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ABSTRACT
We present an overview of state-of-the-art work in the en-
gineering of digital systems (hardware and software) where
traditional correctness requirements are relaxed, usually for
higher performance and lower resource consumption but pos-
sibly also for other non-functional properties such as more
robustness and less cost. The work presented here is catego-
rized into work that involves just hardware, hardware and
software, and just software. In particular, we discuss work
on probabilistic and approximate design of processors, un-
reliable cores in asymmetric multi-core architectures, best-
effort computing, stochastic processors, accuracy-aware pro-
gram transformations, and relaxed concurrent data struc-
tures. As common theme we identify, at least intuitively,
“metrics of correctness” in each piece of work which appear
to be important for understanding the effects of relaxed cor-
rectness requirements and their relationship to performance
improvements and resource consumption.
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1. INTRODUCTION
We acknowledge the emergence and advocate the study of

relaxed, possibly quantitative approaches to describing and
establishing the correctness of digital systems. The notion of
hardware or systems software either computing the correct
result for a given input or not has been the dominating prin-
ciple in systems engineering for a long time whereas other
areas of computer science such as scientific computing and
machine learning as well as audio, video, and image process-
ing, to name a few, have adopted relaxed notions of correct-
ness early on. While the promise in special-purpose areas is
typically higher performance and lower power consumption
at a bounded loss in quality the effect of relaxed notions of
correctness in systems may add other non-functional proper-
ties to the list such as robustness as well as production and
development cost. Yet systems engineering tolerating, be-
ware, incorrect results has up until recently played a rather
secluded role.

The discrete nature of mathematics relevant in digital sys-
tems is probably a promising factor to look at for an explana-
tion. Clearly, constructing a digital artifact and then show-
ing that it produces results good enough for general (as op-
posed to special) purpose rather than results that are simply
right or wrong is difficult in the presence of discrete seman-
tics. Just modelling systems that involve both discrete and
continuous concepts and then argueing about their proper-
ties is already a challenge [6]. Yet we feel that the emergence
of relaxed notions of correctness in systems engineering is a
sign of a maturing field taking a turn with new potential for
the current and next generation of computer scientists and
engineers. And it is not just about improving robustness
and reducing cost but also about being able to utilize the
emerging generations of systems, some increasingly parallel,
using hopefully less energy so that some of the limitations
of traditional design may eventually be overcome.

The purpose of this paper is to provide a brief overview
of state-of-the-art work in the field of which some is related
to material presented during a special session on probabilis-
tic embedded computing at DAC 2012 organized by the first
author. We also describe the key ideas behind our own work
on concurrent data structures related to the topic. The com-
mon theme is here to identify“metrics of correctness” in each
example and discuss their properties and possibly ways to
obtain quantities in them. Note that this is an extremely
short list of work far from being complete or even represen-
tative. The material cited here should only be seen as a
hopefully reasonable starting point for finding other related
work not cited here.
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Figure 1: “Metrics of Correctness”

We work with three types of metrics for quantifying qual-
ity and performance of computation as well as error degree
of systems whose design has been relaxed such that they
may make mistakes, as shown in Figure 1. An error metric
quantifies the degree of errors introduced by a relaxed sys-
tem. A quality metric quantifies the computational quality
produced by an application running on a relaxed system.
We say that an application is error-tolerant on a relaxed
system if the quality it produces increases whenever the sys-
tem makes less errors, i.e., if the degree of errors in the
computed results is proportional to the degree of errors in-
troduced by the system. Relevant performance metrics are
here execution time and power consumption. We say that
an application is error-scalable if its performance increases
whenever the system may make more mistakes.

2. HARDWARE
An important source of complexity in hardware design

is reliability of computation, e.g. in arithmetic units and
mechanisms such as hardware-based error detection and cor-
rection. Unreliable hardware design allows to reduce that
complexity potentially providing benefits such as lower pro-
duction cost, lower test and verification cost, smaller form
factors, higher performance, and lower power consumption.

So-called probabilistic design as well as approximate de-
sign are two unreliable hardware design principles [11, 12] for
trading-off reliability of computation and power consump-
tion [16]. The idea of probabilistic design is to develop hard-
ware that produces an output value for a given input value
with a certain probability. Experimental data obtained on
actual hardware shows that there is a monotone relationship
between the probability of correct computation and power
consumption [4], suggesting the probability of correct com-
putation as quality metric. Approximate design results in
hardware that deterministically produces, for a given input
value, an output value that may, however, be incorrect. Sim-
ilarly, experimental data obtained on actual hardware shows
that there is a monotone relationship between arithmetic er-
ror and power consumption [5]. Here, the arithmetic error
is an obvious candidate for a quality metric.

Unreliable hardware may also help increase hardware par-
allelism since unreliable hardware may require significantly
less space than reliable hardware. An asymmetric multi-
core architecture where a small number of reliable cores is
combined with a large number of unreliable cores is an ex-
ample of a design with a higher degree of parallelism than
a conventional design of the same size [10]. Intuitively, the
number of unreliable cores may be useful as error metric,
and inversely even as quality metric if the quality of compu-
tations on unreliable cores deteriorates monotonically with
the number of unreliable cores.

3. HARDWARE-SOFTWARE
The correctness of conventional software typically relies

on hardware that returns deterministic output values for
any given input values. Best-effort computing [3, 1] is a
system design methodology for taking advantage of combi-
nations of unreliable hardware and error-tolerant software
to gain higher performance and lower power consumption.
Errors introduced by unreliable hardware may be tolerated
by certain types of software or handled by higher-level soft-
ware layers. The challenge here is to divide applications into
parts that tolerate errors and parts that do not. Such appli-
cations can also take advantage of the previously mentioned
asymmetric multi-core architectures where application parts
that tolerate errors run on unreliable cores [3, 10].

Stochastic processors [15, 19] produce so-called stochas-
tically correct values, as with probabilistic design, through
simplified hardware design, which may again enable higher
performance and lower power consumption. Higher-level
software layers may handle incorrect values either by toler-
ating the error or by detecting and correcting the error [21].

Control divergence in control-flow graphs makes branch
prediction difficult and unreliable and may thus decrease
performance. Branch herding performed by hardware or
software reduces control divergence by forcing threads to
take only a subset of all possible paths through the control-
flow graph which may result in higher performance [21]. The
degree of branch herding is an error metric whose inverse
may also serve as quality metric if eliminating any branch
always maintains or increases the error of the output. In
this case, the application tolerates branch herding.

Detecting and correcting errors may incur high overhead
which may eliminate the performance gains of stochastic
processors. Therefore, it might be beneficial to detect just
certain types or certain numbers of errors and correct them
to stay within given error boundaries [21]. Here an error
metric may be the number of errors that get detected and
to which degree they get corrected. Again, the inverse may
serve as quality metric if the actual error of the output is
monotone in the error metric.

A key enabler of stochastic processors may be automatic
transformation tools [19, 21] that generate error-tolerant
versions out of regular applications, i.e., a transformed ap-
plication may produce results at a quality that increases, at
least within certain boundaries, whenever stochastic proces-
sors make less errors.

4. SOFTWARE
Relaxing software specifications may result in higher per-

formance and lower power consumption, and may even in-
crease reliability and robustness of software [18]. We distin-
guish relaxation techniques based on program transforma-
tions and concurrent data structure design.

4.1 Program Transformations
For certain types of applications, accuracy-aware program

transformations [22] may generate error-tolerant code that
may perform better than the original code. Here are three
examples.

Substitution transformations [22] replace parts of a pro-
gram with code that computes approximations of the output
computed by the original parts but with less computational
overhead. The approximate versions of the code are given
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Figure 2: Concurrent data structure performance
and scalability in number of data structure oper-
ations per second with an increasing number of
threads sharing the same data structure in an ex-
emplified benchmark scenario

and relaxed to different degrees in terms of some error met-
ric. The program is error-tolerant if the approximations are
compositional in terms of some quality metric.

Sampling transformations [22] work with code that com-
putes output from a given set of elements. The transformed
code performs the same computation as the original code
but only on a subset of the elements obtained by some sam-
pling policy. The code is error-tolerant if the quality of the
result improves with larger subsets.

Loop perforation [20] is another type of program trans-
formation which transforms a loop into a new loop where
only a subset of the original loop iterations is performed.
Decreasing the subset size of loop iterations decreases the
runtime of executing the loop but also increases the error of
the loop output.

4.2 Concurrent Data Structures
Concurrent data structures require synchronization to im-

plement the exact specification of their sequential counter-
part in a concurrent environment. However, synchroniza-
tion operations may incur high overhead and prevent pro-
gram code from executing in parallel. We discuss two ap-
proaches which may decrease synchronization overhead and
increase parallelism, either by reducing contention on syn-
chronization bottlenecks or by eliminating synchronization
operations entirely, at the expense of adherence to exact
data structure semantics. As a result, relaxed versions of
concurrent data structures emerge which may perform and
scale better on increasingly parallel hardware, and still be
tolerated by certain applications.

In terms of performance and scalability, the goal is to
achieve throughput in terms of number of data structure
operations per second that is higher than of conventional
designs (high performance) and grows with the number of
concurrent units such as threads, for example, sharing the
same data structure, to more threads than with conventional
designs (positive scalability), as shown in Figure 2. Both,
negative scalability even with high performance for low num-
bers of threads and positive scalability but with low perfor-
mance are undesirable.

Reducing Contention on Synchronization Bottlenecks.
Our own work is on relaxing the semantics of concurrent

data structures by reducing contention on synchronization
bottlenecks. We achieve that by relaxing the sequential
specification of a concurrent data structure. Consider, for
example, a regular first-in-first-out (FIFO) queue where el-
ements are enqueued at the queue tail and dequeued at the
queue head. The problem with this specification is that it
leaves little room for optimization in concurrent implemen-
tations [13, 7] so that scalability in the presence of high
contention on the queue may still be limited to relatively
low numbers of threads [9].

Instead of maintaining the original specification of a FIFO
queue, we propose to relax the specification to what we call a
k-FIFO queue with k ≥ 0, which may dequeue elements out
of FIFO order up to k [8, 9]. Retrieving the oldest element
from the queue may require up to k + 1 dequeue operations
(bounded lateness), which may return elements not younger
than the k + 1 oldest elements in the queue (bounded age)
or nothing even if there are elements in the queue.

A k-FIFO queue is starvation-free for finite k where k + 1
is what we call the worst-case semantical deviation (WCSD)
of the queue from a regular FIFO queue. The WCSD bounds
the actual semantical deviation (ASD) of a k-FIFO queue
from a regular FIFO queue when applied to a given work-
load. Intuitively, the ASD keeps track of the number of
dequeue operations necessary to return oldest elements and
the age of dequeued elements.

Here, the error metric is semantical deviation: an imple-
mentation of a k-FIFO queue is correct if ASD ≤ WCSD
for all workloads. Since semantical deviation is monotone,
increasing k means more room for performance and scala-
bility improvements. However, it is also important to con-
sider which properties of an implementation determine k,
i.e., whether k is configurable, depends on the workload, or
is even probabilistic. For example, there are concurrent al-
gorithms that implement k-FIFO queues whose WCSD is
determined by configurable constants independent from any
workload [2].

We took an entirely different approach called Scal queues
based on distributed data structures and load balancing by
creating p copies of a standard, non-blocking FIFO queue [13]
and then, upon each queue operation, selecting one out of
the p so-called partial queues for performing the actual op-
eration, independently of and concurrently to any other op-
erations that might hit the other p − 1 partial queues [8,
9]. Thus the load balancing algorithm for selecting par-
tial queues and p itself determine the WCSD of the result-
ing Scal queue. For example, selecting partial queues in a
round-robin fashion for enqueueing, and independently for
dequeueing, using two atomic indexes, limits the WCSD to
p since the maximum imbalance of the partial queues cannot
become larger than p. However, performance and scalabil-
ity truly improves only if selection and actual partial queue
operation are done non-atomically, increasing the WCSD to
a workload-dependent p times the number of threads in the
system [8, 9]. Even more performance and better scalability
are possible if selection is done randomly (to avoid any ex-
plicit synchronization in selection [8, 9]) and hierarchically
(to exploit memory hierarchies [9]). The resulting WCSD
may then only be bounded probabilistically.

Another interesting aspect of semantical deviation is the
problem of measuring it. Clearly, improved performance



and scalability comes at the expense of increased semanti-
cal deviation, which may or may not be tolerated by ap-
plications using queues. But how bad is it? Well, ASD
cannot be measured directly, at least as long as individual
machine instructions cannot be time-stamped without intro-
ducing significant overhead. Instead, we obtain at runtime
with low overhead so-called concurrent histories, which are
sequences of time-stamped invocation and response events
of the queue operations. A concurrent history represents the
set of sequential histories—sequences of queue operations—
that preserve precedence, i.e., if the response event of an
operation A is before the invocation event of an operation
B then A occurs before B in any of the sequential histo-
ries. One of these sequential histories actually took place
with ASD as its semantical deviation. However, given a
concurrent history, possibly containing millions of events,
we are only able to compute offline the semantical deviation
of one of the sequential histories with minimal semantical
deviation, i.e., the lower bound on ASD, which neverthe-
less enables interesting relative comparisons of semantical
deviation. In particular, we show that some Scal queues
outperform and outscale existing implementations at the ex-
pense of moderately increased lower bounds on ASD [8, 9].
Computing upper bounds is more difficult and remains fu-
ture work since it seems to involve enumerating possibly all
precedence-preserving permutations of queue operations in
a concurrent history.

Eliminating Synchronization Bottlenecks.
Synchronization bottlenecks can be eliminated by elimi-

nating the corresponding synchronization operations. This
approach may lead to race conditions of which some may
result in effects such as data duplication or loss which may
nevertheless still be tolerated by certain applications.

Idempotent work-stealing queues are distributed queues,
one per thread, where a thread may either dequeue an el-
ement from its local queue without synchronization or de-
queue (steal) an element from the queue of another thread
with synchronization [14]. Queue elements may be returned
multiple times instead of just once because of races between
unsynchronized local dequeue and synchronized global steal
operations. Intuitively, the number of races or, even more
accurate, the amount of element duplication may be useful
as error metric and inversely even as quality metric if the
quality of computation deteriorates monotonically with ele-
ment duplication. Moreover, error and quality metric may
also be related to the number of involved threads since a
larger number of threads increases the probability of races.

Another example of in fact full elimination of synchro-
nization is a space-subdivision tree construction algorithm
that does not use any synchronization operations and yet
provides a well-defined and consistent tree state that may
be good enough for some applications [17]. The race condi-
tions that may occur result in subtree losses which reduces
the amount of data held by the tree. Similar to the idem-
potent work-stealing queues, the number of races or, again
even more accurate, the amount of subtree loss may serve
as a useful error metric and inversely as a quality metric if
the quality of computations deteriorates monotonically with
subtree loss. Again, both error and quality metric may also
be monotone in the number of involved threads since more
threads make races more likely.

5. CONCLUSIONS
Relaxed and possibly quantitative notions of correctness

are likely to play an increasingly important role in systems
engineering. We believe that one of the key challenges is
identifying “metrics of correctness” such that the effects of
more errors gracefully, as opposed to abruptly, degrade the
quality of a system and yet translate into higher performance
and lower resource consumption. The idea seems to apply
in virtually any area of systems engineering. Go for it!
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