Cyber-Physical Cloud Computing Implemented as PaaS

Clemens Krainer
Department of Computer Sciences
University of Salzburg, Austria
ckrainer@cs.uni-salzburg.at

ABSTRACT

We describe a Platform-as-a-Service (PaaS) system for per-
forming multi-customer information acquisition missions on
unmanned vehicle swarms operated and maintained by a
third party. Customers implement their missions completely
unaware of each other and the available vehicle infrastruc-
ture. Vehicle swarm providers may add or remove vehi-
cles unnoticed by customers for maintenance, recharging,
and refueling. To achieve this, we apply the paradigm of
cloud computing to virtualized versions of unmanned vehi-
cles. Our implementation allows the simulation of multi-
customer information acquisition missions as well as their
execution on real hardware running the robot operating sys-
tem (ROS).

Categories and Subject Descriptors

H.4 Information Systems Applications]: Miscellaneous;
D.2.m [Software Engineering]: Miscellaneous—PaaS, Ve-
hicle Virtualization, Cyber-Physical Systems

General Terms

Cloud Computing, Vehicle Swarms, Sensor Networks

Keywords

Cyber-Physical Cloud Computing, Virtualization, Spatial
Computing, Mobile Robotic Networks, Sensor Networks

1. INTRODUCTION

With the availability of low-cost unmanned vehicles, it is
possible to use swarms of autonomous vehicles to perform in-
formation acquisition tasks over large areas. To benefit from
the potential of vehicle swarms, it is necessary that practi-
cal application is safe, inexpensive, simple, and available to
multiple clients.

The goal of this work is to examine strict separation of
performing information acquisition tasks and operating au-
tonomous vehicles. This work proposes a novel approach,
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

CyPhy’14, April 14 - 17 2014, Berlin, Germany
Copyright 2014 ACM 978-1-4503-2871-5/14/04 ...$15.00
http://dx.doi.org/10.1145/2593458.2593461.

Christoph M. Kirsch
Department of Computer Sciences
University of Salzburg, Austria

ck@cs.uni-salzburg.at

in which owners of unmanned vehicle fleets provide their in-
frastructure to arbitrary, inexperienced clients. To achieve
this, we take the paradigm of cloud computing and apply it
in a cyber-physical system.

Cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and re-
leased with minimal management effort or service provider
interaction [12]. When computation happens not only in
time but also in space, on-board computing units of servers
moving in space can carry out the computation. [5] de-
fines cloud computing in space and time as cyber-physical
cloud computing (CPCC). In CPCC the servers (vehicles)
can move in space and carry sensors and actuators. Exam-
ples of moving servers (vehicles) include collaborative sens-
ing missions [16, 17], environment monitoring [8, 6], airborne
computing clouds [10], in-vehicle smartphones as internet-
connected sensors [7], and mobile phone sensing [13].

Analogous to regular cloud computing, CPCC customers
get a virtual machine running on a real server [4]. The
CPCC server is called a real vehicle (RV). The virtual ma-
chine is called a virtual vehicle (VV). We define VVs through
the idea of a virtual vehicle monitor (VVM), analogous to
a virtual machine monitor. VVs do the actual information
acquisition, that is, requesting transportation to points in
space, querying sensor values, and analyzing these values.
VVs may migrate from their current host to another RV to
approach desired points in space, but it is the VVM that
assigns VVs to RVs. VVs that travel on-board RVs experi-
ence physical mobility and VVs migrating from one RV to
another RV undergo cyber-mobility. We consider physical
mobility as a larger-time-scale motion and cyber-mobility as
a small-time-scale hop.

We implemented CPCC as a Platform-as-a-Service (PaaS)
environment [12] in Java on top of the ROS framework [2].
This means that our implementation supports all platforms
where ROS and Java is supported. VVs are JavaScript pro-
grams that use the VVM application programming interface
(VVMAPI) to execute information acquisition tasks and to
access their own private storage. VVs are completely un-
aware of the hosting RV’s sensor equipment. VVs select
abstracted sensors from a system wide catalog, provided by
the VVMAPI. The queried sensors in conjunction with the
required positions in space, specify an information acquisi-
tion task. VVs invoke the VVMAPI with the task and a
callback function as parameters for execution. Depending
on the task’s currently requested position and required sen-

sors, the VVM decides whether the VV may stay on the
current RV or must migrate to another RV. The VVM on
the target RV schedules the pending tasks for execution and
approaches the position of the first task to be processed.
Every time the RV reaches a task position, the VVMAPI
executes the according VV’s callback function to hand over
the current sensor values to the VV. After a VV terminates,
the VVM migrates it to one of the ground stations.

The problem of coordinating and controlling swarms of
autonomous robots has been previously investigated in a va-
riety of contexts. Mathew et al. [11] present path-planning
strategies for recharging autonomous vehicles performing
persistent tasks. Royo et al. [15] employ a network centered,
service oriented architecture to control unmanned aerial ve-
hicle (UAV) fleets. Developers use a distributed application
interface, called UAV service abstraction layer, to access pre-
defined services over the network to implement civil mis-
sions. Pereira et al. [14] investigate the use of a structure
aware computation model. Mobile robots are considered
to be able to observe, control, compute, and communicate.
They operate upon an abstraction of the structure of the
world that entails location and connectivity. A case study
of autonomous vehicles performing a environmental moni-
toring mission demonstrates the applicability of the com-
putation model. Kirsch et al. [4] apply the paradigm of
cloud computing to cyber-physical systems. The paper dis-
cusses some of the challenges and envisioned solutions, as
well as outlines a prototype implementation based on XEN
[3]. Huang et al. [9] explore possible performance guarantees
for virtualized robots. The authors claim that providers sup-
porting a given number of virtual vehicles need significantly
fewer real vehicles to guarantee high performance isolation.

Our contribution is a PaaS CPCC implementation that
provides a strict separation of operating robot infrastruc-
ture and performing missions. Customers implement their
V'Vs as programs completely unaware of the available robot
infrastructure. To ensure system dependability, platform
providers are able to restrict operational area, altitude and
maximum speed for each RV separately. Tasks that cannot
be processed by any RV cause the VVM to migrate the con-
cerned VV back to a ground station. The number of RVs
affects the performance of the CPCC system, but not its
applicability. Hence, providers may start with a small set
of RVs and later add RVs achieving better performance or
handling a growing number of customers. Naturally, adding
RVs is possible at any time. Providers may also remove
RVs from the fleet without customer notice for recharging
or refueling. The concepts of [9] offer temporal isolation of
VVs in a way that providers may even define soft-real-time
service level agreements.

The remainder of this document is outlined as follows:
Section 2 explains the application by means of an example
VV program and simulation runs. Section 3 details the cur-
rent implementation of our CPCC system. Section 4 offers
conclusions and future work.

2. EXPERIMENTS

Figure 1 shows the program code of VV 1 that visits four
locations in an altitude of 50 m over ground. VV 1 takes a
picture and measures the temperature, as well as the CO2
concentration at every location and archives the results in
the VV storage. Lines 1-3: VV 1 queries the definitions of
COg sensor, thermometer, and belly mounted camera from

1. var co2 = VV.sensor.get(’CO2’);
2. var temp = VV.sensor.get('Thermometer’);
3. var camera = VV.sensor.get('Camera 6402480);
4. wvar points = |
5. new VV.types.LatLngAlt(48.1111, 12.8619, 50),
6. new VV.types.LatLngAlt(48.1112, 12.8631, 50),
7. new VV.types.LatLngAlt(48.1115, 12.8646, 50),
8. new VV.types.LatLngAlt(48.1116, 12.8667, 50),
9. I;

10. for (var int n=0; n < points.length; ++n) {

11. V'V .task.execute({

12. type: ’point’, position: points[n], tolerance: 2,

13. sensors: [c02, temp, cameral

14.

15. function(data) {

16. for (var k=0; k < data.length; ++k) {

17. VV.storage.store(’p+n+ - "+k, data[k]);

18. }

9.}

20. }

Figure 1: Program Code of Virtual Vehicle VV 1

the system-wide device catalog (SDC). The camera delivers
640 pixel by 480 pixel images. Lines 4-9: Variable points
holds the four locations as an array of separate LatLngAlt
objects, each containing the according location’s latitude,
longitude, and altitude over ground. Positive values for lat-
itude and longitude indicate values in the north and east
directions. South and west directions use negative values.
Line 10: The VV program iterates over the locations in
array points. Lines 11-19: For each location in points
VV 1 compiles a task containing task type, location, pre-
cision to reach the location in meters (Line 12), required
sensors (Line 13), and a callback function to handle the
sensor values (Lines 15-19). The callback function receives
the sensor values as an array, where the indexes of the values
correspond to the indexes of the passed sensor definitions.
Eventually, the callback function archives each sensor value
in the VV storage (Line 17). For the first location, p0-0 is
the name of the CO2 sensor value, pO-1 is the name of the
thermometer value, and p0-2 is the name of the captured
image. VVs may of course archive arbitrary objects in the
VV storage and not only sensor values.

Figure 2 shows a snapshot of the simulated flight of one
RV serving three VVs. In this experiment the RV starts from
its depot at the upper left of Figure 2 and processes tasks
from all VVs by applying the nearest neighbor algorithm.
Green lines show VV movements in space, that is, when
transported by the RV, light-blue lines visualize the intended
VV paths, and gray lines mark planned RV trajectories. The
black rectangle on the right of the RV shows the RV’s name
and the VVs it carries. The VV programs generate tasks one
by one at run-time, starting with the first task on the left
side of Figure 2. Red dots represent already processed tasks
and blue dots unprocessed tasks. The green down-arrows
show that the unprocessed tasks are scheduled for execution
and the gray oblongs display the related VVs and the sensor
values to be measured. In Figure 2 the RV has already
processed the first three tasks of each VV. The program
code of VV 1 is shown in Figure 1. The programs of VV 2
and VV 3 are similar, only the task coordinates differ.

Figure 3 presents a simulated flight of two RVs serving
three VVs. In this experiment the RVs operate in separate

w1
1 G

-

W 3
B

Figure 2: A simulated flight of one RV serving three
VVs. The RV (black) starts from its depot (top) and
processes tasks from all VVs by utilizing the nearest
neighbor algorithm. Green lines reveal VV move-
ments in space, light-blue lines visualize intended
VYV paths, and gray lines show planned RV trajec-
tories.

Figure 3: A simulated flight of two RVs serving three
VVs. The red lines visualize VV cyber-mobility (mi-
grations) and the vertical gray line indicates the bor-
der between the RV’s operation areas.

areas. The vertical gray line indicates the border between
these areas. RV Heli One processes tasks on the left side
and RV Heli T'wo is responsible for the right side. Both RVs
apply the nearest neighbor algorithm to determine the next
task for processing. Heli One has already completed the six
tasks in its area and has returned to its depot position. In
this experiment the first and second tasks of the VVs are
located in the operating area of Heli One. The remaining
tasks are located in Heli Two’s cell. After Heli One has
completed the second task of VV 1 the VV migrates to Heli
Two for the execution of its third task. This is indicated
by the upper slanted red line. VV 2 and VV 3 migrate at a
later point in time for the same reason to Heli Two.

3. SYSTEM

Our system implements information-acquisition-as-a-ser-
vice of mobile sensor networks as proposed in [5]. Figure 4
depicts an overview of the CPCC system, which consists of
customers, administrators, a set of RVs, and one or more
ground stations (GSs). The ground station’s web frontend
(GWF) allows customers to upload their VV programs, as
well as view and download results from executed VVs. Ad-
ministrators employ the GWF to configure the CPCC sys-
tem and connected RVs. They also manage customer access
and the number of VVs a customer is allowed to execute
in parallel. The ground station’s virtual vehicle monitor
(VVM) processes an active VV until it requires the execu-
tion of a information acquisition task. Considering the task’s
position and the required sensors, the VVM decides which

Ground Station

___Upload programs{
upload programs Web Frontend
- view / download

results

manage i

perform| vehicle
migrption

\[Virtual Vehicle Monitor

N N

Customer

perform| vehicle

perform| vehicle "
migration

migration

Real perform vehicle Real perform vehicle
Vehicle 1 migration Vehicle 2 migration

perform vehicle
migration

Figure 4: System Overview.

RV should perform the task and migrates the VV to this
RV. After a RV has executed a VV’s task, the VV remains
on the RV until it requires the execution of another task.
If the current RV can perform the task, the VV remains on
the RV. If the current RV is not able to achieve the task,
the RV’s VVM decides which RV should perform the task
and migrates the VV to this RV. If a VV has terminated,
the current RV migrates the VV back to one of the GSs.

From the software point of view GSs and RVs are very
similar. We consider a GS as an immobile RV that has no
sensors and actuators. Hence, a GS basically has the same
functionality as a RV. The main differences between GS and
RV are in handling of completed VVs and the administrative
part of the GWF. Figure 5 presents the main hardware and
software components available in RVs as well as in GSs.

RVs and GSs use an off-the-shelf Linux operating system
that is able to execute ROS and suitable driver software
needed to access real, as well as simulated, sensors and ac-
tuators. The VVM mainly consists of the Mozilla Rhino
JavaScript virtual machine (JSVM) [1] and the components
quota manager, loader and migrator, vehicle mapper, and
task executor. The JSVM executes all VV programs iso-
lated in separate threads. It provides essential functionality
to take snapshots of running programs in the form of byte
arrays. Snapshots may be stored or transferred to remote
machines for later continuation. The loader and migrator
(LM) performs the initial load of VVs and arranges VV mi-
grations. The task executor (TE) is responsible for accom-
plishing VV tasks. After a VV issues a task the TE employs
the vehicle mapper to decide whether a migration to another
RV should happen or not. In case of a migration the task
executor invokes the LM to initiate the migration. If the
VV stays on the RV, the TE considers all open tasks, cre-
ates a new flight plan, and approaches the first task position.
When the RV reaches the task position, the TE triggers the
JSVM to read sensor values and resume the VV’s execution.

The quota manager is responsible for preventing VVs to
utilize resources too much. It terminates VVs that consume
too much CPU power or disk storage.

A VV consist of its VV program, JavaScript VM con-
text (CTX), management data (MD), and document stor-
age (DS). The CTX contains the state of the VV program,
that is, a complete snapshot including program, program
counter, and variables. MD contain parameters necessary
for a VV’s execution, like quota limits, and allowed API
calls. A VV may store objects in its DS for later retrieval.
The web frontend handles all incoming network traffic and
ensures encrypted connections.

VVs do not access sensors and actuators directly for in-
formation acquisition. Instead, VVs access virtual abstrac-
tions defined in a system-wide device catalog (SDC). The

Virtual Vehicle 1 Virtual VehicleN
JavaScript \AY% JavaScript \AY%
VM Context Program VM Context Program
Management | | Document Management | | Document
Data Storage Data Storage
Web Virtual Vehicle Monitor
F:;zl_ JavaScript | | Loader & Task Vehicle Quota
VM (Rhino)| | Migrator Executor Mapper Manager

ROS+ Drivers

Operating System (Linux)

Hardware
(CPUs, Memory, SSD, Network, USB, Sensors, Actuators, ...)

Figure 5: Hardware and Software Components
Overview of a Real Vehicle or Ground Station.

SDC specifies for each sensor type and optional supplemen-
tal parameters. Currently available sensor types are camera,
GPS, thermometer, NO,, COz, barometer, altimeter. For
cameras the SDC defines the following supplemental param-
eters: alignment to the RV, e.g., heading, inclination, e.g., 45
degrees down, as well as width and height in pixels. When
adding RVs to the CPCC system, administrators connect
SDC definitions to each sensor configuration. This enables
VVs to read the values of the desired sensor without know-
ing the actual RV’s hardware configuration. By requesting
a task to be executed, VVs control actuators indirectly. It
is the responsibility of the TE to control the RV’s actuators.

4. CONCLUSIONS AND FUTURE WORK

We have presented a Platform-as-a-Service (PaaS) imple-
mentation of cyber-physical cloud computing (CPCC), as
proposed in [5], that allows the separation of operating vehi-
cle fleets from performing information acquisition missions.
Providers may add RVs to the system for better performance
and may also remove RVs without service disruption for
maintenance, recharging, or refueling. Clients use in their
JavaScript coded VVs the VVM application programming
interface to read from abstracted sensors and to access their
own private storage.

Possible future work include image processing in VVs,
message passing between VVs, automation of RV recharg-
ing, better temporal isolation as suggested in [9], utilization
of real hardware, and integration of unmanned ground vehi-
cles, as well as autonomous underwater vehicles.

5. ACKNOWLEDGMENTS

This work has been supported by the National Science
Foundation (CNS1136141) and by the National Research
Network RiSE on Rigorous Systems Engineering (Austrian
Science Fund S11404-N23).

6. REFERENCES

[1] Mozilla Rhino. http://www.mozilla.org/rhino.

[2] The Robot Operating System (ROS).
http://www.ros.org.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, 1. Pratt, and
A. Warfield. Xen and the art of virtualization. In

[4]

[5]

(6]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Proc. Symposium on Operating Systems Principles
(SOSP). ACM, 2003.

C. Kirsch et al. Cyber-Physical Cloud Computing:
The Binding and Migration Problem. In Proc.
International Conference on Design, Automation and
Test in Europe (DATE). EDA Consortium, 2012.

S. Craciunas, A. Haas, C. Kirsch, H. Payer, H. Rock,
A. Rottmann, A. Sokolova, R. Trummer, J. Love, and
R. Sengupta. Information-Acquisition-as-a-Service for
Cyber-Physical Cloud Computing. In Proc. Workshop
on Hot Topics in Cloud Computing (HotCloud), 2010.
E. Pereira at al. A Networked Robotic System and its
Use in an Oil Spill Monitoring Exercise. Short talk at
the International Workshop on the Swarm at the Edge
of the Cloud, 2013.

A. Ghose, P. Biswas, C. Bhaumik, M. Sharma, A. Pal,
and A. Jha. Road condition monitoring and alert
application: Using in-vehicle Smartphone as Internet-
connected sensor. In Proc. International Conference
on Pervasive Computing and Communications
Workshops (PERCOM). IEEE, 2012.

H. Chen et al. Cloud computing on wings:
Applications to air quality. In Proc. American
Astronautical Society Guidance and Control
Conference (AASGNC). AAS, 2012.

J. Huang, C. M. Kirsch, and R. Sengupta. Scalability
of Vehicle Networks through Vehicle Virtualization.
Poster at the International Workshop on the Swarm at
the Edge of the Cloud, 2013.

C.-K. Lin. Coding-based System Primitives for
Airborne Cloud Computing. PhD thesis, Harvard
University, Cambridge, MA, USA, 2012. AAI3495619.
N. Mathew, S. L. Smith, and S. L. Waslander. A
Graph-Based Approach to Multi-Robot Rendezvous
for Recharging in Persistent Tasks. In Proc.
International Conference on Robotics and Automation
(ICRA). IEEE, 2013.

P. Mell and T. Grance. The NIST Definition of Cloud
Computing. Technical Report 800-145, National
Institute of Standards and Technology (NIST),
Gaithersburg, MD, September 2011.

N. Lane et al. A survey of mobile phone sensing. IEEE
Communications Magazine, 48(9):140-150, September
2010.

E. Pereira, C. Potiron, C. Kirsch, and R. Sengupta.
Modeling and Controlling the Structure of
Heterogeneous Mobile Robotic Systems: A BigActor
Approach. In Proc. International Systems Conference
(SysCon). IEEE, 2013.

P. Royo, J. Lépez, E. Pastor, and C. Barrado. Service
Abstraction Layer for UAV Flexible Application
Development. In Proc. Aerospace Sciences Meeting
and Ezhibit (ASM). ATAA, 2008.

A. Ryan and J. Hedrick. A mode-switching path
planner for UAV-assisted search and rescue. In Proc.
Conference on Decision and Control, European
Control Conference (CDC-ECC). IEEE, 2005.

A. Ryan, J. Tisdale, M. Godwin, D. Coatta,

D. Nguyen, S. Spry, R. Sengupta, and J. K. Hedrick.
Decentralized control of unmanned aerial vehicle
collaborative sensing missions. In Proc. American
Control Conference (ACC). IEEE, 2007.

