— reROUTEable —

June 29, 2006

http://www.cs.uni-salzburg.at/"~ck/wiki/index.php?n=TCS-Summer-2006.ReRouteable

Kast, Stadler, Wagner reROUTEable


http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=TCS-Summer-2006.ReRouteable

Overview

Introduction

Syntactical Definitions

Semantics

Algorithms
Conclusion
Further Work

Kast, Stadler, Wagner reROUTEable



Introduction

e reMOTEable
e aims
e formalization of the agent system reMOTEable
e focus on enhancing the command-set (by reduction)
e the computation model is a formalized Virtual Machine
e proving by applying algorithms on the model

Kast, Stadler, Wagner reROUTEable



Network

Agent

Further Definitions
Instruction Sets

Syntactical Definitions

Syntactical Definitions

A network Nw (N, C) is a 2-tuple, where:
e N is the set of all nodes

e C are the connections: C := {{a, b}|a, b € N A a is connected
with b}

Kast, Stadler, Wagner reROUTEable



Network

Agen

Further Definitions
Instruction Sets

Syntactical Definitions

An Agent is an 4-tuple (PGM, PC, MEM, CNODE), where:
e PGM is the program of the agent.
e PC is the programcounter: PC € N.
e MEM is the memory of the agent.

e CNODE € N: the node on which the agent is currently
residing. Note an agent can only be active in exactly one node
at a certain time: 3ln € N : Va € A.

A is the set of all agents.

Kast, Stadler, Wagner reROUTEable



Syntactical Definitions

urther Definitions
Instruction Sets

e A program PGM is a n-tuple:
CMD" = CMD x CMD x CMD --- x CMD
n—times
e The memory MEM consists of three parts: pathMem,
tempMem, targetMem.
Where all parts are n-tuples of nodes.
e *(x):={y € Nj{x,y e N}A € C}
Predicate visited(a, n) is true if the agent a, has visited n.

Kast, Stadler, Wagner reROUTEable



Syntactical Definitions

Definitions
Instruction Sets

Possible instruction sets:
e | :={ PUSH, POP, MOVE, CMPJMP, LOADNEXT }
without replication.
e [, :={ PUSH, POP, MOVE, CMPJMP, MOVEREPLICATE }
for flooding.

Kast, Stadler, Wagner reROUTEable



Instruc
Instruc

Semantics

e Formalized Virtual Machine

e Access function for tuples: Gn(x1,x2,...,Xn—1,%n) := Xn G
stands for grab.

Kast, Stadler, Wagner reROUTEable



Instructions
Instructions cont'd

Semantics

PUSH(A,B)={ B :(b1,ba,...,by) — B: (b1, by, ..., by, Ga(A))

POP(B) = { B: (bl,bg,...,bn) — B : (bl,bg,...,bn_l)

CMPJIMP(A, B,c) = { Gu(A) = Go(B), PC+—c

B = ®7 A— A \ {athis}

MOVE(B) = { otherwise, CNODE — Gp(B)

Kast, Stadler, Wagner reROUTEable



. Instructions
Semantics

Instructions cont'd

LN ... LOADNEXT; MR ... MOVEREPLICATE

LN(B) = Ix € % (CNODE) A —visited(x), B :(bi,...,by) — B:(b1,...,bn,x)
] otherwise, B:(bi,...,by)— B:(b1,...,bn_1)

with (ao/d.PGM, aO/d.PC, ao/d.MEM, ao/d.x)
A\ aoy

Vx € %(CNODE) A —visited(x) : generate anew € A
MR(B) =

Kast, Stadler, Wagner reROUTEable



Algorithm without Replication

Alg w e e
Algorithms Algorithm with Replication

010 PUSH target, targetMem

020 PUSH currentNode, pathMem

030 CMPJMP currentNode, targetMem, 80
040 LOADNEXT pathMem

050 MOVE pathMem

060 CMPJMP 0,0,30

070 PUSH currentNode, tempMem

080 POP pathMem

090 MOVE pathMem

100 CMPJMP 0,0,10

Kast, Stadler, Wagner reROUTEable



Algorithm without Replication
Algorithm with Replication

Algorithms

010 PUSH target, targetMem

020 PUSH currentNode, pathMem

030 CMPJMP currentNode, targetMem, 60
040 MOVEREPLICATE pathMem

050 CMPJMP 0,0,20

060 PUSH currentNode, tempMem

070 POP pathMem

080 MOVE pathMem

090 CMPJMP 0,0,10

Kast, Stadler, Wagner reROUTEable



Conclusion

e computational model works for two algorithms

e 5 instructions sufficient for routing (compared 15 instructions
in Remoteable)

e two complex instructions requiring logic in Node (one for each
algorithm)

Kast, Stadler, Wagner reROUTEable



Further Work

e is there a simpler model (trade off Memory Complexity vs
additonal Commands)?

e express LoadNext with PUSH, POP, MOVE, CMPJUMP

e evaluate extendability of routing model to all functionalities of
ReMOTEable

Kast, Stadler, Wagner reROUTEable



	Overview
	Introduction
	Syntactical Definitions
	
	
	
	

	Semantics
	
	

	Algorithms
	
	

	Conclusion
	Further Work

