
Proofs with ∃-introduction and ∃-
elimination are unnecessarily long and 

cumbersome…

There are alternatives!



Proving an existential 
quantification

if y is not free in P and Q

∃x[x ∊ Z : x3 - 2x - 8 ≥0]To prove

Proof It suffices to find a witness, i.e., an x∊ Z satisfying

                      x3 - 2x - 8 ≥0. 

x = 3  is a witness, since  3 ∊ Z and 33 - 2·3 - 8 = 13 ≥0

Conclusion:  ∃x[x ∊ Z : x3 - 2x - 8 ≥0].
also x = 5 is a witness…



           …
   
(k)     P(a)
           …

(l)      Q(a)
          
           …
         {∃*-intro on (k) and (l)}
(m)    ∃x [P(x) : Q(x)]

(k < m, l < m)

by finding 
a witness

Alternative ∃ introduction

How do we prove an existential quantification?

∃*-introduction

strategy: wait until a witness 
object appears

does not 
always work



Using an existential 
quantification

∃x[x ∊ R :  a - x < 0 < b - x]We know

We can declare an x ∊ Z  (a witness) such that

a - x < 0 < b - x
and use it further in the proof. For example:
      From a - x < 0, we get a < x.
      From b - x > 0, we get x < b.
      Hence, a < b.



Alternative ∃ elimination

How do we use an existential quantification in a proof?

          || ||
   
(k)     ∃x [P(x) : Q(x)]

          || ||

        {∃*-elim on (k)}
(m)    Pick x with P(x) and Q(x)

(k < m)

∃*-elimination

time for an 
example!

we pick a witness

x must be new!



Back to 
Naive Set Theory

Relations



Product of multiple sets
Direct product (Kartesisches Produkt) 
                            A x B = {(x,y) | x ∈ A and y ∈ B}

ordered pairs

(A x B) x C ≠ A x (B x C)

Therefore, we define 
           A x B x C = {(x,y,z) | x ∈ A and y ∈ B and z ∈ C}

In general,  for sets  A1,  A2, ...,  An with n ≥1,  
        
 A1 x A2 x ... x An = ∏1≤ i ≤ n Ai =  {(x1,x2,...,xn) | xi ∈ Ai for 1 ≤ i ≤ n}

ordered pairssequence of 
length n

if Ai = A for all i,
then the product is 

denoted An



Relations

Def.  If A and B are sets, then any subset  R ⊆ A x B      
is a (binary) relation between A and B

Def.  R is a relation on A  if  R ⊆ A x A 

similarly, unary relation 
(subset), n-ary relation...

some relations are special



Special relations
A relation R ⊆ A x A is:

      reflexive          iff     for all a ∈ A, (a,a) ∈ R
      symmetric       iff     for all a,b ∈ A, if (a,b) ∈ R, then (b,a) ∈ R
      transitive         iff     for all a,b,c ∈ A, if (a,b) ∈ R and (b,c) ∈ R,             
                                                           then (a,c) ∈ R
      irreflexive        iff     for all a ∈ A, (a,a) ∉ R
      antisymmetric  iff     for all a,b ∈ A, if (a,b) ∈ R and (b,a) ∈ R
                                                         then a = b 
      asymmetric      iff     for all a,b ∈ A, if (a,b) ∈ R, then (b,a) ∉ R
      total                iff     for all a,b ∈ A, (a,b) ∈ R or (b,a) ∈ R

(infix) notation aRb for (a,b) ∈ R



Special relations
A relation R on A, i.e., R ⊆ A x A is:

 equivalence      iff     R is reflexive, symmetric, and transitive
 
 partial order    iff     R is reflexive, antisymmetric, and transitive
 
 strict order      iff     R is irreflexive and transitive
 
 preorder         iff     R is reflexive and transitive
 
 total (linear) 
 order              iff     R is a total partial order



Obvious properties

1. Every partial order is a preorder.
 
2. Every total order is a partial order.

3. Every total order is a preorder.
 
4. If R ⊆ A x A  is a relation such that there are a, b ∈ A with 
                        a ≠ b, (a,b) ∈ R and (b,a) ∈ R, 
   then R is not a partial order, nor a total order, nor a strict      
   order.


