
The structure of natural 
numbers

is helpful for proving 
properties 

∀n[n∈N: P(n)]



The structure of natural 
numbers

if y is not free in P and Q

On natural numbers we can define a notion of a successor, a mapping

s: N → N

by s(n) = n+1

The successor mapping imposes a structure on the set  that enables us to 
count:

1) there is a starting natural number 0
2) for every natural number n, there is a next natural number s(n) = n+1. 



(Some) Peano Axioms

if y is not free in P and Q

Important properties

(1) Different natural numbers have different successors:

∀n,m [n,m ∈ N : s(m) = s(n) ⇒ m = n] stated positively

s is injective!

(2) 0 is not a successor:  ∀n [n ∈ N : ¬ (s(n) = 0) ]

(3) All natural numbers except 0 are successors:

∀n[n ∈ N ∧ ¬(n = 0) : ∃m[m ∈ N :  n = s(m)]



There is more to it - induction
Imagine an infinite sequence of dominos

D0 D1 D2 Di+1Di

If we know that
1. D0 falls
2. The dominos are close enough together so that if Di falls, then Di+1 falls (for 

all i ∈ N)

Then we can conclude that every domino Dn (n ∈ N) falls!

induction



Induction

if y is not free in P and Q

P(0) ∧ ∀i [i ∈ N :  P(i) ⇒ P(i+1)]  ⇒ ∀n [n ∈ N :  P(n)]

P - unary predicate 
over N

P(0)
P(0) ⇒ P(1)

P(1)
P(1) ⇒ P(2)

P(2)
P(2) ⇒ P(3)

…

Variant of the Peano Axiom: 
Let K ⊆ N have the property that 

(a) 0 ∈ K and 
(b) for all n ∈ N, n ∈ K ⇒ (n+1) ∈ K.  

Then K = N. 

∀ elim 
with 0

⇒ elim



Induction

if y is not free in P and Q

P(0) ∧ ∀i [i ∈ N :  P(i) ⇒ P(i+1)]  ⇒ ∀n [n ∈ N :  P(n)] P - unary predicate 
over N

           …
 (m)   P(0)
         {Assume}
(k)     var i; i ∈ N
(k+1)    P(i) 
            …

(l-1)      P(i+1)
          {⇒-intro on (k+1) and (l-1)}

(l)       P(i) ⇒ P(i+1)       

         {∀-intro on (k) and (l)}
(l+1)  ∀i[i ∈ N : P(i) ⇒ P(i+1)]

         {induction on (m) and (l+1)}
(l+2)  ∀n[n ∈ N : P(n)]

Basis

Induction step

induction
 hypothesis



Inductive definitions

Inductive proof:        truth is passed on

Inductive definition:  construction is passed on
well defined by induction

Example The sequence of real numbers (ai | i ∈ N) is 

defined inductively by
            a0   = 2
            ai+1 = 2ai - 1

Conjecture For all n ∈ N it holds that

            an   = 2n+1

proof by induction

a0 a1 a2 a3 a4 …

2 3 5 9 17 …



Strong induction

if y is not free in P and Q

∀k [k ∈ N :  ∀j[j ∈ N ∧ j < k : P(j)] ⇒ P(k)]  ⇒ ∀n [n ∈ N :  P(n)]

P - unary predicate 
over N

P(0)
P(0) ⇒ P(1)

P(0) ∧ P(1)
P(0)∧P(1) ⇒ P(2)

P(0)∧P(1)∧P(2)
P(0)∧P(1)∧P(2) ⇒ P(3)

…

∀ elim with k=1

⇒ elim, 

∧ intro

Definition of 
(ai | i ∈ N)

with strong
induction

an is defined via
a0, .., an-1



Cardinality



Cardinals
Def. Two sets A and B have the same cardinality (are 

equinumerous) if there is a bijection f: A→B. 
Notation A ~ B, or |A| = |B|.

Prop. The relation ~ is an equivalence relation on 
sets.

Def. A set A has at most as large cardinality as a set 
B if there is an injection f: A→B. 
Notation |A| ≤ |B|.

cardinal 
numbers are 
~ equivalence 

classes

Def. A set A has at least as large cardinality as a set 
B if there is a surjection f: A→B. 
Notation |A| ≥ |B|.

Def. A set A has smaller cardinality than a set B if 
there is an injection f: A→B and there is no 
surjection f: A→B. Notation |A| < |B|.

If |

If |A|≤ |B|
and

|B| ≤ |A|, 
then

|A| = |B|.

Theorem (Cantor)

|A| = [A]~



Operations on cardinals

Def. Let A and B be two disjoint sets. Then
|A| + |B| = |A ∪ B|.

Prop. Let A be a set. Then |P(A)| = 2|A|.

Def. Let A and B be two sets. Then 
|A|·|B| = |A x B|.

cardinal 
numbers are 
~ equivalence 

classes

|A| = [A]~

Def. Let A and B be two sets. Then 
|A||B| = |AB| where AB is the set of all functions 
from B to A, i.e.  AB = {f | f: B→A}.

Note: 2 = |{0,1}|



Finite sets, finite cardinals

Def. A set A is finite if and only if |A| = k, 
for some k ∈N.

Hence A set  A is finite if and only if there is a natural 
number k ∈N and a bijection f: A → Nk.

cardinal 
numbers are 
~ equivalence 

classes

|A| = [A]~

We write Nk for the set {0,1,.., k-1}.  Then N0 = ∅.

We will also write k for |Nk|.

if and only if A has k 
elements, for some k ∈N

The operations on cardinals when restricted to finite cardinals
coincide with the operations on natural numbers! 

This justifies the notation.

E.g. If |A| = k and |B| = m 
for some k,m ∈N 
then |AxB| = k⋅m



Infinite, countable and 
uncountable sets

Time for a video!

Hilbert’s 
infinite hotel :-)



Infinite, countable and 
uncountable sets

Def. A set A is countable iff |A| = 0א.

Prop. N is countable. 
Z is countable. 
Q is countable.

Def. A set is infinite iff |A| ≥ 0א.

cardinal 
numbers are 
~ equivalence 

classes

|A| = [A]~

We write 0א for the cardinality of natural numbers.
Hence  0א =|N|.

Hence, every countable set 
is infinite

Def. A set is uncountable iff |A| > 0א.

Prop. R is uncountable. 
We write c for |R|



Cardinals are unbounded

Theorem (Cantor)

For every set A we have |A| < |P(A)|.

cardinal 
numbers are 
~ equivalence 

classes

|A| = [A]~

Hence, for every cardinal 
there is a larger one.


