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Time-predictable 
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Traditional
Memory Model

• Allocated memory objects are guaranteed 
to exist until deallocation

• Explicit deallocation is fast but not safe and 
error-prone 
(dangling pointers and memory leaks)

• Implicit deallocation (unreachable objects) 
is safe but its performance is proportional 
to heap size and still correctness is not 
guaranteed (memory leaks)



© C. Kirsch 2010

Short-term Memory

• Memory objects are only guaranteed to 
exist for a finite amount of time

• Memory objects are allocated with a given 
expiration date 

• Memory objects are neither explicitly nor 
implicitly deallocated but may be refreshed 
to extend their expiration date
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Short-term Memory
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With short-term memory 
programmers specify which 

memory objects are still needed 
and not

which memory objects are
not needed anymore!
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Full Compile-Time 
Knowledge
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Figure 1. Allocation with known expiration date.

• An algorithm that employs short-term memory, the self-
collecting mutators algorithm.

• An implementation with support for multi-threaded ap-
plications and an implementation analysis.

• A non-trivial well-performing class of programs with
correctness guarantees.

• Confirmation of the analysis with experimental results on
several benchmarks.

The structure of the rest of the paper is as follows: In Sec-
tion 2 we introduce the concepts of short-term memory. The
self-collecting mutators algorithm is presented in Section 3.
Section 4 analyzes the runtime overhead and the incremen-
tality of our system. Section 5 describes programs which are
easy to use and perform well with self-collecting mutators.
In Section 6 we present experimental results of benchmarks.
Section 7 describes related work, and Section 8 concludes
the paper and presents future work.

2. Short-term Memory Model
In short-term memory allocated objects do not live forever.
Each object is only allocated for a certain amount of time.
After this amount of time the object expires, which means
its existence is not guaranteed anymore. So to say, every
object has an expiration date. An object which has an earlier
expiration date than another object is called older, the other
object is called younger.

The notion of time is important for the short-term mem-
ory model. It defines the lifetime of every object, which is
the time from the allocation of an object until it expires. If
time advances fast, objects will expire faster, and the system
will require less memory. If time stands still, no object will
ever expire. This is equivalent to a system without dealloca-
tion. The definition of time determines some core properties
of the memory management system.

Object expiration With absolute knowledge, an object can
be allocated with its exact expiration date. After the expira-
tion date, the object expires. If the expiration date was cor-
rectly determined, then such a strategy does not create mem-
ory errors. Using exact expiration dates resembles explicit
memory management, but may be more difficult than know-
ing the position of explicit deallocation. On the other hand,
for explicit deallocation one requires a pointer to the object,
which is not the case here.

Figure 1 presents an example of short-term memory with
absolute knowledge about the expiration of objects. The

Figure 2. All objects are allocated for one time unit.

Figure 3. Allocation with estimated expiration date. If the
object is needed longer, it is refreshed.

lifetime of both allocated objects is known at allocation time.
The expiration date can already be set then. For example, the
command allocation(7) allocates an object for 7 time units.

In contrast to using exact expiration dates, without any
knowledge, every object can be allocated for one time unit.
Time advances when all existing objects are not needed
anymore. An example for such an implementation can be
seen in Figure 2. All objects have the same expiration date.
Even if an object is only used for a short time, it will not
expire until the next time advance.

Between these two extremes, if the expiration date of
an object can only be estimated, then objects can be allo-
cated for the estimated expiration date and their expiration
can later be prolonged by refresh operations. If the program
wants to use an object even after its expiration date, it has
to refresh it. The refreshed object gets a new extended ex-
piration date. Otherwise it expires. When refreshing is done
implicitly, such a system is equivalent to implicit memory
management like garbage collection and requires additional
runtime.

Figure 3 illustrates refreshing. An object is allocated with
an estimated expiration date. If the object is then still needed,
it is refreshed. When it is not refreshed before its expiration
date, the object expires. In Figure 3, the first object exists for
seven time units in total. Since it was originally allocated for
two time units only, it had to be refreshed for another five,
which happens with two refresh statements.

As illustrated in Figure 3, refreshing is used to extend
the lifetime of an object after its allocation. In the tradi-
tional memory model, object deallocation is used to get the
opposite result: to shorten the lifetime of an object. How-
ever, when all references to an object have been deleted, ob-
ject deallocation is not possible anymore. Refreshing, on the
other hand, is always possible. The program only refreshes
objects which are intended to be used again. A program has
to keep all objects which it wants to use again reachable any-
way. Therefore, the objects which are to be refreshed are al-
ways reachable.

The notion of expiration date in the short-term memory
model enables trading-off compile-time analysis effort, run-
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Maximal Memory 
Consumption

Figure 1. Allocation with known expiration date.

• An algorithm that employs short-term memory, the self-
collecting mutators algorithm.

• An implementation with support for multi-threaded ap-
plications and an implementation analysis.

• A non-trivial well-performing class of programs with
correctness guarantees.

• Confirmation of the analysis with experimental results on
several benchmarks.

The structure of the rest of the paper is as follows: In Sec-
tion 2 we introduce the concepts of short-term memory. The
self-collecting mutators algorithm is presented in Section 3.
Section 4 analyzes the runtime overhead and the incremen-
tality of our system. Section 5 describes programs which are
easy to use and perform well with self-collecting mutators.
In Section 6 we present experimental results of benchmarks.
Section 7 describes related work, and Section 8 concludes
the paper and presents future work.

2. Short-term Memory Model
In short-term memory allocated objects do not live forever.
Each object is only allocated for a certain amount of time.
After this amount of time the object expires, which means
its existence is not guaranteed anymore. So to say, every
object has an expiration date. An object which has an earlier
expiration date than another object is called older, the other
object is called younger.

The notion of time is important for the short-term mem-
ory model. It defines the lifetime of every object, which is
the time from the allocation of an object until it expires. If
time advances fast, objects will expire faster, and the system
will require less memory. If time stands still, no object will
ever expire. This is equivalent to a system without dealloca-
tion. The definition of time determines some core properties
of the memory management system.

Object expiration With absolute knowledge, an object can
be allocated with its exact expiration date. After the expira-
tion date, the object expires. If the expiration date was cor-
rectly determined, then such a strategy does not create mem-
ory errors. Using exact expiration dates resembles explicit
memory management, but may be more difficult than know-
ing the position of explicit deallocation. On the other hand,
for explicit deallocation one requires a pointer to the object,
which is not the case here.

Figure 1 presents an example of short-term memory with
absolute knowledge about the expiration of objects. The
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Figure 2. All objects are allocated for one time unit.

Figure 3. Allocation with estimated expiration date. If the
object is needed longer, it is refreshed.

lifetime of both allocated objects is known at allocation time.
The expiration date can already be set then. For example, the
command allocation(7) allocates an object for 7 time units.

In contrast to using exact expiration dates, without any
knowledge, every object can be allocated for one time unit.
Time advances when all existing objects are not needed
anymore. An example for such an implementation can be
seen in Figure 2. All objects have the same expiration date.
Even if an object is only used for a short time, it will not
expire until the next time advance.

Between these two extremes, if the expiration date of
an object can only be estimated, then objects can be allo-
cated for the estimated expiration date and their expiration
can later be prolonged by refresh operations. If the program
wants to use an object even after its expiration date, it has
to refresh it. The refreshed object gets a new extended ex-
piration date. Otherwise it expires. When refreshing is done
implicitly, such a system is equivalent to implicit memory
management like garbage collection and requires additional
runtime.

Figure 3 illustrates refreshing. An object is allocated with
an estimated expiration date. If the object is then still needed,
it is refreshed. When it is not refreshed before its expiration
date, the object expires. In Figure 3, the first object exists for
seven time units in total. Since it was originally allocated for
two time units only, it had to be refreshed for another five,
which happens with two refresh statements.

As illustrated in Figure 3, refreshing is used to extend
the lifetime of an object after its allocation. In the tradi-
tional memory model, object deallocation is used to get the
opposite result: to shorten the lifetime of an object. How-
ever, when all references to an object have been deleted, ob-
ject deallocation is not possible anymore. Refreshing, on the
other hand, is always possible. The program only refreshes
objects which are intended to be used again. A program has
to keep all objects which it wants to use again reachable any-
way. Therefore, the objects which are to be refreshed are al-
ways reachable.

The notion of expiration date in the short-term memory
model enables trading-off compile-time analysis effort, run-
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Figure 1. Allocation with known expiration date.

• An algorithm that employs short-term memory, the self-
collecting mutators algorithm.

• An implementation with support for multi-threaded ap-
plications and an implementation analysis.

• A non-trivial well-performing class of programs with
correctness guarantees.

• Confirmation of the analysis with experimental results on
several benchmarks.

The structure of the rest of the paper is as follows: In Sec-
tion 2 we introduce the concepts of short-term memory. The
self-collecting mutators algorithm is presented in Section 3.
Section 4 analyzes the runtime overhead and the incremen-
tality of our system. Section 5 describes programs which are
easy to use and perform well with self-collecting mutators.
In Section 6 we present experimental results of benchmarks.
Section 7 describes related work, and Section 8 concludes
the paper and presents future work.

2. Short-term Memory Model
In short-term memory allocated objects do not live forever.
Each object is only allocated for a certain amount of time.
After this amount of time the object expires, which means
its existence is not guaranteed anymore. So to say, every
object has an expiration date. An object which has an earlier
expiration date than another object is called older, the other
object is called younger.

The notion of time is important for the short-term mem-
ory model. It defines the lifetime of every object, which is
the time from the allocation of an object until it expires. If
time advances fast, objects will expire faster, and the system
will require less memory. If time stands still, no object will
ever expire. This is equivalent to a system without dealloca-
tion. The definition of time determines some core properties
of the memory management system.

Object expiration With absolute knowledge, an object can
be allocated with its exact expiration date. After the expira-
tion date, the object expires. If the expiration date was cor-
rectly determined, then such a strategy does not create mem-
ory errors. Using exact expiration dates resembles explicit
memory management, but may be more difficult than know-
ing the position of explicit deallocation. On the other hand,
for explicit deallocation one requires a pointer to the object,
which is not the case here.

Figure 1 presents an example of short-term memory with
absolute knowledge about the expiration of objects. The
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Figure 3. Allocation with estimated expiration date. If the
object is needed longer, it is refreshed.

lifetime of both allocated objects is known at allocation time.
The expiration date can already be set then. For example, the
command allocation(7) allocates an object for 7 time units.

In contrast to using exact expiration dates, without any
knowledge, every object can be allocated for one time unit.
Time advances when all existing objects are not needed
anymore. An example for such an implementation can be
seen in Figure 2. All objects have the same expiration date.
Even if an object is only used for a short time, it will not
expire until the next time advance.

Between these two extremes, if the expiration date of
an object can only be estimated, then objects can be allo-
cated for the estimated expiration date and their expiration
can later be prolonged by refresh operations. If the program
wants to use an object even after its expiration date, it has
to refresh it. The refreshed object gets a new extended ex-
piration date. Otherwise it expires. When refreshing is done
implicitly, such a system is equivalent to implicit memory
management like garbage collection and requires additional
runtime.

Figure 3 illustrates refreshing. An object is allocated with
an estimated expiration date. If the object is then still needed,
it is refreshed. When it is not refreshed before its expiration
date, the object expires. In Figure 3, the first object exists for
seven time units in total. Since it was originally allocated for
two time units only, it had to be refreshed for another five,
which happens with two refresh statements.

As illustrated in Figure 3, refreshing is used to extend
the lifetime of an object after its allocation. In the tradi-
tional memory model, object deallocation is used to get the
opposite result: to shorten the lifetime of an object. How-
ever, when all references to an object have been deleted, ob-
ject deallocation is not possible anymore. Refreshing, on the
other hand, is always possible. The program only refreshes
objects which are intended to be used again. A program has
to keep all objects which it wants to use again reachable any-
way. Therefore, the objects which are to be refreshed are al-
ways reachable.

The notion of expiration date in the short-term memory
model enables trading-off compile-time analysis effort, run-
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SCM

• Self-collecting mutators (SCM) is an explicit 
memory management system:

• new(Class)

• refresh(Object, Extension)

• tick()
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Memory Reuse

• When an object expires, its memory may be 
reused but only by an object allocated at the 
same allocation site:

‣ type-safe but not necessarily safe!

• Objects allocated at the same site are stored 
in a buffer (insert, delete, select-expired)
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Allocation

1. Select an expired object, if there are any, and 
delete it from the buffer, or else, if there are 
none, allocate memory from free memory

2. Assign the current logical system time to 
the object as expiration date and insert it 
into the buffer

• Free memory is handled by a bump pointer
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Refresh

1. Delete object from its buffer

2. Assign new expiration date

3. Insert object back into the buffer

• Expiration extensions are bounded by a 
constant in our implementation

• Side-effect: objects allocated at allocation 
sites that are only executed once are 
permanent and do not require refreshing
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Time Advance

• The current logical system time is 
implemented by a global counter

• Time advance: increment the counter by 
one modulo a wrap-around

• We also support multi-threaded 
applications



Implementation
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Complexity Trade-off

insert delete select expired

Singly-linked list O(1) O(m) O(m)
Doubly-linked list O(1) O(1) O(m)

Sorted doubly- O(m) O(1) O(1)
linked list

Insert-pointer buffer O(log n) O(1) O(1)
Segregated buffer O(1) O(1) O(log n)

Table 2. Comparison of buffer implementations. The num-

ber of objects in a buffer is m, the maximal expiration ex-

tension is n.

objects with different expiration dates but only its youngest

objects are not expired.

The complexity of insert is constant time because the cor-

rect list is determined by a modulo calculation, and objects

are only added at the tail. The delete operation is again con-

stant time because objects are stored in a doubly-linked list.

The complexity of select expired is linear in n because in

the worst case the head of every list has to be searched for

old objects. This complexity again can be reduced to log n
by using a bitmap. The bitmap indicates the buffers which

contain expired objects. To select an expired object faster,

we store the index of the list where the last expired object

was found. The next search for an expired object starts at

this position.

Table 2 gives an overview of the complexity of the buffer

operations in the different buffer implementations.

For the benchmarks we use the segregated buffer imple-

mentation with a maximal expiration extension of one time

unit. Only few objects exist longer than one time unit, and

most objects need not be refreshed since their allocation sites

are never called again. An expiration extension of one time

unit already allows for incremental usage of refresh, cf. Sec-

tion 4.

For concurrency support one additional insert position

exists in a sorted buffer to compensate for the time difference

between fast and slow threads. The possible insert positions

of the fast thread are shifted by one. Therefore, the size of

the pointer arrays for both the insert-pointer buffer and the

segregated buffer has to be extended to n + 2 to support

concurrency.

Each doubly-linked list is implemented with a next

pointer and a previous pointer in every object header. For

refreshing we have to know in which buffer the object is

contained. Therefore, the buffer identifier is stored in the

header of each object.

3.2.2 Concurrency Support

For the multi-threaded implementation, one has to filter

threads which cannot do appropriate tick-calls. For exam-

ple, Jikes initializes several administrative threads at start-

up. Most of the time these threads are inactive. Therefore,

they cannot tick appropriately.

To distinguish application threads from such administra-

tive threads, we let threads register during which they get

their thread-local time. Registration happens automatically

at the first memory operation of the thread. At registration, a

thread gets the global time as its thread-local time. A thread

is automatically unregistered upon termination, or it can un-

register explicitly. A problem with thread unregistrations is

how to secure its objects. One solution would be that a thread

adds a special tag to its objects so that they cannot be reused.

The thread removes the tag when it is activated again. An-

other problem is a thread which is stuck because it does not

increase its thread-local time anymore. The system can then

do the tagging if a thread timeouts.

3.2.3 Memory overhead

Our system has the following sources of memory overhead:

• The expiration date and the buffer identifier are stored in

one word in the header of every object. When the highest

possible global time is reached, the time wraps around

and starts with zero again.

• The next pointer and the previous pointer for the doubly-

linked list require two more words in the object header.

• Every allocation site has one segregated buffer with a

maximal expiration extension of n. For multi-threading

every segregated buffer consists of n + 2 doubly-linked

lists with two words overhead each (for the pointers in

the arrays), and one word for the index of the next buffer

to search. We therefore have a total overhead of seven

words per allocation site in our implementation (n = 1).

• For time definition, we have one word for the global time,

one word for the ticked-thread counter, and one word for

the thread-local times.

• For multi-threading, we need one lock per allocation site

and one lock for time synchronization.

Memory consumption of concurrent programs The mem-

ory consumption per thread in a concurrent program in-

creases if another thread is slower. Nevertheless, the memory

consumption per thread is bounded by the amount of mem-

ory it can allocate between two ticks of the slowest thread.

After a tick of the slowest thread, fast threads reuse their ob-

jects again.

4. Runtime Overhead and Incrementality

We next discuss a time-space trade-off controlled by the tick

frequency and the refreshing overhead. Towards the end we

also briefly explain incrementality options.

4.1 Runtime overhead for arbitrary programs

The runtime overhead of self-collecting mutators consists of

the overhead of tick-calls and the overhead of refreshing.

Since ticking is fast, tick-calls do not introduce much over-

head.
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Insert-pointer buffer
(with bounded expiration extension n=3)
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Figure 6. Insert-pointer buffer implementation.

3.2.1 Buffers
The buffer implementation is most important for the perfor-
mance of self-collecting mutators. It has to provide three op-
erations: insert, select expired, and delete. A singly-linked
list implementation would provide constant-time insert, but
select expired and delete would depend on the size of the
buffer. A doubly-linked list improves delete to constant time,
but select expired remains linear in the size of the list.

When sorting by expiration date is applied to the list,
the complexity of select expired drops to constant time.
However, the complexity of insert becomes linear in the size
of the buffer. By imposing an upper bound on the expiration
extension, more efficient implementations are possible. We
present two such buffer implementations which exploit the
fact of bounded expiration extensions: insert-pointer buffers
and segregated buffers.

Insert-pointer buffer The following observation is the ba-
sis for the insert-pointer buffer implementation. If n is the
bound of the expiration extension, there are exactly n + 1
possible insert positions in the buffer to keep it sorted. Of
these, n positions for refreshing and one position for allo-
cation in the current time unit. For concurrency support one
additional insert position is needed, which we discuss later.

Pointers to these positions are stored in an additional
pointer array. When time advances, the pointer array needs
to be updated. However, any insert-pointer can only get one
of the following values: the beginning of the live part of the
buffer, the value of another existing pointer in the pointer
array, or the end of the buffer. For the update, we keep a
pointer to the beginning of the live buffer, that is a pointer to
the first unexpired object if such exists.

At each time advance objects may expire, which imposes
the need of updating the beginning of the live buffer. This is
done at the first insert after time advance. The new value is
one of the existing pointers in the insert-pointer array, or the
end of the buffer. This update is linear in n. Using a bitmap
reduces the complexity to log n. The new values of the insert
pointers can be determined in log n time as well.

Figure 6 illustrates the implementation of an insert-
pointer buffer. The maximal expiration extension is three,
so the insert-pointer array has four positions. The current
time is 5. There are pointers to the beginning and to the end
of the buffer, the pointer to the beginning of the live buffer
and the pointer array with pointers pointing to the insert po-

Figure 7. Segregated buffer implementation.

sitions. An insert pointer for a given time value points to the
last object in the buffer with this expiration date. Objects
with expiration date 6 do not exist in the buffer and there-
fore the insert pointer 6 has no value. However, the correct
insert position for new objects with expiration date 6 is right
after the insert position of objects with expiration date 5. Af-
ter time advance, at time 6, the beginning of the live buffer
points to the successor of where pointer 5 points to. In the
new time unit, pointer 5 is not needed any longer for objects
with expiration date 5. Instead, the pointer is used for objects
with expiration date 9, which can now be inserted into the
buffer. Hence, the insert pointers correspond to time units
modulo the size of the array.

The complexity of delete is constant time because the
data structure is still a doubly-linked list, and select expired
is constant time because of the sorting (only the beginning of
the buffer needs to be checked). The complexity of insert is
constant time if the insert pointer is set, or linear in the size
of the array if a correct insert position has to be determined.
When bitmaps are used to find existing pointers in the array,
the worst-case complexity of insert drops to log n.

Segregated buffer The insert-pointer buffer allows to get
the oldest object from the buffer. However, this is not nec-
essary. It is enough to find any expired object. This insight
is used to get constant-time insert at the cost of logarithmic
select expired in the segregated buffer implementation.

Segregated buffers are shown in Figure 7. Here, not all
objects are in the same doubly-linked list, there are n + 1
doubly-linked lists. There exists one list for every insert po-
sition we had in the insert-pointer buffer before. Segregated
buffers use two pointer arrays of size n + 1. The first array
contains pointers to the heads of the lists, this is the select-
expired array. The second array is the insert-pointer array
which contains pointers to the tails of the lists. Hence, an
object is added at the tail of a list. The correct list for in-
serting an object with a given expiration date is determined
modulo the size of the array.

Every doubly-linked list is sorted because when an object
is inserted to a list, it is at least as young as the youngest
object in the list and it is inserted at the tail. A list can contain
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Segregated buffer
(with bounded expiration extension n=3 

and unsorted select-expired)

Figure 6. Insert-pointer buffer implementation.
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cation in the current time unit. For concurrency support one
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to be updated. However, any insert-pointer can only get one
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done at the first insert after time advance. The new value is
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end of the buffer. This update is linear in n. Using a bitmap
reduces the complexity to log n. The new values of the insert
pointers can be determined in log n time as well.
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Figure 7. Segregated buffer implementation.

sitions. An insert pointer for a given time value points to the
last object in the buffer with this expiration date. Objects
with expiration date 6 do not exist in the buffer and there-
fore the insert pointer 6 has no value. However, the correct
insert position for new objects with expiration date 6 is right
after the insert position of objects with expiration date 5. Af-
ter time advance, at time 6, the beginning of the live buffer
points to the successor of where pointer 5 points to. In the
new time unit, pointer 5 is not needed any longer for objects
with expiration date 5. Instead, the pointer is used for objects
with expiration date 9, which can now be inserted into the
buffer. Hence, the insert pointers correspond to time units
modulo the size of the array.

The complexity of delete is constant time because the
data structure is still a doubly-linked list, and select expired
is constant time because of the sorting (only the beginning of
the buffer needs to be checked). The complexity of insert is
constant time if the insert pointer is set, or linear in the size
of the array if a correct insert position has to be determined.
When bitmaps are used to find existing pointers in the array,
the worst-case complexity of insert drops to log n.

Segregated buffer The insert-pointer buffer allows to get
the oldest object from the buffer. However, this is not nec-
essary. It is enough to find any expired object. This insight
is used to get constant-time insert at the cost of logarithmic
select expired in the segregated buffer implementation.

Segregated buffers are shown in Figure 7. Here, not all
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Setup

There is no upper bound on the number of tick-calls in a
program, but there is a lower bound. Namely, the number of
garbage collection runs in a mark-sweep garbage collector
[10] provides the lower bound, since otherwise the heap
would be full and nothing can be allocated any more.

When the number of tick-calls increases the memory con-
sumption decreases, but more refresh-calls are necessary,
which implies time overhead. With the number of tick-calls
the programmer can trade-off time overhead of additional re-
freshing and space overhead of unused memory. We present
the effect of the choice of tick frequency in our experiments
in Section 6.

Refreshing adds time overhead in every time unit. How-
ever, an object is only refreshed once in a time unit by a sin-
gle thread. Moreover, in a multi-threaded setting, we avoid
redundant refreshes by checking whether an object was al-
ready refreshed. The complexity of refreshing is therefore
bounded by the number of refreshed objects.

4.2 Incrementality
As just discussed, objects only have to be refreshed once
each time unit. However, the exact time of refreshing in a
time unit does not matter. The refresh-calls can be distributed
randomly in the time unit. Therefore, fine-grained incremen-
tality can be achieved.

5. Suitable Programs
There exists a class of programs, called suitable programs,
which need only few changes in order to use self-collecting
mutators. Moreover, when self-collecting mutators are used
for such programs, the time performance improves, the
memory consumption is constant, and no pause times are
introduced by the memory management system. A suffi-
cient compiler test can be provided to guarantee correctness,
meaning that no dangling pointers are created. We chose
our benchmarks from this class of programs as described in
Section 6.

Any suitable program consists of three phases:

1. Initialization phase;

2. Main loop;

3. Finalization phase.

The program starts with an initialization phase in which
permanent data is allocated. The initialization phase must
not share any code with the succeeding phases. In the main
loop the program works on the data created in the initial-
ization phase. In addition, the main loop can allocate any
amount of memory. The finalization phase, in which the pro-
gram works on the data generated in the main loop, is op-
tional.

This basic structure can be extended. All three phases can
contain code which has the same structure. For example,
part of the main loop can be code which has the structure

CPU 2x AMD Opteron DualCore, 2.0 GHz
RAM 4GB

OS Linux 2.6.24-16
Java VM Jikes RVM 3.1.0

initial heap size 50MB

Table 3. System configuration.

benchmark LoC added allocation system
LoC sites overhead

Monte Carlo 1450 10 101 811 words
JLayer MP3 8247 1 312 2499 words

converter

Table 4. Lines of code of the benchmarks, the effort of
adapting them for self-collecting mutators, and the space
overhead.

described above, with an inner loop serving as a sub-main
loop.

To adapt such a program for using self-collecting muta-
tors, a tick-call has to be added at the end of the main loop
to ensure time advance. When objects which are allocated
in the main loop do not exist longer than one loop iteration,
no refreshing is required. Objects which have been allocated
in the initialization phase do not have to be refreshed, al-
though they are expired. Their memory will not be reused
anyway. This is the side-effect of our implementation al-
ready described in Section 3.2. Only those objects have to
be refreshed which are allocated in the main loop and which
should exist longer than one loop iteration. For best perfor-
mance, the number of refresh-calls should be low.

Multi-threaded applications are suitable if all threads are
suitable. For better memory efficiency, the execution time
of one iteration of the main loop of each thread should be
similar.

The correctness of a program can be checked by the com-
piler. A sufficient test using escape analysis can be provided
to check if objects which exist longer than one loop iteration
are refreshed correctly.

It is fair to mention that the described class of programs
also performs well with other memory management systems.
We discuss these in more detail in Section 7.

6. Experimental Setup and Evaluation
We ran the benchmarks on a platform described in Table 3.
We used the baseline configuration of Jikes without run-
time optimization. The reason is that we want to show the
effects of the memory management without side-effects of
pause times introduced by the optimizer. We compare self-
collecting mutators with a mark-sweep garbage collector and
the standard garbage collector of Jikes, a two-generation
copying collector where the higher generation is handled by
an Immix collector [3].
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Figure 8. Total runtime of the benchmarks in percent of the
runtime of the benchmark using self-collecting mutators.

We executed two benchmarks:

1. The Monte Carlo benchmark of the Grande Java Bench-
mark Suite [9],

2. the JLayer MP3 converter2.

For both benchmarks we added a tick-call at the end of
the main loop. In the Monte Carlo benchmark a result object
is generated in every loop iteration which is stored in a result
set. The result set is then processed in the finalization phase.
We changed the Monte Carlo benchmark to preallocate the
result objects before the main loop. The empty objects are
then filled with data. Refreshing can be used instead of pre-
allocation, but this implies significant runtime overhead. We
present the overhead of refreshing at the end of the section.
The MP3 encoder did not require additional modifications.
The added number of lines of code per benchmarks is shown
in Table 4, which also shows the number of allocation sites
and the imposed space overhead for system management.

We measured the total runtime of the benchmarks, the
latency of the memory management system, and the memory
consumption over time. To test the runtime properties of
the concurrency support we execute both the Monte Carlo
benchmark and the JLayer benchmark in parallel. Moreover,
we start four instances of the Monte Carlo benchmark at
the same time to show that the shared use of allocation
sites is possible. Finally, we show the overhead of refreshing
and the effect of the number of tick-calls on the memory
consumption of a program.

6.1 Total runtime
The total runtime of the benchmarks is presented in Fig-
ure 8. The original Monte Carlo benchmark has a memory
leak which is not collected by a garbage collector because it
is still reachable. Self-collecting mutators (SCM) reuse the
memory objects in the memory leak when they expire. With
the memory leak, self-collecting mutators is 29% faster than
the generational garbage collector (GEN), and 10% faster
than the mark-sweep garbage collector (MS). We also mod-
ified the Monte Carlo benchmark and removed the memory
leak. Self-collecting mutators remain (slightly) faster than

2 http://www.javazoom.net/javalayer/javalayer.html

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  100  200  300  400  500  600  700  800  900 1000
 1

 100

 10000

fre
e 

m
em

or
y 

in
 M

B

lo
op

 e
xe

cu
tio

n 
tim

e 
in

 m
s 

(lo
ga

rit
hm

ic
)

loop index

GEN free memory
MS free memory

SCM free memory
GEN loop execution time

MS loop execution time
SCM loop execution time

Figure 9. Free memory and loop execution time of the fixed
Monte Carlo benchmark.

the garbage-collected systems in the modified Monte Carlo
benchmark. The same applies to the MP3 converter and the
parallel execution of the MP3 converter and the fixed Monte
Carlo benchmark. When four instances of the Monte Carlo
benchmark are executed in parallel, garbage collection is
triggered often. This results in a performance drop of the
mark-sweep garbage collector. The garbage collection over-
head of the generational garbage collector is nearly the same
as the locking overhead of self-collecting mutators.

6.2 Pause times and memory consumption
To measure the pause times of the memory management sys-
tem and the memory consumption we recorded the loop exe-
cution time and the amount of free memory at the beginning
of every loop iteration.

Figure 9 shows the free memory and the loop execu-
tion time of the fixed Monte Carlo benchmark. The amount
of free memory is constant when the benchmark is exe-
cuted with self-collecting mutators, and the loop execution
time is nearly constant. It has a jitter of one millisecond.
Both garbage-collected systems have the same loop execu-
tion time as self-collecting mutators except for the iterations
in which garbage collection is triggered. The loop execu-
tion time is much larger then. The free-memory curve of
the garbage collected systems looks like a saw-tooth curve
which has a peak after every garbage collection run. The
chart only shows the first thousand loop iterations, further
iterations show the same pattern.

Next we measure the memory consumption and the loop
execution times of self-collecting mutators of the parallel
Monte Carlo benchmark. Figure 10 shows the first 20 loop
iterations. The values representing free memory for a thread
correspond to the overall free memory measured at the end
of a loop iteration for the considered thread. The memory
consumption is constant (also for all further iterations), but
the system requires some loop iterations to find its steady
state. Thereafter the buffers of all allocation sites are large
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Figure 8. Total runtime of the benchmarks in percent of the
runtime of the benchmark using self-collecting mutators.
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and the imposed space overhead for system management.
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Figure 10. Free memory and loop execution time of the
parallel Monte Carlo benchmark.
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Figure 11. Loop execution time of the Monte Carlo bench-
mark with different tick frequencies.

enough and no additional memory is needed. The loop exe-
cution time still does not vary much.

At last we analyze the time-space trade-off controlled by
the number of tick-calls. We started a Monte Carlo bench-
mark which does not preallocate the result set and compared
it with the benchmark which does preallocation. The loop
execution times are shown in Figure 11, the free memory
over time is visualized in Figure 12. With preallocation (and
tick at every loop iteration) we get the best memory con-
sumption at the end of the benchmark execution and the
lowest loop execution time. Without preallocation all result
objects have to be refreshed in every time unit. For the mea-
surements we considered three scenarios: tick at every loop
iteration, tick at every 50th loop iteration and tick at every
200th iteration. We distributed the required refresh-calls uni-
formly over all time units. As a result, the loop execution
time has only small variance. The results show that the more
ticks, and thus more refreshing, the longer the loop execution
time. However, with less ticks the memory consumption in-
creases. When a tick-call is executed only every 200th loop
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Figure 12. Free memory of the Monte Carlo benchmark
with different tick frequencies.

iteration, the memory consumption is maximal, but the per-
formance is nearly as good as the performance of the system
with preallocation. At most fifty refresh-calls are executed
every loop iteration. Moreover, in the last iterations the num-
ber of allocated objects is large and therefore exactly fifty re-
fresh-calls are executed per iteration. This explains the slight
increase in the loop execution time. The memory consump-
tion of the benchmarks without preallocation increases as
time elapses since a new result object is allocated in every
loop iteration. After the last iteration the memory consump-
tion of the Monte Carlo benchmark with preallocation and
the Monte Carlo benchmark with a tick-call at every loop
iteration is the same. The execution which ticks only once
every 200th loop iteration needs nearly the whole heap.

7. Related Work
To the best of our knowledge we are the first to propose the
use of short-term memory. However, there is a resemblance
between short-term memory and other memory management
systems. A semi-space garbage collector [4], for example,
refreshes objects by copying them from one part of the heap
to another part. Time advance is implicit when the heap is
full.

In [11] the authors also describe the use of buffers per al-
location site with the intention to eliminate memory leaks.
They use cyclic buffers whose size is determined in ex-
periments. Self-collecting mutators determine buffer sizes
dynamically depending on tick-calls. Moreover, they pro-
vide refresh-calls to trade-off space consumption caused by
sparse tick-calls and time consumption caused by required
refresh-calls. The memory management system described
in [11] maintaines type safety as self-collecting mutators
do. Other work which provides memory management type
safety to support the design of non-blocking thread synchro-
nization algorithms is reported on in [7]. In [6] the authors
propose the use of type-safe pool allocation to support pro-
gram analysis.
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