
VP Theory of Computation

Bernhard Kast - 0120422

Horst Stadler - 0120373

Andreas Wagner - 0120552

July 13, 2006

1

VP Theory of Computation reROUTEable

Contents

1 Introduction 3

1.1 reMOTEable . 3
1.2 Aim . 3
1.3 Di�erent Approaches . 3

1.3.1 Automaton Approach . 3
1.3.2 Reverse Formalization Approach . 4

2 Syntactical De�nitions 4

2.1 Network . 4
2.2 Agent . 4

2.2.1 PGM - Program . 4
2.2.2 PC - Programcounter . 4
2.2.3 CMD - Command . 4
2.2.4 INSTRUCTION . 5
2.2.5 MEM - Memory . 5

2.3 F - Neighbour . 5

3 Semantics 5

3.1 Access function for memory . 5
3.2 PUSH . 5
3.3 POP . 5
3.4 BEQ . 5
3.5 LOADNEXT . 5
3.6 MOVE . 6
3.7 MOVEREPLICATE . 6

4 Algorithms 6

4.1 Algorithm without Replication . 6
4.2 Algorithm with Replication . 6

5 Conclusion 6

6 LOADNEXT 7

7 Further Work 7

8 Bibliography 7

2 Bernhard Kast, Horst Stadler, Andreas Wagner

VP Theory of Computation reROUTEable

1 Introduction

This is a follow-up project of the reMOTEable project1 of the Embedded Software Engineering class
in winter term 2005/2006. Hence a short summary of the reMOTEable Project should provide the
appropriate background.

1.1 reMOTEable

The reMOTEable project is a distributed systems that supports multiple agents in a network consist-
ing of multiple nodes that are connected via wireless communication. The system supports mobile
code, the source code, the whole state and the memory of an agent can be transmitted, hence it
provides strong mobility.
Each node consists of one mote2 that runs a virtual machine that can support numerous agents.

The development of the reMOTEable system drew up the question about how to realize routing in
such an �environment�. A so called route acquiring agent (RAA) was developed, which is an agent
that �oods the network at each node it replicates for every unvisited neighour as long as it does not
reached the target yet or detects a circle.
It should be noted, that traditional routing schemes are not appropriate for remote sensor networks.3

1.2 Aim

The aim of this project is a formalization of the agent system reMOTEable with the main focus to
enhance the command-set, especially to reduce the command-set to the smallest possible amount
necessary to implement routing algorithms.

Besides the formalization of the network, we focused on building a formal model of the agent and the
necessary computation model (a formalized Virtual Machine).

To prove our computation model we have implemented sample routing algorithms in order to show
that our system provides the su�cient operations, necessary to conduct such operations.

1.3 Di�erent Approaches

During the project we tried many di�erent approaches, whereas only a few were explored in more
depth, these were:

1.3.1 Automaton Approach

At the beginning of the project the idea emerged to reduce the problem of route �nding into the
formal model of stack automatons. With the following assumptions:

• The network with its nodes was considered as a language.

• The agent is a stack automaton.

• The possible routes are the accepted words of the automaton.

Several Problems showed up with is approach (e.g. modeling the minmal required instruction-set).

1http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=ESE-Winter-2005.ReMOTEable
2A mote is a hardware device with very limited processing and storing capabilities, but can connect with others

motes via wireless communication.
3 Braginsky, David; Estrin, Deborah: Rumor Routing Algorithm For Sensor Networks.

3 Bernhard Kast, Horst Stadler, Andreas Wagner

http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=ESE-Winter-2005.ReMOTEable

VP Theory of Computation reROUTEable

1.3.2 Reverse Formalization Approach

Out of the consisting reMOTEable project a formalization and reduction of the instruction-set was
done. Starting with a formalization of the network, neighbours, ... a model for the agent has been
formalized with the minimal instruction-set required for routing algorithms. As a de�nition of the
semantics of each command a formal virtual machine was build.
This paper will focus on this approach.

2 Syntactical De�nitions

2.1 Network

A network Nw (N , C) is a 2-tuple, where:

• N is the set of all nodes,

• C are the connections: C := {{a, b}|a, b ∈ N ∧ a is connected with b}.

2.2 Agent

An agent is an 4-tuple (PGM , PC, MEM , CNODE), where:

• PGM is the program of the agent,

• PC is the programcounter: PC ∈ N,

• MEM is the memory of the agent,

• CNODE ∈ N: the node on which the agent is currently residing. An agent can only be active
in exactly one node at a certain time.

A is the set of all agents.

2.2.1 PGM - Program

A program is a Graph G = (CMDs, TRANSITIONS), where the vertices (CMDs) are the set of
commands and the edges represent the transitions to the next command. The CMDs are instances
of the INSTRUCTION type set and the TRANSITIONS are the set of all possible transitions in
the graph where every vertex has exactly one outgoing edge except:

• the last vertex, which has only incoming edge,

• for all vertices of the type BEQ, which always have two outgoing edges.

2.2.2 PC - Programcounter

PC is the programcounter: PC ∈ N.
0 ≤ PC ≤ n, n is the number of program commands.

2.2.3 CMD - Command

A CMD is a 2-tuple (INSTRUCTION , ARGUMENTS), where:

• INSTRUCTION is the set of all elementary instructions,

• ARGUMENTS is the tuple of arguments.

4 Bernhard Kast, Horst Stadler, Andreas Wagner

VP Theory of Computation reROUTEable

2.2.4 INSTRUCTION

The set INSTRUCTION de�nes the minimal required instruction set of the agent. We provided
two di�erent sets, once which enables the use of replication (for �ooding agents) and once which
provides an intelligent instruction that enables traversing the whole net without �ooding it. Hence
it is possible to choose the more appropriate instruction-set and implement di�erent algorithms with it.

Possible Sets:

• INSTRUCTION1 := { PUSH, POP, MOVE, CMPJMP, LOADNEXT } without replication.

• INSTRUCTION2 := { PUSH, POP, MOVE, CMPJMP, MOVEREPLICATE } for �ooding.

2.2.5 MEM - Memory

MEM consists of three parts:

• pathMem,

• tempMem,

• targetMem.

Where all parts are strings and each character is representing a node. 4

2.3 F - Neighbour

F(x) := {y ∈ N|x ∈ N ∧ {x, y} ∈ C}
Predicate visited(a, n) is true if the agent a, has visited n.

3 Semantics

3.1 Access function for memory

G(x1x2 . . . xn−1xn) := xn (G stands for grab)

3.2 PUSH

PUSH(A,B) =
{

B : (b1b2 . . . bn) 7−→ B : (b1b2 . . . bn, G(A)), PC 7−→ PC + 1

3.3 POP

POP (B) =
{

B : (b1b2 . . . bn) 7−→ B : (b1b2 . . . bn−1), PC 7−→ PC + 1

3.4 BEQ

BEQ(A,B, c) =
{

Gn(A) = Gn(B), PC 7−→ c
otherwise, PC 7−→ PC + 1

3.5 LOADNEXT

LOADNEXT (B) =
{

∃x ∈ F(CNODE) ∧ ¬visited(x), B : (b1b2 . . . bn) 7−→ B : (b1b2 . . . bnx), PC 7−→ PC + 1
otherwise, B : (b1b2 . . . bn) 7−→ B : (b1b2 . . . bn−1), PC 7−→ PC + 1

4For the targetMem it is su�cient to have only one character

5 Bernhard Kast, Horst Stadler, Andreas Wagner

VP Theory of Computation reROUTEable

3.6 MOVE

MOV E(B) =
{

B = ∅, A 7−→ A \ {athis}, PC 7−→ PC + 1
otherwise, CNODE 7−→ Gn(B), PC 7−→ PC + 1

3.7 MOVEREPLICATE

MOV EREPLICATE(B) =

 ∀x ∈ F(CNODE) ∧ ¬visited(x) : generate anew ∈ A
with (aold.PGM, aold.PC, aold.MEM, aold.x)
A \ aold, PC 7−→ PC + 1

4 Algorithms

4.1 Algorithm without Replication

010 PUSH target, targetMem

020 PUSH currentNode, pathMem

030 BEQ currentNode, targetMem, 80

040 LOADNEXT pathMem

050 MOVE pathMem

060 BEQ 0,0,30

070 PUSH currentNode, tempMem

080 MOVE pathMem

090 POP pathMem

100 BEQ 0,0,10

4.2 Algorithm with Replication

010 PUSH target, targetMem

020 PUSH currentNode, pathMem

030 BEQ currentNode, targetMem, 60

040 MOVEREPLICATE pathMem

050 BEQ 0,0,20

060 PUSH currentNode, tempMem

070 MOVE pathMem

080 POP pathMem

090 BEQ 0,0,10

5 Conclusion

We formalized a computational model and as a proof we implemented two routing algorithms.

• Algorithm 1 works without replication of the agent. This algorithm �nds every route, including
the shortest one.

• Algorithm 2 uses replication to �ood the network. This algorithm �nds at least one route, if
there exists one.

For both algorithms �ve instructions are su�cient. The original reMOTEable agents have 15 low-
level instructions. These two instruction sets can not be compared, because the reROUTEable agents
are only used for routing. Each of the two algorithms has one complex instruction, requiring more
complex interaction with the node.

6 Bernhard Kast, Horst Stadler, Andreas Wagner

VP Theory of Computation reROUTEable

6 LOADNEXT

In order to further improve the model, we are working on the idea of handling the the complex
LOADNEXT command as an subroutine. In detail we would like to express the LOADNEXT
command with the other commands. In this paragraph we do not provide a solution in form of code,
but we evaluate the needed extentions to realize this idea. Two di�erent solutions are discussed.

• An "bruteforce" compare algorithm which requires additional memory capability: Assume a
reduction of the LOADNEXT command to a simple command only returning the list of all
neigbours of a node. An agent would have to store all vistited nodes in memory and compare
this list with the neighbours, if every neighbour of the actual node is already resident in this
memory no further unvisited neighbour exists and the Agent would have to step back to the
previous node. This algorithm could be implemented with the BEQ Instruction.

• Neighbour lists with sorting orders: To avoid additional memory and the countless compare
operations an di�erent approach could be implemented. Every node returns at every time it's
Neighbour list in the same order. The agent only stores the node it currently returns from
on the tempMem (instead of throwing it away like the branch of the current LOADNEXT
command). When the agent returns to a node, it gets the same list of neighbours and because
of the order, it can distinguish from the visited and unvisited neighbours. If there are no more
unvisited nodes it steps back one node in its path.

7 Further Work

Interesting questions:

• Is there a simpler model? (Tradeo� memory complexity vs. additional instructions.)

• Evaluate extendability of routing model to all functionalities of reMOTEable.

• What are the limitations of this model?

8 Bibliography

Hofstätter, Alois; Kast, Bernhard; Stadler, Horst: reMOTEable
http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=ESE-Winter-2005.ReMOTEable

Sipser, Michael: Introduction to the Theory of Computation.

Braginsky, David; Estrin, Deborah: Rumor Routing Algorithm For Sensor Networks.

7 Bernhard Kast, Horst Stadler, Andreas Wagner

http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=ESE-Winter-2005.ReMOTEable

	Introduction
	reMOTEable
	Aim
	Different Approaches
	Automaton Approach
	Reverse Formalization Approach

	Syntactical Definitions
	Network
	Agent
	PGM - Program
	PC - Programcounter
	CMD - Command
	INSTRUCTION
	MEM - Memory

	 - Neighbour

	Semantics
	Access function for memory
	PUSH
	POP
	BEQ
	LOADNEXT
	MOVE
	MOVEREPLICATE

	Algorithms
	Algorithm without Replication
	Algorithm with Replication

	Conclusion
	LOADNEXT
	Further Work
	Bibliography

