
Derivations / Reasoning



Limitations of proofs by 
calculation

if y is not free in P and Q

Proofs by calculation are formal and well-structured, but 
often undirected and not particularly intuitive.

Example

we can prove this 
more intuitively by 

reasoning

P ∧ (P∨Q) = (P∨F) ∧(P∨Q)
                        = P∨(F ∧Q)
                        = P ∨ F
                        = P

val

val

val

val

P ∧ (P∨Q) = P   P ∧ (P∨Q) ⇔ P = T   
val val

Conclusions



An example of a  mathematical 
proof

if y is not free in P and Q

If x2 is even, then x is even (x ∊ Z).Theorem

Proof Let x∊ Z be such that x2 is even. 

We need to prove that x is even too.

Assume that x is odd, towards a contradiction.

If x is odd than x = 2y+1 for some y ∊ Z.

Then x2 = (2y+1)2 = 4y2 + 4y + 1 = 2(2y2 + 2y) + 1
and 2y2 + 2y ∊ Z.

So,  x2  is odd too,  and we have a contradiction.

(sub)goal

generating hypothesis

pure hypothesis

conclusion

Thanks to Bas Luttik



Exposing logical structure

if y is not free in P and Q

If x2 is even, then x is even (x ∊ Z).Theorem

Proof

Thanks to Bas Luttik

Let x∊ Z  
     Assume x2 is even. 
          Assume that x is odd.

                   Then x = 2y+1 for some y ∊ Z.

                   Then x2 = (2y+1)2 = 4y2 + 4y + 1 =             
                            2(2y2 + 2y) + 1 and 2y2 + 2y ∊ Z.

                  So, x2  is odd

              a contradiction.
      So, x is even

(sub)goal

generating hypothesis

pure hypothesis

conclusion



Single inference rule

Q is a correct conclusion from n premises P1, .. , Pn

iff
(P1∧ P2 ∧…∧ Pn) ⊨ Q

val

Q holds
unconditionally

If n=0, then P1 ∧ P2 ∧… ∧ Pn =  T
val

Note that T ⊨ Q means that Q = T
val



Derivation

Q is a correct conclusion from n premises P1, .. , Pn

iff
(P1∧ P2 ∧…∧ Pn) ⊨ Q

val

a formal system
based on the single 

inference rule
for proofs that closely

follow our
intuitive reasoning

Two types of inference rules:
   
elimination rules 

introduction rules

(particularly useful) 
instances of the single 

inference rule

for drawing 
conclusions out of 

premises

for simplifying goals

and one new 
special rule!



Conjunction elimination

How do we use a conjunction in a proof?

          || ||
   
(k)     P∧Q

          || ||

         {∧-elim on (k)}
(m)    P

(k < m)

          || ||
   
(k)     P∧Q

          || ||

         {∧-elim on (k)}
(m)    Q

(k < m)

∧-elimination

P∧Q ⊨ P

P∧Q ⊨ Q

val

val



Implication elimination

How do we use an implication in a proof? P⇒Q ⊨  ???

(P⇒Q) ∧ P ⊨ Q

val

val

          || ||
   
(k)     P⇒Q

          || ||

(l)      P

          || ||
         {⇒-elim on (k) and (l)}

(m)    Q

(k < m, l < m)

⇒-elimination



           …
   
(k)     P
           …

(l)      Q
          
           …
         {∧-intro on (k) and (l)}
(m)    P∧Q

(k < m, l < m)

P∧Q ⊨ P∧Q
val

Conjunction introduction

How do we prove a conjunction?

∧-introduction



truly new
and

necessary for 
reasoning with 

hypothesis

Implication introduction

How do we prove an implication?

⇒-introduction
           …
         {Assume}
(k)     P
           
          …

(l-1)   Q
         {⇒-intro on (k) and (l-1)}

(l)   P⇒Q

flag   shows the validity of a 
hypothesis

time for an 
example!



Negation introduction

How do we prove a negation?

¬-introduction
           …
         {Assume}
(k)     P
           
          …

(l-1)   F
         {¬-intro on (k) and (l-1)}
(l)   ¬P

¬ P = P ⇒ F
val

⇒-intro



Negation elimination

How do we use a negation in a proof?

P ∧ ¬P ⊨ Fval

          || ||
   
(k)     P
          || ||

(l)      ¬P

          || ||
         {¬-elim on (k) and (l)}
(m)    F

(k < m, l < m)

¬-elimination

time for an 
example!



F introduction

How do we prove F?

F-introduction

P ∧ ¬P ⊨ Fval

          …
   
(k)     P
          …

(l)      ¬P

          …
         {F-intro on (k) and (l)}
(m)    F

(k < m, l < m)

the same as ¬-elim
only intended bottom-up



F elimination

How do we use F in a proof? it’s very useful!

F ⊨ P
val

          || ||
   
(k)     F
          
          || ||

        {F-elim on (k)}
(m)    P

(k < m)

F-elimination



Double negation introduction

How do we prove ¬¬?

¬¬-introduction

P ⊨ ¬¬Pval

          …
   
(k)     P
          …
         {¬¬-intro on (k)}
(m)    ¬¬P

(k < m)



Double negation elimination

How do we use ¬¬ in a proof?

          || ||
   
(k)     ¬¬P
          
          || ||

        {¬¬-elim on (k)}
(m)    P

(k < m)

¬¬-elimination
¬¬P ⊨ Pval



Proof by contradiction

if y is not free in P and Q

If x2 is even, then x is even (x ∊ Z).Theorem

Proof

Thanks to Bas Luttik

Let x∊ Z  
     Assume x2 is even. 
          Assume that x is odd.

                   Then x = 2y+1 for some y ∊ Z.

                   Then x2 = (2y+1)2 = 4y2 + 4y + 1 =             
                            2(2y2 + 2y) + 1 and 2y2 + 2y ∊ Z.

                  So, x2  is odd

              a contradiction.
      So, x is even

(sub)goal

generating hypothesis

pure hypothesis

conclusion



Proof by contradiction

How do we prove P by a contradiction?

   proof by 
   contradiction

¬P ⇒ F ⊨ ¬¬P ⊨ Pval

        {Assume}
(k)     ¬P
           
          …

(l-1)     F
        {¬-intro on (k) and (l-1)}
(l)     ¬¬P
        {¬¬-elim on (l)}
(l+1)    P

(k < m)

val

¬-intro

¬¬-elim

time for an 
example!



Disjunction introduction

How do we prove a disjunction?

∨-introduction
           …
         {Assume}
(k)     ¬P
           
          …

(l-1)   Q
         {∨-intro on (k) and (l-1)}
(l)   P∨Q

¬P⇒Q ⊨ P∨Q

¬Q⇒P ⊨ P∨Q

val

val

⇒-intro



Disjunction introduction

How do we prove a disjunction?

∨-introduction
           …
         {Assume}
(k)     ¬Q
           
          …

(l-1)   P
         {∨-intro on (k) and (l-1)}
(l)   P∨Q

¬P⇒Q ⊨ P∨Q

¬Q⇒P ⊨ P∨Q

val

val

⇒-intro



Disjunction elimination

How do we use a disjunction in a proof?

          || ||
   
(k)     P∨Q
          
          || ||

        {∨-elim on (k)}
(m)    ¬P⇒Q

(k < m)

∨-elimination

P ∨ Q ⊨ ¬P⇒Q

P ∨ Q ⊨ ¬Q⇒P

val

val



Disjunction elimination

How do we use a disjunction in a proof?

          || ||
   
(k)     P∨Q
          
          || ||

        {∨-elim on (k)}
(m)    ¬Q⇒P

(k < m)

∨-elimination

P ∨ Q ⊨ ¬P⇒Q

P ∨ Q ⊨ ¬Q⇒P

val

val



Proof by case distinction

How do we prove R by a case distinction?

        || ||

(k)     P∨Q
           
        || ||

(l)     P⇒R

        
         || ||

(m)   Q⇒R

        
        || ||

        {case-dist on (k), (l), (m)}
(n)    R

(k < n, l< n, m<n)

   proof by 
   case distinction

(P∨Q)⋀(P⇒R)∧(Q⇒R) ⊨ R
val



Bi-implication introduction

How do we prove a bi-implication?

⇔-introduction

(P⇒Q)∧(Q⇒P) ⊨ P⇔Qval

           …
   
(k)     P⇒Q

           …

(l)      Q⇒P

          
           …
         {⇔-intro on (k) and (l)}

(m)    P⇔Q

(k < m, l < m)

∧-intro



Bi-implication elimination

How do we use a bi-implication in a proof?

⇔-elimination P⇔Q ⊨ (P⇒Q)∧(Q⇒P)
val

          || ||
   
(k)     P⇔Q

          || ||

         {⇔-elim on (k)}

(m)    P⇒Q

(k < m)

          || ||
   
(k)     P⇔Q

          || ||

         {⇔-elim on (k)}

(m)    Q⇒P

(k < m)

∧-elim



Derivations / Reasoning
with quantifiers



Proving a universal 
quantification

if y is not free in P and Q

∀x[x ∊ Z ∧ x ≥2 : x2 - 2x ≥0]To prove

Proof Let x∊ Z be arbitrary and assume that x≥2. 

Then, for this particular x, it holds that 
               x2 - 2x = x(x-2) ≥0  (Why?) 

Conclusion:  ∀x[x ∊ Z ∧ x ≥2 : x2 - 2x ≥0].



similar to 
⇒-intro

with
generating 
hypothesis

∀ introduction

How do we prove a universal quantification?

∀-introduction
           …
         {Assume}
(k)     var x; P(x)
           
          …

(l-1)   Q(x)
         {∀-intro on (k) and (l-1)}
(l)   ∀x[P(x) : Q(x)]

flag   shows the validity of a 
hypothesis



Using a universal quantification

∀x[x ∊ Z ∧ x ≥2 : x2 - 2x ≥0]We know

Whenever we encounter an a ∊ Z such that a≥2, 

we can conclude that a2 - 2a ≥0.

For example, (523872 - 2·52387) ≥0 
since  52387 ∊ Z and 52387 ≥2.



∀ elimination

How do we use a universal quantification in a proof? similar to
implication 

but we need 
a witness          || ||

   
(k)     ∀x[P(x) : Q(x)]
          
          || ||

(l)      P(a)

          || ||
         {∀-elim on (k) and (l)}
(m)    Q(a)

(k < m, l < m)

∀-elimination

a is 
an object 

(variable, number,..) 
which is “known” in line 

(l)

the same “a” from line (l)time for an 
example!



∃ introduction

How do we prove an existential quantification?

∃-introduction
           …
         {Assume}
(k)     ∀x[P(x) : ¬Q(x)]
           
          …

(l-1)   F
         {∃-intro on (k) and (l-1)}
(l)   ∃x [P(x) : Q(x)]

¬ ∀x[P(x):¬Q(x)]  ⊨
∃x [P(x) : Q(x)]

val

and ¬-intro



∃ elimination

How do we use an existential quantification in a proof?

          || ||
   
(k)     ∃x [P(x) : Q(x)]

          || ||

(l)      ∀x[P(x):  ¬Q(x)]

          || ||
         {∃-elim on (k) and (l)}
(m)    F

(k < m, l < m)

∃-elimination

time for an 
example!

∃x [P(x) : Q(x)]  ⊨
¬ ∀x[P(x):¬Q(x)]

val

and ¬-
elimination



Proofs with ∃-introduction and ∃-
elimination are unnecessarily long and 

cumbersome…

There are alternatives!



Proving an existential 
quantification

if y is not free in P and Q

∃x[x ∊ Z : x3 - 2x - 8 ≥0]To prove

Proof It suffices to find a witness, i.e., an x∊ Z satisfying

                      x3 - 2x - 8 ≥0. 

x = 3  is a witness, since  3 ∊ Z and 33 - 2·3 - 8 = 13 ≥0

Conclusion:  ∃x[x ∊ Z : x3 - 2x - 8 ≥0].
also x = 5 is a witness…



           …
   
(k)     P(a)
           …

(l)      Q(a)
          
           …
         {∃*-intro on (k) and (l)}
(m)    ∃x [P(x) : Q(x)]

(k < m, l < m)

by finding 
a witness

Alternative ∃ introduction

How do we prove an existential quantification?

∃*-introduction

strategy: wait until a witness 
object appears

does not 
always work



Using an existential 
quantification

∃x[x ∊ R :  a - x < 0 < b - x]We know

We can declare an x ∊ Z  (a witness) such that

a - x < 0 < b - x
and use it further in the proof. For example:
      From a - x < 0, we get a < x.
      From b - x > 0, we get x < b.
      Hence, a < b.



Alternative ∃ elimination

How do we use an existential quantification in a proof?

          || ||
   
(k)     ∃x [P(x) : Q(x)]

          || ||

        {∃*-elim on (k)}
(m)    Pick x with P(x) and Q(x)

(k < m)

∃*-elimination

time for an 
example!

we pick a witness

x must be new!


