Short-term Memory for
Self-collecting Mutators:
Towards Time- and Space-predictable
Virtualization

Andreas Haas, Christoph Kirsch, Hannes Payer, Andreas
Schoenegger, Ana Sokolova

Time-predictable
virtualization:
process response times

and | | itter are

Space-predictable
virtualization:
(shared) memory usage

and fragmentation are

Time- and space-
predictable
virtualization

BN SO sl i Sl Il S s S o e e e s R e A L R R S
ok R e e o Il g b b P e B s SRS S e R R B S s e S

Time

Space

Giotto

[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL

[EMSOFT 2006, RTSS 2009]

Compact-fit

[USENIX ATC 2008]

Traditional
Memory Model

® Allocated memory objects are guaranteed
to exist until deallocation

® Explicit deallocation is fast but not safe and
error-prone

Short-term Memory

® Memory objects are only guaranteed to
exist for a finite amount of time

Memory objects are alloc

Short-term Memory

Safe objects Require refresh

© C.Kirsch 2010

With short-term memory
programmers specify which
memory objects are still needed

Full Compile-Time
Knowledge

allocation(3) |ifetime

allocation(7) lifetime

Figure 1. Allocation with known expiration date.

© C.Kirsch 2010

Maximal Memory
Consumption

lifetime ;
tick
/

allocation(1) unused time

Figure 2. All objects are allocated for one time unit.

© C.Kirsch 2010

Trading-off Compile-
Time, Runtime, Memory

lifetime

time
allocation(2) refresh(3) refresh(2)

Figure 3. Allocation with estimated expiration date. If the
object is needed longer, it is refreshed.

© C.Kirsch 2010

SCM

® Self-collecting mutators (SCM) is an explicit

Memory Reuse

® When an object expires, its memory may be
reused but only by an object allocated at the
i

Allocation

|. Select an expired object, if there are any, and
delete it from the buffer, or else, if there are
none, allocate memory from free memory

Refresh

|. Delete object from its buffer

2. Assign new expiration date

3. Insert object back into the buffer

Time Advance

® The current logical system time is
implemented by a global counter

Complexity Trade-off

] imsen [delete [selectexpired_
Singly-linked list O(1)
Doublylinked list | _O(1) | O(1)

Sorted doubly- O(m) O(1) O(1)
linked list

Ollozm
Segregated buffer O(logn)

Table 2. Comparison of buffer implementations. The num-
ber of objects in a buffer is m, the maximal expiration ex-
tension 1s n.

© C.Kirsch 2010

Insert-pointer buffer

(with bounded expiration extension n=3)

beginning of buffer end of buffer

beginning of
live buffer

Figure 6. Insert-pointer buffer implementation.

© C.Kirsch 2010

Segregated buffer

(with bounded expiration extension n=3
and unsorted select-expired)

select-expired array insert-pointer array

Figure 7. Segregated buffer implementation.

© C.Kirsch 2010

2x AMD Opteron DualCore, 2.0 GHz
Linux 2.6.24-16

Jikes RVM 3.1.0
SOMB

Table 3. System configuration.

© C.Kirsch 2010

Benchmarks

1450 811 words

JLayer MP3 | 8247 312 2499 words
converter

Table 4. Lines of code of the benchmarks, the effort of
adapting them for self-collecting mutators, and the space
overhead.

© C.Kirsch 2010

Runtime Performance

160.00%
150.00%
140.00%

130.00% o

120.00% O GEN

110.00% e

= alatululal
90.00%

MC leaky MC fixed 4x MC MP3 +
fixed MC

Figure 8. Total runtime of the benchmarks in percent of the
runtime of the benchmark using self-collecting mutators.

© C.Kirsch 2010

Latency & Memory

GEN free memory —+—
MS free memory
SCM free memory
GEN loop execution time
MS loop execution time
SCM logp execution time

m
=
£
=
S
£
@
€
@
e
=

loop execution time in ms (logarithmic)

1
0 100 200 300 400 500 600 700 800 900 1000
loop index

Figure 9. Free memory and loop execution time of the fixed
Monte Carlo benchmark.

© C.Kirsch 2010

Latency with Refreshing

1 tick/1 iteration —+—
1 tick/50 iterations
1 tick/200 iterations ------
no refresh and g
1 tick/1 iteration

I

g
£
£
=
<
=)
k)
»
£
£
®
£
=
c
9o
=
5
o
@
X
o
o
o
k]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
loop index

Figure 11. Loop execution time of the Monte Carlo bench-
mark with different tick frequencies.

© C.Kirsch 2010

Memory with Refreshing

m
=
£
e
S
£
5}
€
@
2

1 tick/1 iteration ——
1 tick/50 iterations
1 tick/200 iterations ---
no refresh and
1 tick/1 iteration

100
loop index (logarithmic)

Figure 12. Free memory of the Monte Carlo benchmark
with different tick frequencies.

© C.Kirsch 2010

