled for exe-
cution by the system scheduler. For E code that is generated
from a Giotto source program, the scheduling problem
is more constrained than the abstract Giotto scheduling
problem defined in Section IV-A, but still independent of
any particular system scheduler; it is only required that the
scheduler be compatible with the schedulability test of the
Giotto compiler [18]. E code produced by the compiler
can be executed on any platform for which an Embedded
Machine implementation is available. For the helicopter

project, we implemented the Embedded Machine on top of
HelyOS.

We also implemented a Giotto-based electronic throttle
controller on a single Motorola MPC-555 processor running
the real-time operating system OSEKWorks. For this pur-
pose, we ported the Embedded Machine to OSEKWorks,
which is widely used in the automotive industry. In addi-
tion to these real-time versions of the Embedded Machine,
non-real-time implementations of the Embedded Machine
are available for Linux and Windows.

B. Related Work

Giotto is inspired by the TTA [4], which first realized
the time-triggered paradigm for meeting hard real-time con-
straints in safety-critical distributed settings. However, while
the TTA encompasses a hardware architecture and commu-
nication protocols, Giotto provides a hardware-independent
and protocol-independent abstract programmer’s model for
time-triggered applications. Giotto can be implemented on
any platform that provides sufficiently accurate clock primi-
tives or supports a clock synchronization scheme. The TTA
is thus a natural platform for Giotto programs.

Giotto is similar to architecture description languages
(ADLs) [19]. Like Giotto, ADLs shift the programmer’s per-
spective from small-grained features such as lines of code to
large-grained features such as tasks, modes, and inter-com-
ponent communication, and they allow the compilation of
scheduling code to connect tasks written in conventional
programming languages. The design methodology for the
Mars system, a predecessor of the TTA, distinguishes in a
similar way “programming in the large” from “programming
in the small” [20]. The inter-task communication semantics
of Giotto is particularly similar to the MetaH language [21],
[22], which is designed for real-time, distributed avionics
applications. MetaH supports periodic real-time tasks, mul-
timodal control, and distributed implementations. Giotto can
be viewed as capturing a time-triggered fragment of MetaH
in an abstract and formal way. Unlike MetaH, Giotto does
not constrain the implementation to a particular scheduling
scheme.

The goal of Giotto—to provide a platform-independent
programming abstraction for real-time systems—is shared
also by the synchronous reactive programming languages
[3], such as Esterel [23], Lustre [24], and Signal [25].
While the synchronous reactive languages are designed
around zero-delay value propagation, Giotto is based on the
formally weaker notion of unit-delay value propagation,
because in Giotto, scheduled computation (i.e., the execution
of tasks) takes time, and synchronous computation (i.e., the
execution of drivers) consists only of independent, noninter-
acting processes. This decision shifts the focus and the level
of abstraction in essential ways. In particular, for analysis
and compilation, the burden for the well-definedness of
values is shifted from logical fixed-point considerations to
physical scheduling constraints (in Giotto all values are,
semantically, always well-defined). Thus, Giotto can be seen
as identifying a class of synchronous reactive programs that

98 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003



support typical real-time control applications and efficient
code generation [5].

ACKNOWLEDGMENT

The authors would like to thank R. Majumdar for imple-
menting a prototype Giotto compiler for Lego Mindstorms
robots. They would like to thank D. Derevyanko and W.
Williams for building the Intel x86 robots; and E. Lee and X.
Liu for help with implementing Giotto as a “model of com-
putation” in Ptolemy II [26]. Finally, they would also like to
thank M. Sanvido for his suggestions on the design of the
Giotto drivers; and P. Griffiths for implementing the func-
tionality code of the electronic throttle controller.

REFERENCES

[1] D. Langer, J. Rauch, and M. Rößler, “Fly-by-wire systems for mili-
tary high-performance aircraft,” inReal-Time Systems: Engineering
and Applications. Norwell, MA: Kluwer, 1992, pp. 369–395.

[2] R. Collinson, “Fly-by-wire flight control,”Comput. Contr. Eng., vol.
10, no. 4, pp. 141–152, 1999.

[3] N. Halbwachs, Synchronous Programming of Reactive Sys-
tems. Norwell, MA: Kluwer, 1993.

[4] H. Kopetz, Real-Time Systems: Design Principles for Distributed
Embedded Applications. Norwell, MA: Kluwer, 1997.

[5] T. Henzinger and C. Kirsch, “The Embedded Machine: Predictable,
portable real-time code,” inProc. ACM SIGPLAN Conf. Program.
Lang. Design Implementation, 2002, pp. 315–326.

[6] S. Malik and Y.-T. Li,Performance Analysis of Real-Time Embedded
Software. Norwell, MA: Kluwer, 1999.

[7] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and precise WCET
prediction by separated cache and path analyzes,”Real-Time Syst.,
vol. 18, no. 2–3, pp. 157–179, 2000.

[8] M. Garey and D. Johnson,Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York: Freeman, 1979.

[9] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,”Microprocess. Microprogram., vol.
40, pp. 117–134, 1994.

[10] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, “Process
scheduling for performance estimation and synthesis of hard-
ware/software systems,” inProc. EUROMICRO Conf., 1998, pp.
168–175.

[11] P. Brucker, Scheduling Algorithms. Berlin, Germany:
Springer-Verlag, 2001.

[12] M. Pinedo, Scheduling: Theory, Algorithms, and
Systems. Englewood Cliffs, NJ: Prentice-Hall, 2002.

[13] T. Henzinger, “Masaccio: A formal model for embedded com-
ponents,” in Lecture Notes in Computer Science, Theoretical
Computer Science: Exploring New Frontiers of Theoretical Infor-
matics. Heidelberg, Germany: Springer-Verlag, 2000, vol. 1872,
pp. 549–563.

[14] T. Henzinger, B. Horowitz, and C. Kirsch, “Embedded control sys-
tems development with Giotto,” inProc. ACM SIGPLAN Workshop
Lang., Compilers, Tools Embedded Sys., 2001, pp. 64–72.

[15] C. Kirsch, M. Sanvido, T. Henzinger, and W. Pree, “A Giotto-based
helicopter control system,” inLecture Notes in Computer Science,
Embedded Software. Heidelberg, Germany: Springer-Verlag,
2002, vol. 2491, pp. 46–60.

[16] J. Chapuis, C. Eck, M. Kottmann, M. Sanvido, and O. Tanner, “Con-
trol of helicopters,” inControl of Complex Systems. Berlin, Ger-
many: Springer-Verlag, 1999, pp. 359–392.

[17] N. Wirth and J. Gutknecht,Project Oberon: The Design of an Oper-
ating System and Compiler. New York: ACM, 1992.

[18] T. Henzinger, C. Kirsch, R. Majumdar, and S. Matic, “Time-safety
checking for embedded programs,” inLecture Notes in Com-
puter Science, Embedded Software. Heidelberg, Germany:
Springer-Verlag, 2002, vol. 2491, pp. 76–92.

[19] P. Clements, “A survey of architecture description languages,” in
Proc. Int. Workshop Software Specification Design, 1996, pp. 16–25.

[20] H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner, and W.
Schütz, “The design of real-time systems: From specification to
implementation and verification,”Softw. Eng. J., vol. 6, no. 3, pp.
72–82, 1991.

[21] S. Vestal and P. Binns, “Scheduling and communication in MetaH,”
in Proc. 14th Annu. Real-Time Syst. Symp., 1993, pp. 194–200.

[22] S. Vestal, “MetaH support for real-time multi-processor avionics,” in
Proc. 5th Int. Workshop Parallel Distributed Real-Time Syst., 1997,
pp. 11–21.

[23] G. Berry, “The foundations of Esterel,” inProof, Language and In-
teraction: Essays in Honor of Robin Milner, G. Plotkin, C. Stir-
ling, and M. Tofte, Eds. Cambridge, MA: MIT Press, 2000, pp.
425–454.

[24] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous dataflow programming language Lustre,”Proc. IEEE,
vol. 79, pp. 1305–1320, Sept. 1991.

[25] A. Benveniste, P. Guernic, and C. Jacquemot, “Synchronous pro-
gramming with events and relations: The Signal language and its
semantics,”Sci. Comput. Program., vol. 16, pp. 103–149, 1991.

[26] J. Davis, M. Goel, C. Hylands, B. Kienhuis, E. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y.
Xiong, “Ptolemy II: Heterogeneous concurrent modeling and design
in Java,” Univ. California, Berkeley, Tech. Rep. UCB/ERL-M99/44,
1999.

Thomas A. Henzinger(Member, IEEE) received
the Dipl.-Ing. degree in computer science from
Kepler University, Linz, Austria; the M.S. degree
in computer and information sciences from the
University of Delaware, Newark; and the Ph.D.
degree in computer science from Stanford Uni-
versity, Stanford, CA, in 1991.

From 1992 to 1995, he was an Assistant Pro-
fessor of Computer Science at Cornell Univer-
sity, Ithaca, NY. In 1999, he was a Director of
the Max-Planck Institute for Computer Science,

Saarbrücken, Germany. He is currently a Professor of Electrical Engineering
and Computer Sciences at the University of California, Berkeley. His re-
search interests are formalisms and tools for the design, implementation,
and verification of reactive, real-time, and hybrid systems.

Benjamin Horowitz (Member, IEEE) received
the B.A. degree in philosophy from Wesleyan
University, Middletown, CT, in 1994. From 1995
to 1997, he was in the Department of Computer
Science, University of Massachusetts, Amherst.
He is currently a Ph.D. degree candidate in
the Department of Electrical Engineering and
Computer Sciences, University of California,
Berkeley.

His research interests include real-time
programming languages, scheduling theory, and

the design of embedded systems.

Christoph M. Kirsch received the Dipl.-Inform.
degree and the Ph.D. degree in computer science
from the University of the Saarland, Saarbrücken,
Germany, in 1996 and 1999, respectively.

He was with the Max-Planck Institute for
Computer Science, Saarbrücken, Germany.
He is currently a Postdoctoral Researcher in
the Department of Electrical Engineering and
Computer Sciences, University of California,
Berkeley. His research interests are formalisms
and tools for the design and implementation of

real-time and embedded systems.

HENZINGERet al.: A TIME-TRIGGERED LANGUAGE FOR EMBEDDED PROGRAMMING 99


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


