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Traditional
Memory Model

® Allocated memory objects are guaranteed
to exist until deallocation

® Explicit deallocation is fast but not safe and
error-prone




Short-term Memory

® Memory objects are only guaranteed to
exist for a finite amount of time

Memory objects are alloc
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With short-term memory
programmers specify which
memory objects are still needed




Full Compile-Time
Knowledge

allocation(3) |ifetime

allocation(7) lifetime

Figure 1. Allocation with known expiration date.
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Maximal Memory
Consumption
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Figure 2. All objects are allocated for one time unit.
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Trading-off Compile-
Time, Runtime, Memory

lifetime

time
allocation(2) refresh(3) refresh(2)

Figure 3. Allocation with estimated expiration date. If the
object is needed longer, it is refreshed.
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SCM

® Self-collecting mutators (SCM) is an explicit




Memory Reuse

® When an object expires, its memory may be
reused but only by an object allocated at the
i




Allocation

|. Select an expired object, if there are any, and
delete it from the buffer, or else, if there are
none, allocate memory from free memory




Refresh

|. Delete object from its buffer

2. Assign new expiration date

3. Insert object back into the buffer




Time Advance

® The current logical system time is
implemented by a global counter







Complexity Trade-off

] imsen [ delete [ selectexpired_
Singly-linked list O(1)
Doublylinked list | _O(1) | O(1)

Sorted doubly- O(m) O(1) O(1)
linked list

Ollozm
Segregated buffer O(logn)

Table 2. Comparison of buffer implementations. The num-
ber of objects in a buffer is m, the maximal expiration ex-
tension 1s n.
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Insert-pointer buffer

(with bounded expiration extension n=3)

beginning of buffer end of buffer

beginning of
live buffer

Figure 6. Insert-pointer buffer implementation.
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Segregated buffer

(with bounded expiration extension n=3
and unsorted select-expired)

select-expired array insert-pointer array

Figure 7. Segregated buffer implementation.
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2x AMD Opteron DualCore, 2.0 GHz
Linux 2.6.24-16

Jikes RVM 3.1.0
SOMB

Table 3. System configuration.
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Benchmarks

1450 811 words

JLayer MP3 | 8247 312 2499 words
converter

Table 4. Lines of code of the benchmarks, the effort of
adapting them for self-collecting mutators, and the space
overhead.
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Runtime Performance
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Figure 8. Total runtime of the benchmarks in percent of the
runtime of the benchmark using self-collecting mutators.
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Latency & Memory
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Figure 9. Free memory and loop execution time of the fixed
Monte Carlo benchmark.
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Latency with Refreshing
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Figure 11. Loop execution time of the Monte Carlo bench-
mark with different tick frequencies.
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Memory with Refreshing
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Figure 12. Free memory of the Monte Carlo benchmark
with different tick frequencies.

© C.Kirsch 2010






