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Abstract—We consider a methodology for flexible software design,
runtime programming, defined by recurrent, incremental software modi-
fications to a program at runtime, called runtime patches. The principles
we consider for runtime programming are model preservation and
scalability. Model preservation means that a runtime patch preserves
the programming model in place for programs — in terms of syntax,
semantics, and correctness properties — as opposed to an “ad-hoc”,
disruptive operation, or one that requires an extra level of abstraction.
Scalability means that, for practicality and performance, the effort
in program compilation required by a runtime patch should ideally
scale in proportion to the change induced by it. We formulate runtime
programming over an abstract model for component-based concurrent
programs, defined by a modular relation between the syntax and seman-
tics of programs, plus built-in notions of initialization and quiescence.
The notion of a runtime patch is defined over these assumptions, as a
model-preserving transition between two programs and respective states.
Additionally, we propose an incremental compilation framework for
scalability in patch compilation. The formulation is put in perspective
through a case-study instantiation over a language for distributed hard
real-time systems, the Hierarchical Timing Language (HTL).

I. INTRODUCTION

We propose a methodology for flexible software design, runtime
programming, by means of incremental software modifications at
runtime. Runtime programming acknowledges that software designs
are often incomplete, and require the flexibility of change, e.g., fixing
bugs or introducing new features, without disruption of their service.
This flexibility is much needed for critical software that generally
needs to handle uncertainty, e.g. cloud computing or cyber-physical
systems, due to dynamic requirements of composition, service, or
performance. Runtime modifications should be allowed recurrently,
and, thus, be handled as a common case of system functionality
in predictable and efficient manner, with proper understanding of
inherent functional and non-functional aspects. Related work in many
diverse research communities (e.g.: programming languages [1];
operating systems [2]; databases [3]; large-scale web servers [4]; real-
time control systems [5]; or sensor networks [6], [7]) and in industry
(e.g., the OMG OSGi [8] and IEC 61499 [9] standards) typically tends
to take a partial and domain-specific view of the problem. Hence
comprehensive and general methodologies are in order.

The runtime programming abstraction is illustrated in Fig. 1. A
program (bottom) is subject at runtime to recurrent incremental mod-
ifications, called runtime patches, by an external program, a runtime
patcher (top). A runtime patch determines a switch between two
program specifications and states of these programs, by replacing a
component in the source program. Runtime patches are applied by the
patcher in congruence with program state and the (evolving) program
does not stop, instead it flows with any introduced runtime patches.
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An obvious analogy exists with the “controller-plant” formulation of
control theory (e.g., see [10]): the evolving program is the “plant”, the
patcher is the “controller”, and runtime patches define the “control”.
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Fig. 1. Runtime programming.

More concretely, we consider the runtime programming of
component-based concurrent programs, and present methodologies
for its design and validation. The proposal is structured around two
core sustaining principles, model preservation and scalability, first
introduced in short form in [11], as follows.

Model preservation. By model preservation we mean that a runtime
patch should preserve the programming model in place for programs,
in terms of program syntax, semantics, and correctness properties.
More precisely, model preservation is the guarantee that, in a runtime
programming system, a proper program is running at all times, and a
corresponding state for that program is observed that complies with
correct operation. The point of model preservation is avoiding an
“ad-hoc”, disruptive nature for runtime patches, and relying on no
particular abstraction level other than the one already in place for
programs.

For model preservation, a runtime patch must define a switch be-
tween two programs and their states, and one that ensures correctness
of operation. A runtime patch is formulated as the replacement of a
(syntactic) component within a program, that affects the behaviour
of concurrent processes described by the program (semantics) in in-
stantaneous manner. The assumption is an abstraction of component-
based software, comprised of a modular relation between (the syntax
of) components and (the semantics of) processes, plus built-in notions
of initialization and quiescence, that define conditions for graceful
component activation and deactivation, respectively. We require that:
processes of the replaced component terminate in a quiescent state;
processes of the new component start from a valid state; and that
processes of other components are unaffected by the patch effect.

These requirements define a base provision for a correct and
continuous flow between the two programs that run before and after
patch effect, but may not be sufficient, however, to comply with
particular correctness properties at stake. The problem is that the
operation of programs started in a live manner through a patch, can
differ from their standard operation from scratch (overall initial con-
ditions), and deviate from correctness. Addressing this may require
verification, taking into account the difference of state space for
patch-induced operation of programs. All these aspects may render
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a given patch infeasible, or too complex to analyze, but in that case
the runtime patching operation may work as a base inductive case for
decomposing non model-preserving patches into sequences of model-
preserving patches.

Scalability. The complexity of a runtime programming system should
ideally scale with the “size” of runtime patches. Such complexity
comes from patch compilation, the set of procedures required to
verify and integrate a patch, conducted in an online or partially offline
context, such as checking a model-preserving nature for patches,
and other aspects like code generation or re-linking. If the process
does not scale in the general case, for instance if a full program re-
compilation is required per patch, the practicality of runtime patching
will be compromised. Instead, it is desirable that patch compilation
proceeds incrementally, taking at most a “dependency context” of the
portion of the program affected by the patch.

With scalability in mind, we propose a patch compilation frame-
work, that defines how to conduct patch compilation incrementally,
and inherently characterizes its scalability. The base idea is that
for each aspect of compilation of a patch over a given program,
an incremental effort is conducted considering only a dependency
context of components in the program. The portion of dependency
context and the complexity of the incremental effort characterize
scalability of patch compilation in the space and time dimensions.
For instance, if the dependency context is the full program, or the
incremental effort has intractable complexity, then compilation is
not scalable. The framework is a generalization of the base ideas
of a modular compilation framework already defined in [12], and
proposed first informally for runtime patching in [13], for the context
of component-based systems and runtime programming.

Contribution and structure. Our contribution is a characterization
of runtime programming in the terms above. It comprises three parts:
the definition of program model assumptions (Section III), that serve
as base for runtime programming; the definition of runtime pro-
gramming over that component-based program model, with runtime
patching at its core (Section IV); and a characterization of incremental
patch compilation (Section V). Additionally, we define runtime pro-
gramming in formal terms (Section VI). The formalization addresses
matters of detail and preciseness that can however otherwise be
skipped for understanding the general formulation.

Throughout the text, we put the formulation in perspective with
a case-study instantiation, taking in context a component-based
language for real-time distributed control systems, the Hierarchical
Timing Language (HTL) [12], [14], which is briefly introduced first
(Section II). The case study makes the point that runtime program-
ming can concretely provide flexibility to computer systems, given a
reasonable degree of compositionality in program specification and
scalability in program compilation. It also illustrates some of the
difficulties when compositionality and scalability are missing. The
details of the HTL instantiation in formal terms are not provided in
this paper, but can be found in our technical report [15].

The paper ends with a complementary discussion of related work
(Section VII), and some concluding remarks (Section VIII).

II. CASE STUDY

HTL is a component-based coordination language for distributed
real-time systems [12], [14]. An HTL program is a hierarchical tree-
like structure composed of other components called modules and
modes, which in turn may define inner programs through a relation
of hierarchical refinement. These components map to the execution
of real-time tasks on a distributed platform, with Logical Execution
Time guarantees [16].

As a running HTL example, we consider the real-world application
of a three-tank system (3TS), described in [17]. The 3TS, with

structure depicted in Fig. 2, consists of three tanks, Tank1, Tank2,
and Tank3. Each tank has an evacuation tap, Tap1 to Tap3, and there
are two tank inter-connecting taps, Tap1,3 and Tap2,3. Two pumps
Pump1 and Pump2 control the flow of water into Tank1 and Tank2,
with the aim of maintaining the water level in the tanks, both in the
case of water leaks through the tank’s taps, or in their absence. For
pump control, a proportional (P) controller is used in the absence of
leaks, and two proportional-integrative (PI) controllers are used when
there are leaks, one with slow integration speed for an estimated low
control error, the other with faster integration speed. The control runs
on three hosts: two of the hosts have direct access to the pumps, and
the remaining host is used as a monitoring interface to an operator.

Tap1 Tap3 Tap2

Tap1,3 Tap2,3

Pump1 Pump2Tank1 Tank3 Tank2

Fig. 2. The three-tank system (3TS) [17].

An HTL program for the 3TS is shown in Fig. 3. The program
is presented in detail in [17], and some videos demonstrating it at
work can be found at [18]. We consider an adaptation of the original
program, by letting the P controllers mentioned above run at 1 Hz,
and the PI controllers run at 2 Hz, rather than a fixed frequency
of 2 Hz for all control in the original program [17]. In Fig. 3,
the syntactic structure of the adapted program (left) and a possible
execution of it (right) are shown.
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Fig. 3. An HTL program for the 3TS (adaptation from [17]).

An HTL program defines a set of module components that execute
concurrently, which can be distributed module-wise across different
hosts in a network. In Fig. 3, the 3TS program consists of three
concurrently running modules Monitor, Pump1, and Pump2, each
mapped to one of the 3TS hosts.

A module is defined by a set of mode components, with one mode
identified as start mode, e.g., P1 for module Pump1 in Fig. 3, and some
mode switching logic expressed by conditions over communicator
variables. A module executes by activating one mode component at
a time, beginning with the start mode, and evaluates mode switching
logic to determine the next mode to execute in sequence. For instance,
in Fig. 3, module Pump1 initiates with mode P1 at time 0, switches
to PI1 at time 2, and then back to P1 at time 4.

A mode defines a set of real-time tasks, and their invocation over
a fixed time period, called the mode’s period, e.g., mode periods are
1 or 0.5 in Fig. 3. Tasks in a mode are expressed as insulated I/O
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functional blocks with no internal synchronization, and computation
specified using an external programming language, such as C or Java.
The end of a mode’s period is consistent with graceful termination
of all computation of tasks in the mode, and defines the time for
evaluating mode switching at the upper level of the parent module.

The hierarchical refinement of a mode by an entire program, called
the mode’s refinement program, is enabled in case some tasks in a
mode are abstract placeholders with no implementation. The refine-
ment program must provide concrete task implementations in modes
of equal periods, or even abstract tasks again, if refinement is nested.
Other refinement constraints are also enforced, with the general intent
of preserving key properties of the parent mode’s specification, e.g.,
schedulability of computation, and in so, leveraging the effort of HTL
compilation [12], [14], as we illustrate later in the text. Refinement
programs are active when their parent mode is also active and in time-
synchronized form at mode switching instants. In Fig. 3, each PI-
control mode (PI1, PI2) in the 3TS program is refined by a program
(R1, R2) with a single module (RM1, RM2) that defines the “slow”-
PI and “fast”-PI control modes required for 3TS control. For the
sample execution shown, mode PI1 and its refinement program R1

are active in the interval (2, 4), and, likewise, PI2 and R2 are active
in the interval (1, 4.5).

III. PROGRAM MODEL

We take as assumption a programming model for concurrent,
component-based programs with two main features. The first is
a clean modular relation between the specification of a program,
its syntax, and the behavior of that program, its semantics. The
other is the existence of built-in notions for graceful activation and
deactivation of functionality, initialization and quiescence. The point
is to define a general design pattern for concurrent programs that
allows for incremental modifications at runtime with a well-defined
functional effect.

Syntax and semantics. We consider a program specified by com-
position of (syntactic) components whose execution is defined by
sets of (semantic) concurrent processes. This is shown in Fig. 4 for
program P (left), and corresponding processes (right). We assume
that the inner components in the syntax tree of a given program,
or more generally of any given component, are identified by unique
path names. In the figure a path σ is shown in P , identifying a
component C = P [σ]. The paths are an abstraction of hierarchical
composition at the syntactic level.

path

component

program

P

C

σ

execution

C
P - C processes

Fig. 4. Program model assumptions — syntax and semantics.

We further assume components and processes are modularly related
in the sense that a component of a given program can only affect the
relevant behavior of a strict subset of the processes described by the
program. In Fig. 4, C and its sub-components are only meant to
specify the functional behavior of a strict subset of processes of P
in isolated manner, i.e., processes(P ) = processes(P − C) ∪
processes(C). Examples of relevant functionality may comprise
data processing, process interaction, or I/O. The processes of C
and P−C may however interfere and be correlated in non-functional
aspects, e.g., resource consumption such as processor or network
usage. Functional and non-functional aspects should be addressed
by program compilation, comprising program verification and code
generation, operating over the syntax of programs, as discussed later.

Initialization and quiescence. To model graceful activation and
deactivation of components, we assume that built-in notions termed
initialization and quiescence are in place for process computation.
This is illustrated in Fig. 5 for some component C with three
associated processes, p1 to p3. Initial states merely define valid
conditions for processes to start. Quiescent states reflect the com-
pletion of logically indivisible operations in consistent form, or
process idleness with no side effects. Both notions generalize to the
execution of overall components, as shown for C in Fig. 5: initial
and quiescent states of a component’s execution are those such that
all corresponding processes are in an initial state or quiescent state,
respectively.

p1
p2

execution

p3

initial 
state

quiescent 
state

C

overall
quiescence

Fig. 5. Program model assumptions — initialization and quiescence.

The fundamental traits we put forward, clean formulations of
concurrency, initialization, and quiescence, are necessary to reason on
non-disruptive runtime programming. Concurrency allows to reason
on piecewise changes to a program, and initialization and quiescence
define when and how it is appropriate to do so. Instantiation of
these traits can be found in related work on runtime modifications
to a system, e.g., detecting inactive kernel functions in operating
systems [2], reaching annotated program points in multi-threaded
programs [1], or dynamic update models for distributed systems [19].

The HTL case. Let us analyze how the abstract programming model
assumptions instantiate for HTL.

The syntax and semantics of HTL are modularly related. Each
component describes an isolated set of processes in the form of
real-time tasks, as illustrated in the 3TS example of Fig. 3. Each
component is also uniquely named at each scoping level [12], [14]
(e.g., all modules in the same program), hence component paths are
naturally defined using component names, e.g., the path of mode P1

in Fig. 3 can be expressed as 3TS.Pump1.P1.
HTL component quiescence can be seen as expressed by intervals

of idleness, when a component’s execution has no side effects, or
atomic instants of mode switching evaluation in all modes of a
component. For example, in Fig. 3, PI1 and all its sub-components
are idle in intervals (0, 2) and (4, 6), and mode switching is evaluated
every 0.5 seconds in interval (2, 4). Each individual mode, module,
or refinement level programs is guaranteed to reach quiescence, all
of them and their sub-components eventually synchronize in mode-
switching terms. Regarding top-level programs, this might not be
true, except for certain sub-classes of programs, e.g., those in which
all modes in a top-level module have equal periods, allowing for
synchronization at least on a hyperperiod basis. For instance, in
Fig. 3, if no mode switching occurs in both Pump1 and Pump2 after
time 4.5, the whole program will not quiesce indefinitely, as mode
switching will always subsequently be evaluated at different times in
the two modules.

A notion of component initialization is also finally in place. It
is required that each module, when initialized, begins execution
from its start mode, as mentioned previously. Other initialization
constraints must be observed that are specific to the component
interaction model in HTL. Component interaction is done through
special variables called communicators. A communicator is a global,
top-level program variable that has an associated period for access
by real-time tasks in a mode. Fig. 6 depicts a possible communicator
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Fig. 6. HTL communicator interaction.

interaction between the modules Monitor and Pump1 of the 3TS
program, using communicators c1 and c2 with periods 0.5 and 0.25,
respectively. The tasks of modes P1 and PI1 in module Pump1 write
to c2, and read from c1. Tasks in mode MMode within module
Monitor read c2, and write to c1. A communicator can only be
logically read or written at times that are multiples of its period,
as illustrated in the figure. We stress the term logical time [16]:
the behavior of the program must be as if communicator reads
and writes (or other events like task completions) occur at specified
logical instants, despite the fact that the associated platform events
may happen at different, varying times [12], [14]. The initialization
constraint w.r.t. communicator access is that that any period instance
of a mode must start at a time that is multiple of all communicator
periods it accesses.

IV. FORMULATION OF RUNTIME PROGRAMMING

We define runtime programming over the program model assump-
tions. Recalling the scheme of Fig. 1, runtime programming com-
prises a runtime patcher inducing incremental software modifications,
runtime patches, over a running program. We now formulate the two
concepts of runtime patch and runtime patcher.

Runtime patch. A runtime patch is illustrated in Fig. 7. A patch σ/N
is defined by a path σ, and a component N . The application of σ/N
over a program P defines the runtime replacement of component O
at program path σ in P by N , yielding subsequent execution of
program P [σ/N ].

O N

execution

P - O

N

P [σ/N]

σ
O

P

σ

s → s'
σ /N

σ / N

Fig. 7. A runtime patch.

Syntactically, P [σ/N ] is a program in which N , the “new compo-
nent”, has path σ, and replaces O = P [σ], the “old component”. All
other paths (components) outside the scope of σ are preserved from P
to P [σ/N ]. The strict addition (resp. removal) of components is a
special instance of this syntactic effect, respectively, when O (resp.
N ) is undefined. For a program P , if a program P [σ/N ] exists in
these conditions, we say patch σ/N is well-formed for P .

Semantically, the effect of a well-formed patch σ/N over P is

an atomic switch s
σ/N−→ s′ between a state s of P , and a state s′

of P [σ/N ], that observes the following requirements:
— Quiescence — s is a quiescent state for all processes of O,

i.e., O is guaranteed to terminate gracefully.
— Initialization — s′ defines a valid initial state for processes

of N , i.e., N initiates properly.
— Isolation — s′ preserves the state of s with regard to processes

associated with the set of components P − O, i.e., the execution of
unchanged components is not affected.

In Fig. 8, semantic patch effect is depicted in terms of the state
space of P , P [σ/N ], and projection of that state space for involved
components. For patch effect, O must enter a quiescence zone Q, N
must be able to start from a valid initialization zone I , and the state
of unchanged components P − O must remain the same. We say
σ/N is feasible if the execution of P guarantees eventual semantic
effect of σ/N , i.e., from every possible execution state s0 of P , a

state s is always eventually reached such that s
σ/N−→ s′ for some state

s′ of P [σ/N ].

P

P – O

P [σ/N]

O

Q

σ/Ns s'

N

I

Fig. 8. Patch effect and the state space of components.

Runtime patcher. A runtime patcher has the ability to observe (as
input) the syntactic structure and the semantic state of a currently
executing program, and define (as output) runtime patches that
modify that program and its state, in adherence to the constraints
put forward for patching. We abstract away from the problem of
how the patches are derived and the associated complexity, (e.g.,
as in the controller synthesis problem [10], [20]) and focus on the
verification of a given patch through compilation (as in the controller
verification problem). We do not also consider the actual design of
the runtime patcher and supporting system, which can have elaborate
requirements, e.g., in the vein of reconfigurable “live systems” [21],
[22].

The notions of runtime patcher and runtime patching define the
possible executions of a runtime programming system, in the form
illustrated in Fig. 9. The figure shows that, starting from an initial
configuration where program P0 is active, a patcher P has the ability
of inducing patches σ0/N0, σ1/N1, . . . over program execution. The
resulting program sequence is

P0, P1 = P0 [σ0/N0], P2 = P1 [σ1/N1], . . . ,

and the resulting program state sequence is

s0, . . . , s
′
0, s1, . . . , s

′
1, s2, . . . , s

′
2, . . . ,

such that intermediate state sequences si, . . . , s′i are defined by the
semantics of Pi, and s′i

σi/Ni−→ si+1.
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Fig. 9. Runtime patcher and program execution.

HTL patching example. We consider some example patches over
the HTL 3TS example, depicted in Fig. 10. The figure shows the
syntactic changes defined by the patches (Fig. 10a), and their possible
semantic effect (Fig. 10b), assuming they can be applied in any order
from time 3. The patches can be understood as individually applied
in self-contained manner, or as part of a larger patch that proceeds
in decomposed form, a concept we describe later in the text. For
illustrative purposes, one can consider that the runtime patcher is
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some piece of software interfacing with a distributed HTL runtime
system [14], [23] that is extended for runtime code instrumentation.
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(a) Syntactic change.
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Fig. 10. 3TS program patch.

The example patches of Fig. 10 syntactically change 3TS by
replacing top-level modes MMode (σ1/MMode

′) and P1 (σ2/P1
′), plus

refinement module RM2 (σ3/RM2
′). The program timing is maintained,

except for a change of period between MMode and MMode′. It is
assumed that MMode′ has an initialization constraint, such that it can
only start at time instants multiples of 2, due to some communicator
access definitions. From time 3, when the patches become available,
we have that: the patch over RM2 can proceed at time 3 immediately,
since it reaches a convenient quiescent (mode switch evaluation) state;
the patch over P1 is delayed until time 3.5 for quiescence (at time 3,
P1 is active); and the patch over MMode is delayed until time 4, due to
the initialization constraint on MMode′, even though time 3 is suitable
in quiescence terms.

In general, an HTL runtime patch can define the replacement of
modes, modules, and refinement programs, or the addition or removal
of modules. The addition or removal of modes and refinement
programs would disrupt the specification of their parent component,
hence are not well-formed patches. Individual patches affecting
different top-level modules in a program do not generally guarantee
eventual quiescence (synchronized evaluation of mode switching),
as mentioned earlier. But, at the top-level program specification, it
could be considered also that the communicator set of the program is
changed. We do not consider this case, without loss of expressiveness:
a patch that alters the communicator set can be shown equivalent to
a patch between programs with the same communicator set.

Model preservation. Model preservation, as stated in the introduc-
tion, is the guarantee that, in a runtime programming system, a proper
program is running at all times, and a corresponding state for that
program is observed that complies with correct operation. This might
not hold by the definition of patch effect alone. A patch defines an
instantaneous switch between two programs, thus its effect can be
explained alone by the programming model in place. Its effect is
also safe, as it provides a continuous flow between programs (proper
quiescence, initialization, and isolation). However, correctness may be
compromised for the operation of the program that is started through
patch effect.

σ / N

R
I

 E

Iprogram
initialization

patch
effect

S
 
Ψ⊨

R
E

 

 R
D
⊭ Ψ

P [ σ / N ]

Fig. 11. Deviation from correctness after patch effect.

The problem is illustrated in Fig. 11. The state space of a
program P [σ/N ] is shown, considering execution starting from
overall initial conditions I , or starting through effect of a patch σ/N
from E, as a “continuation” of the execution of P . Patch-induced
program traces, those starting from E and defining reachable state
space RE , may differ transiently or even in the long term from
standard program traces, those starting from I and defining reachable
state space RI . The figure shows that the state space S of satisfiability
of a certain property of correctness ψ, includes all states of standard
program traces (RI ⊆ S), but that this may not necessarily hold
for patch-induced traces. A model-preserving patch should preclude
the existence of deviant behavior RD ⊆ RE , shown at bottom in
Fig. 11, where ψ does not hold. Thus, as in the supervision of
control systems [10], we wish that “undesirable events” are avoided.
From a compilation perspective, the problem can be addressed by
essentially taking into account the difference in state-space between
execution from scratch, and execution induced by a patch.

This view of model preservation does not necessarily require a
strict relation between patch-induced traces and standard program
traces, though they may of course relate in some manner. Other
approaches are possible. For instance, convergence of patch-induced
traces to standard program operation, with possible deviant behavior
over a transient period, has been considered in [24]. The later is only
appropriate as far as transient incorrect behavior is acceptable. In
earlier work [13], we discussed a view of model preservation where
the effect of a patch to a program should be strictly equivalent to
another program expressing the same functionality switch, but this is
too rigid.

Note also that there might be properties of correctness that are
difficult or impossible to analyze beforehand through verification.
Redundancy and fault isolation methodologies have been proposed,
e.g. [5], [25], [26], that counter for deviation of correctness after
runtime modifications to a program. We do not consider this type of
methodologies, but their use is not ruled out by our component-based
program model assumptions, e.g., an analytic redundancy relation
between components [5] can be instantiated in our framework.

HTL and model preservation. The key aspect of program correct-
ness in HTL is defined by a property called time determinism. Time
determinism relates to the values of communicators (Fig. 6) over
time as follows. A program is time-deterministic if for every timed
sequence of inputs, corresponding to the values over time of a subset
of communicators called sensor communicators, the program always
yields a unique timed sequence of outputs, given by the values of
all other communicators over time. A time-deterministic program
can guarantee predictable and portable functionality over any given
platform with sufficient computational resources [12], [14]. The prop-
erty is derived by verification of race-free communication interaction
plus schedulability of computation and network transmissions, as we
describe later in the text.

Potential deviation from time determinism could result from (un-
verified) patch effect. The combination of active concurrent tasks in
different modes may be different from an execution from scratch,
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in the sense that the combination would not be reachable from
initial conditions. Time determinism can be compromised by patch
effect, e.g., if there is no feasible real-time schedule for the resulting
workload. In the 3TS example this is not an issue, since the control
over each of the 3TS pumps is functionally independent, i.e., a
combination of simultaneous P and slow/fast PI-control modes is
possible in any case.

Patching scope and decomposition. Recall the possibly delicate
requirements posed on runtime patching: synchronization of quies-
cence, valid initialization, isolation of effect, and compliance with
correctness after patch effect. As a result, large patches may be
infeasible, for instance because they replace components that quiesce
in unsynchronized manner, or that are too complex to verify w.r.t.
correctness after patch effect.

O
1

N
1

execution

P - O

P
σ

O
2

O
1

σ1/N1

O
2

N
2

σ2/N2

P [σ1/N1]
σ

O
2

N
1

P [σ/N]
σ

N
2

N
1

P [σ/N] = P [σ1/N1][σ2/N2] 

Fig. 12. Patch decomposition.

It should be the case that the set of model-preserving patches is
much smaller than the set of well-formed patches, those that merely
encode a valid syntactic transformation. This should not be seen
as a limitation. The correct perspective is that the runtime patching
operation can work as a sound inductive case to deal with otherwise
invalid program patches. To handle these, we can consider the de-
composition in smaller model-preserving sub-patches that proceed in
several sequential steps, such that the overall final effect corresponds
to the intended transformation. The idea is illustrated in Fig. 12.
A patch σ/N is shown applied to a program P , by decomposition
in smaller patches σ1/N1 and σ2/N2. The requirement is that
P [σ/N ] = P [σ1/N1][σ2/N2], and that σ1/N1 and σ2/N2 can
operate over P and P [σ1/N1], respectively.

Patch decomposition can reflect a number of aspects related to the
programming model in place, or design choices for better perfor-
mance w.r.t. metrics of choice. For instance, the order of patches in a
decomposition can express component dependencies, e.g., in Fig. 12,
it can be that σ2/N2 does not proceed first, due to a “dependency”
of N1 by N2. Factors such as promptness, availability, or correctness,
may determine the pattern of progressive software change, as in mode
change protocols for real-time systems [27], or upgrade protocols in
large-scale web servers [4]. Another general use of decomposition
may be to break down a component replacement into a component
removal, followed later, after some downtime at the replacement path,
by an addition — consider N1 = ⊥, N2 = N in Fig. 12, where ⊥
stands for an undefined component. The downtime may be necessary
for several reasons, for instance time consuming state-transfer (e.g.,
[28], [29]), or synchrony of effect with other patches in context.

HTL and patch decomposition. The example of Fig. 10 can be
seen as an HTL patch ε/3TS′, that is decomposed in the three
model-preserving patches discussed earlier, σ1/MMode

′, σ2/P1
′, and

σ3/RM2
′, taking effect in interval (3, 4). The decomposition can be

called asynchronous in the sense of mode-change protocols for real-
time systems [27], as it defines a mix of old and new functionality
over the transient period of effect, e.g., RM2′ executes together with
P1 until time 3.5 and with MMode until time 4. A synchronous decom-

position [27] would be possible for the same patch, by conveniently
removing components that are to be patched, first, inducing some
downtime at respective paths, to achieve a synchronous effect of all
patches, later. In [15], we give such an example for the same overall
patch.

Synchronous and asynchronous decompositions represent a trade-
off between several factors such as verification effort, promptness
from request to completion, and downtime of affected compo-
nents [27]. An asynchronous decomposition requires extra effort to
verify correct operation over the transient period when old and new
tasks mix, but can have faster effect and induces no downtime. A
synchronous decomposition is less complex to verify, at the expense
of slower effect and downtime.

V. PATCH COMPILATION

Patch compilation is the process of verifying and integrating a run-
time patch in a runtime programming system. Taking the controller-
plant analogy of Fig. 1 in context again, compilation relates to
controller verification, though not to controller synthesis [10]. Patches
are “given” in this sense, though the problem of “synthesizing”
them could be formulated for the runtime patcher. Verification of a
runtime patch over a given program needs to establish the conditions
for model-preservation formulated previously. For this, functional
or non-functional properties of correctness (e.g., deadlock-freedom,
resource consumption) are to be taken in consideration, along with
program analysis w.r.t. patch effect. Compilation may also include
the process of deriving a patch decomposition, in which case patches
in a decomposition must also be individually compiled. Other aspects
such as code generation or relinking should also be dealt with.

Several specialized techniques may apply in this context, see [1],
[2], [6], [30]–[34]. Our interest, though, is not to characterize
particular techniques for patch compilation, but instead to propose
a general methodology for their scalable implementation. The key
observation is that, in a runtime programming environment, a patch
changes a “previously compiled“ program, hence compilation should
be able to proceed incrementally. To characterize incremental patch
compilation, we consider a base framework originally defined in [12],
and generalize it for our abstraction of component-based software.

P [σ / N ]

N

D
ϕ
(P,N,σ)

dependency
context

P |= φ Dφ(P,N, σ) |= ϕφ
P [σ/N ] |= φ

Cφ(P,N, σ) = O (Dφ(P,N, σ) |= ϕφ)

I(φ) = (ϕφ,Dφ, Cφ)

Fig. 13. Incremental patch compilation.

The proposal is illustrated in Fig. 13. The idea is that patch
compilation should consist of an incremental effort operating over
the dependency context of components related to a patch. Per
each compilation aspect φ, say for instance code generation, the
dependency context of a patch σ/N over P , Dφ(P,N, σ), shown
left in the figure, identifies the portion of P [σ/N ] that needs to be
accounted for to deal with φ incrementally, taking also optionally
O = P [σ] in consideration. The incremental effort seeks to establish
a property ϕφ over that dependency context through some algorithm.
This is expressed by the inference rule shown right in the figure:
φ is dealt with for P [σ/N ] if ϕφ is considered over Dφ(P,N, σ),
under the assumption that P has been previously compiled w.r.t. φ.
The inherent time complexity of this incremental compilation effort is
in turn expressed by Cφ(P,N, σ) = O (Dφ(P,N, σ) |= ϕφ), called
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the compilation cost — we abuse notation in the sense that the
complexity at stake relates to the algorithm in place to verify ϕφ.
We call I(φ) = (ϕφ,Dφ, Cφ) an incremental compilation strategy
for φ.

The formulation above inherently characterizes incremental com-
pilation and its scalability, in the size (dependency context) and time
(compilation cost) dimensions. Scalability can be broken in one of the
dimensions, e.g., if a patch requires the full program as context, or
if the compilation cost has intractable complexity. A good degree of
scalability corresponds to a small dependency context, and a tractable
incremental compilation effort. Our methodology is tightly related to
matters of modular compilation, component composition, trade-offs
between precision and performance in the compilation of component-
based systems, and in particular the well known state-explosion prob-
lem in this context. In this sense we share concerns with [23], [35]–
[37]. By our formulation in Fig. 13, P |= φ ∧ Dφ(P,N, σ) |= ϕφ
is a sufficiency criteria for P [σ/N ] |= φ. The dependency context
and compilation cost depend on the choice of ϕφ, which represents
the balance between precision and effort. Note that we are not
characterizing the complexity of compilation, but present a principled
approach for dealing with it. A complexity analysis can be done for
actual instantiation, as we discuss for HTL next.

HTL patch compilation. Standard compilation of HTL programs
comprises several aspects, and precedences between them, in the
manner shown in Fig. 14a. For patch compilation, one additional
aspect of patch verification is also needed and shown in the figure.
An HTL compiler takes into account a program’s specification, a
mapping of top-level modules to platform hosts, and a characteriza-
tion of worst-case execution times for task computation and worst-
case transmission times for communicator value transmission in
the platform’s real-time network. A program needs to be checked
first for well formedness, i.e., compliance with syntactic constraints.
These include trivial syntactic verifications, as for any language, but
also particular hierarchical refinement and Logical Execution Time
constraints [12], of core importance in HTL. Next, the compiler
checks time determinism. This is addressed by verifying three sub-
properties: race freedom — the absence of races in communicator
writes; time safety — schedulability of computation per each host;
and transmission safety — schedulability of network broadcasts
for communicator value propagation. A race-free, time-safe, and
transmission-safe program is time-deterministic [12]. At the end of
the compilation process, E-code [23] is generated.

This compilation process has been characterized in modular, incre-
mental terms [12]. Incremental compilation strategies were defined
for the problem of compiling component N that changes over
program P , yielding P [σ/N ], or equivalently in the context of
patching, compiling a patch σ/N over P . These are summarized in
the table of Fig. 14b, in terms of the dependency context Dφ(P,N, σ)
and complexity class of compilation cost Cφ(P,N, σ), introduced
previously. Checking well-formedness and code generation need only
take N as dependency context and requires linear time in the size of
the syntactic representation of N . If N is a refinement component,
like in the σ3/RM2

′ patch of Fig. 10, refinement constraints alone
guarantee that race freedom, time safety, and transmission safety are
preserved from P , so these need not be checked. Otherwise, e.g.
σ1/MMode

′ in Fig. 10, they need to take the entire program P [σ/N ]
in context, but can be performed in linear time, with the exception
of time safety. The latter, even if it can be done in isolation for the
host where N will run, may induce an exponential time effort.

Overall, the scalability of HTL patch compilation may thus be com-
promised by the verification of time safety over top-level components.
We have that the complexity scales exponentially with the number

of top-level modules per host [12], even if the refinement-level part
of a program need not need be accounted for, and time safety can
be proceed modularly per host. In the 3TS patch example of Fig. 10,
each of the patches affects functionality running on a different host,
and each host runs only a single module which is verifiable with
pseudo-polynomial complexity (depends on the numerical values of
mode periods) [12]. However, if all modules in the 3TS system were
to run in the same host, that would not be the case. The type of
decomposition could then play a key role, by minimizing as much
as possible the effort in verifying time safety, as discussed above
in connection to mode-change protocols [27], and in more detail
in [15]. For the base problem, a number of established techniques
could improve scalability, e.g., incremental scheduling analysis [38],
schedule-carrying code [39], or temporal isolation schemes [40].
Finally, a runtime programming implementation can conceivably deal
with time safety analysis offline, so that the supporting runtime
system is not affected in an unscalable manner.

Well
formedness

Race 
freedom

Transmission
safety

Code 
generation

Time 
safety

Patch
verification

(a) Compilation aspects.

φ
Dφ(P,N, σ) Cφ(P,N, σ)

top ref. top ref.

Well formedness N Linear

Race freedom

P [σ/N ] ∅

Linear

Void
Time Safety Exponential

Transmission safety Linear

Patch verification O and N Linear

Code generation N Linear

(b) Incremental compilation strategies.

Fig. 14. HTL patch compilation (extension of [12]).

For patch compilation, additional compilation work must be done.
In line with the formulation of Section IV, the validation of a model-
preserving patch comprises checking for patch well-formedness (val-
idation of syntactic patch effect), patch feasibility (ensuring eventual
semantic effect of the patch), and compliance with correctness after
patch effect. Patch well-formedness is subsumed by standard incre-
mental compilation of HTL programs. So is the issue of compliance
with time-determinism after patch effect. Note that potential deviation
from correctness, i.e. time-determinism, could result from patch
effect, as concurrent tasks in different modes execute together in a
different manner from an execution from scratch. But the compilation
strategies in place for time-determinism (race freedom, time safety,
and transmission safety) already consider an over-approximated state
space defined by all potential mode switching combinations in
different modules [12]. The reason for the over-approximation is that
a precise analysis is not possible, since whether a particular mode
switch will occur or not is undecidable. Hence time-determinism can
be ensured in all possible executions after patch effect. Regarding
code generation, the E-code format of [23] should be tuned to counter
for runtime relinking, but can otherwise maintain the same modular
structure, and be incrementally generated.

Thus, patch verification merely requires checking patch feasibility,
i.e., ensure the initialization, quiescence, and isolation requirements
of runtime patching eventually hold in the execution of a program P
for semantic effect of a given patch σ/N . The quiescence requirement
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always holds, since we restrained a priori model-preserving patches
from being defined over top-level programs. So does the isolation
requirement, by virtue of isolation of state for HTL components [12],
[15]. The initialization requirement holds if O = P [σ] always
quiesces at instants that are consistent startup times for top-level N ,
as defined by communicator accesses, and illustrated in Fig. 6. This
is ensured by well-formedness of N alone (mode periods will not
change from O to N ). Otherwise, for top-level N , simple checks
over the set of communicators accessed by O and N can be done in
linear time, as indicated in Fig. 14b for the patch verification aspect.
The details are given in our technical report [15].

VI. FORMALIZATION

In this section we provide a definition of runtime programming
in formal terms. It addresses matters of detail and preciseness in
regard to the characterization of runtime programming in the previous
sections, but otherwise expresses the same concepts. We proceed by
characterizing the program model assumptions, the formulation of
runtime programming, and incremental patch compilation, in this
order. The HTL instantiation of this formalization can be found
in [15].

A. Program model assumptions

Syntax. We assume a syntax for programs, expressed by: a domain
of components Components; a domain of programs Programs ⊆
Components; a set Σ of path symbols; and a mapping

[ ] : Components× Σ∗ → Components ∪ {⊥},
called the path function.

A path is a sequence of symbols σ = α1...αn ∈ Σ∗, n ≥ 0, with
the empty sequence (defined for n = 0) denoted ε. We let σ1σ2

denote the concatenation of paths σ1 and σ2, and σ1 � σ2 denote
that path σ1 prefixes or equals σ2. When σ1 � σ2, we say σ2 is in
the scope of σ1. If two paths σ1 and σ2 do not prefix one another
— σ1 6� σ2, σ2 6� σ1 — we say they are concurrent paths, and
write σ1 ‖ σ2.

For a component C, we write C[σ] = C0 if [ ](C, σ) = C0. If
C0 6= ⊥, we write σ ∈ paths(C), and we say that component C0

is declared in path σ. If C0 = ⊥ we say that path σ is undefined in
C. We denote C − C0 to be the set of components in C with paths
concurrent to the path of a sub-component C0 of C. We impose
three constraints on the relation between paths and components, in
line with the intuition in Fig. 4. For every C ∈ Components we
require that:

C[ε] = C (1)

∀σ1 ∈ paths(C), σ2 ∈ Σ∗, C[σ1σ2] = C[σ1][σ2] (2)

∀σ1, σ2 : σ1 ‖ σ2, 6 ∃σ : C[σ1σ] = C[σ2σ] 6= ⊥ (3)
That is, the empty path always identifies the root-level component in
context (1), paths compose (2), and components in concurrent paths
are distinct (3).

Semantics. We assume a domain of processes Processes, and a
mapping of components to sets of processes

processes : Components→ 2Processes,

such that for all components C, and σ1, σ2 ∈ paths(C):
σ1 � σ2 ⇒ processes(C[σ1]) ⊇ processes(C[σ2]) (4)

σ1 ‖ σ2 ⇒ processes(C[σ1]) ∩ processes(C[σ2]) = ∅ (5)

The constraints mean that processes of a component must include
those of their sub-components (4), and that components in concurrent
paths have disjoint process sets (5), as illustrated previously in Fig. 4.

Per component C, we take the semantics of processes(C) to be
expressed by a tuple

(states(C), init(C),
C−→, q(C))

where: states(C) is a set of states; init(C) ⊆ states(C) is a
non-empty subset of initial states; C−→ is a left-total binary relation
on states(C) called the successor relation; and q(C) is a subset of
states(C) × processes(C), called the quiescence relation. The
formulation of component semantics is basically a kind of Kripke
structure, of common use to model abstract semantics (e.g., see [41]
for reference).

We say state s of component C is a quiescent state for process p if
(s, p) ∈ q(C) , and that s is overall quiescent for C if it is quiescent
for all processes in processes(C), denoted by s ∈ qstates(C).
For (s, s′) ∈ C−→, we write s C−→ s′, and say s′ is a successor of s.
A trace of C is defined as a sequence of states of the form

s0, s1, s2, . . . : s0 ∈ init(C) ∧ ∀i ≥ 0, si
C−→ si+1. (6)

We wish to enforce that the semantics of a component expresses
the composition of any sub-components it contains, by some simple
semantics-preserving constraints over a notion of state projection. If
a component C contains a sub-component C0, a notion of projection
in C0 is required to be in place, for every state s of C, sbC0c ∈
states(C0), such that:

s ∈ init(C)⇒ sbC0c ∈ init(C0) (7)24p ∈ processes(C0)

∧
(s, p) ∈ q(C)

35⇒ (sbC0c, p) ∈ q(C0) (8)

s
C−→ s′ ⇒

h
sbC0c = s′bC0c ∨ sbC0c

C0−→ s′bC0c
i

(9)

Thus, a projection is required to preserve initialization (7), quies-
cence (8), and successor relation (9). Note that by (9), a successor of
a state in C either maintains the projection within a sub-component,
or corresponds to a successor of the projection, which is a general
abstraction for any type of process composition, e.g., forms of
interleaving, synchronization, etc. Under these constraints, a trace
of C in the form of (6) always projects onto a trace of a sub-
component C0 of C, defined by sn0bC0c, sn1bC0c, sn2bC0c, . . . ,
where n0 = 0 and, for i ≥ 0, ni+1 = min{k > ni : sni

C−→ sk}.
Finally, to reason on program correctness, we assume a set Ψ defin-

ing correctness properties to which programs comply. A correctness
property is a logical predicate over program traces. We require for
ψ ∈ Ψ that ψ holds for every trace of a program.

B. Runtime programming formulation

Runtime patching. A patch is a pair (σ,N), denoted σ/N , where
σ is a path, and N is a component or an undefined value ⊥.

Let P be program, σ/N be a patch, and O = P [σ].
We say σ/N is well-formed for P , if there is a program, de-

noted P [σ/N ], such that:

P [σ/N ] [σ] = N (10)

∀σ0 : σ0 ‖ σ, P [σ/N ] [σ0] = P [σ0] (11)

The conditions express the syntactic effect of a patch, which is to
replace O by N in P (10), while preserving all other paths (11). The
patch is called a component removal if N = ⊥, a component addition
if O = ⊥, and a component replacement otherwise (O,N 6= ⊥).

We say σ/N has a defined semantic effect s
σ/N−→ s′ between s ∈

states(P ) and s′ ∈ states(P [σ/N ]) under the following condi-
tions:

O 6= ⊥ ⇒ sbOc ∈ qstates(O) (12)

N 6= ⊥ ⇒ s′bNc ∈ init(N) (13)

C ∈ P −O ⇒ sbCc = s′bCc (14)
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Thus, semantic effect requires that: state s is quiescent for the
processes of O (12), except if O is undefined (the component addition
sub-case); state s′ defines a valid initial state for N (13), except if N
is undefined (component removal); and state s′ preserves the state of
processes of components in P −O from s (14).

We say a well-formed patch σ/N over P is feasible over P , if the
execution of P always eventually leads to conditions for semantic
effect of σ/N i.e., more formally,

∀s0 ∈ States(P ), ∃s, s′ : s0
P−→ . . .

P−→ s ∧ s σ/N−→ s′

Finally, we say a feasible patch σ/N over P is model-preserving,
and write σ/N ∈ patches(P ), if every sequence of the form

s0, s1, s2, . . . : · σ/N−→ s0 ∧ ∀i ≥ 0, si
P [σ/N ]−→ si+1 ,

called a patch-induced trace for σ/N over P , verifies the properties
of correctness Ψ in place for program traces, i.e.,
∀ψ ∈ Ψ, ψ(s0, s1, s2, . . . ) (15)

The notion of patch decomposition can be subsequently formalized
as follows. Given patch σ/N over program P , we say σ/N is
decomposable, and write σ/N ∈ dpatches(P ), if there are patches
σ1/N1 and σ2/N2, such that (in line with Fig. 12):

P [σ1/N1][σ2/N2] = P [σ/N ] (16)

σ1/N1 ∈ patches(P ) ∪ dpatches(P ) (17)

σ2/N2 ∈ patches(P [σ1/N1]) (18)

σ1 ‖ σ2 ∨ (σ1 = σ2 = σ ∧N1 = ⊥) (19)
That is, σ1/N1 and σ2/N2, applied in this order: yield the same
syntactic effect of P [σ/N ] (16); are decomposable or model-
preserving (17) and model-preserving respectively (18); and affect
concurrent program paths (19), unless the decomposition reflects a
component replacement broken-down in the component’s removal
followed by its addition (N1 = σ/⊥ over P , N2 = σ/N
over P [σ/⊥]). Note that conditions (16), (18), and (19) imply a
finite recursion over (17).

Runtime patcher. A runtime patcher P is a tuple
(states(P), init(P),

P−→, P=⇒)

defined by: a state domain states(P); an initial state domain
init(P) ⊆ states(P); a labelled successor relation ŝ

P−→
P,s

ŝ′

that can be defined for ŝ, ŝ′ ∈ states(P), P ∈ Programs, and
s ∈ states(P ), indicating ŝ′ is a successor of ŝ by observation of
state s of program P ; and a patching relation s P

=⇒
P,σ/N,ŝ

s′ that can be

defined for ŝ ∈ states(P), P ∈ Programs, σ/N ∈ patches(P ),

and s, s′ : s
σ/N−→ s′, indicating patcher state ŝ can induce the stated

patch effect over program P .

Runtime programming system. We express the execution of a
runtime programming system, through the notions of runtime pro-
gramming state and runtime programming trace, as follows.

A runtime programming state has the form r = (P, s, ŝ), where
P is a program, s is a state of P , and ŝ is a state of a patcher
P . A runtime programming trace is defined as a sequence of
runtime programming states r0, r1, r2, . . . where r0 ∈ Programs×
init(P0) × init(P), and for all i ≥ 0 ri

rp−→ ri+1. The
rp−→

transition relation is defined over runtime programming states by the
following operational semantics rules:

s
P−→ s′

(P, s, ŝ)
rp−→ (P, s′, ŝ)

(20)
ŝ
P−→
P,s

ŝ′

(P, s, ŝ)
rp−→ (P, s, ŝ′)

(21)

s
P

=⇒
P,σ/N,ŝ

s′ ŝ
P−→

P [σ/N ],s′
ŝ′

(P, s, ŝ)
rp−→ (P [σ/N ], s′, ŝ′)

(22)

Progress is thus expressed in a runtime programming trace in one of
three ways: a transition of the running program (20), a transition of
the patcher (21), or a synchronization between patcher and program,
whereby the program is modified in accordance to a patch induced by
the patcher (22). The execution of a patcher and a running program
are interleaved, except for synchronized patch effect. This in line with
the scheme of Fig. 9.

Thus, a runtime programming trace has an associated
sequence of programs P0, P1 = P0 [σ0/N0], P2 =
P1 [σ1/N1], . . . , and a corresponding program state sequence
s0, . . . , s

′
0, s1, . . . , s

′
1, s2, . . . , s

′
2, . . . , such that si, . . . , s′i

are traces (for i = 0) or patch-induced traces (for i > 0) of Pi,
and s′i

σi/Ni−→ si+1, i ≥ 0. The definition of runtime patch effect,
comprising conditions (12)–(14) implies by construction that proper
quiescence, initialization, and isolation of patch effect, are observed
when s′i

σi/Ni−→ si+1, i ≥ 0. Additionally, the model-preserving
condition (15) ensures correctness of operation for patch-induced
traces si, . . . , s′i, ∀i > 0.

C. Patch compilation
We consider patch compilation comprises a set of assertions or

actions Aspects, called compilation aspects, that relate to the notion
of model-preserving patch as follows:

[ ∀φ ∈ Aspects, P [σ/N ] |= φ ] =⇒ σ/N ∈ patches(P ).

That is, if all compilation aspects are established for P [σ/N ], then
σ/N is a model-preserving patch for P . An implication, rather than
an equivalence above, acknowledges that patch compilation may be
approximate, i.e., not recognize all model-preserving patches.

Per each φ ∈ Aspects, an incremental compilation strategy is
defined as a tuple I(φ) = (ϕφ,Dφ, Cφ), such that: ϕφ is a logical
predicate over components called the incremental effort; Dφ is a
mapping Dφ : Programs× Components×Σ∗ → 2Components, called
the dependency context, such that given P , N and σ, Dφ(P,N, σ)
is a set of components in P [σ/N ], and may also include O =
P [σ]; Cφ is a function with the same arguments as Dφ, called the
compilation cost, that characterizes the time complexity for some
algorithm that asserts ϕφ over Dφ(P,N, σ), i.e., abusing notation as
in Fig. 13, Cφ(P,N, σ) = O (Dφ(P,N, σ) |= ϕφ); and φ, ϕφ and
Dφ are related by the following logical inference (again the same as
in Fig. 13):

P |= φ Dφ(P,N, σ) |= ϕφ
P [σ/N ] |= φ

That is, if P is a program for which φ holds, and ϕφ holds for
Dφ(P,N, σ), then φ also holds for P [σ/N ]. Note that we may
have that Dφ(P,N, σ) = ∅, meaning no incremental compilation
is required. This special case may occur when a patch preserves
φ from P , or φ is implied by some other compilation aspects that
operate in precedence in the context of compilation (e.g., as in
Section V for refinement-level HTL components).

VII. RELATED WORK

This paper builds on prior work. In [13], some of the ideas in
this paper were discussed in preliminary form, considering only the
particular context of real-time systems and HTL. The formulation
here is more general, for abstract component-based systems, and
HTL is strictly a case-study instantiation of the general framework.
In [12], runtime patching was mentioned as a possible application of
incremental HTL compilation, but the necessary extensions were not
discussed. Our technical report [15] provides complementary detail
on some aspects of this paper, and the extended abstract in [11]
summarizes its overall proposal in short form.

Models for runtime software change have long been considered.
Influential work can be found in [19], [22], [24], [26]. Even if
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these proposals have a high degree of generality, they still take into
account elaborate notions of program interaction and specification,
e.g., dependencies, communication, or specific traits for quiescence
of components. We consider comparatively simpler abstract notions
of component composition, initialization, and quiescence. Our point
was to capture an abstract view of compositionality in component-
based programs and formulate runtime programming over it.

The problem of verifying and integrating runtime software changes
has led to a wide range of specialized compilation techniques, e.g.,
automatic derivation of patches from source code repositories [2], ver-
ified code generation [30]–[32], type safety inference for patches [1],
[6], [34], or inference of “contextual side-effects” in concurrent
programs [1], [33]. Our interest was to put forward a framework such
that these techniques can in principle be characterized in incremental,
scalable form. We find that other principled abstractions can also be
important for scalable runtime programming, such as proof-carrying
code for runtime certified compilation [42], or modular frameworks
for component-based systems [35], [36].

There is active interest in forms of runtime patching for real-
time systems, e.g. [43]–[47]. Earlier influential work can be found
in [5], with regard to assurances of dependability, and in [29],
for a characterization of component design and timing issues in
component re-configuration [29]. Mode change protocols [27] are
also highly relevant by providing a formulation to reason on aspects
such as schedulability for a runtime switch in a real-time system. As
discussed for HTL, asserting schedulability of a real-time program
can be an unscalable process, but principled methodologies can be
used to overcome the problem [38]–[40]. Code generation may also
not scale and modular generation schemes should be used in this
regard, e.g., as in [23] (for HTL) or [37].

VIII. CONCLUSION

We proposed runtime programming, a methodology for flexible
software design defined by recurrent runtime patches to a program.
The presentation comprised a formulation of concepts, its corre-
sponding formalization, and a case-study instantiation for the HTL
language. The two core contributions were the concept of model-
preserving runtime patch, and a framework for incremental patch
compilation. We believe these are principled approaches to reason on
runtime software change in non-disruptive manner, and characterize
its scalability. The HTL case-study illustrated the possibilities and
difficulties of the runtime programming methodology, with the overall
conclusion that our methodology can indeed be used for flexible soft-
ware change at runtime, for reasonable degrees of compositionality
in program specification and scalability in program compilation.
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