The structure of natural numbers

is helpful for proving properties $\forall n[n \in \mathbb{N}: P(n)]$

The structure of natural numbers

On natural numbers we can define a notion of a successor, a mapping

 $s:\mathbb{N}\to\mathbb{N}$

by s(n) = n+1

The successor mapping imposes a structure on the set that enables us to count:

- I) there is a starting natural number 0
- 2) for every natural number n, there is a next natural number s(n) = n+1.

(Some) Peano Axioms

Important properties

(1) Different natural numbers have different successors:

 $\forall n,m [n,m \in \mathbb{N} : s(m) = s(n) \Rightarrow m = n]$

s is injective!

stated positively

(2) 0 is not a successor: $\forall n \ [n \in \mathbb{N} : \neg (s(n) = 0)]$

(3) All natural numbers except 0 are successors:

 $\forall n[n \in \mathbb{N} \land \neg(n = 0) : \exists m[m \in \mathbb{N} : n = s(m)]$

There is more to it - induction

Imagine an infinite sequence of dominos

If we know that

- I. D_0 falls
- 2. The dominos are close enough together so that if D_i falls, then D_{i+1} falls (for all $i\in\mathbb{N})$

Then we can conclude that every domino D_n ($n \in \mathbb{N}$) falls!

Induction

Inductive definitions

Cardinality

Cardinals

Def.	Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f: A \rightarrow B$. Notation A ~ B, or $ A = B $.	A = [A]~
Prop.	The relation ~ is an equivalence relation on sets.	cardinal numbers are ~ equivalence
Def.	A set A has at most as large cardinality as a set B if there is an injection f:A \rightarrow B. Notation A \leq B .	classes
Def.	A set A has at least as large cardinality as a set B if there is a surjection f:A \rightarrow B. Notation A \geq B .	Theorem (Cantor) If $ A \le B $
Def.	A set A has smaller cardinality than a set B if there is an injection $f:A \rightarrow B$ and there is no surjection $f:A \rightarrow B$. Notation $ A < B $.	and $ B \leq A ,$ then A = B .

Operations on cardinals

Finite sets, finite cardinals

We write \mathbb{N}_k for the set $\{0, 1, ..., k-1\}$. Then $\mathbb{N}_0 = \emptyset$.

We will also write k for $|\mathbb{N}_k|$.

A set A is finite if and only if |A| = k, for some $k \in \mathbb{N}$.

|A| = [A]~

cardinal numbers are ~ equivalence classes

Hence

A set A is finite if and only if there is a natural number $k \in \mathbb{N}$ and a bijection f:A $\rightarrow \mathbb{N}_{k}$.

if and only if A has k elements, for some $k \in \mathbb{N}$

E.g. If |A| = k and |B| = mfor some k,m $\in \mathbb{N}$ then $|AxB| = k \cdot m$

The operations on cardinals when restricted to finite cardinals coincide with the operations on natural numbers! This justifies the notation.

Infinite, countable and uncountable sets

Time for a video!

Hilbert's infinite hotel :-)

Infinite, countable and uncountable sets

|A| = [A]~

We write $_{0}$ for the cardinality of natural numbers. Hence $_{0}$ = $|\mathbb{N}|$.

Cardinals are unbounded

Theorem (Cantor)

For every set A we have $|A| < |\mathcal{P}(A)|$.

|A| = [A]~

cardinal numbers are ~ equivalence classes

Hence, for every cardinal there is a larger one.