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Abstract
Concurrent data-structures, such as stacks,
queues and deques, often implicitly enforce a
total order over elements with their underlying
memory layout. However, linearizability only re-
quires that elements are ordered if the inserting
methods ran sequentially. We propose a new
data-structure design which uses explicit times-
tamping to avoid unwanted ordering. Elements
can be left unordered by associating them with
unordered timestamps if their insert operations
ran concurrently. In our approach, more concur-
rency translates into less ordering, and thus less-
contended removal and ultimately higher perfor-
mance and scalability.

Key Ideas
• Order elements in the data-structure only

partially by using explicit timestamping.

• Store elements in thread-local buffers to
avoid synchronization of insert operations.

• Use the RDTSCP CPU instruction for
highly-scalable timestamp generation.

• Use intervals as timestamps to reduce the
order on timestamps while still providing
linearizability.

Partially Ordered Elements
Elements with timestamps are stored in an un-
ordered buffer. Elements which were inserted
concurrently may have the same timestamp.
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Linearizability allows reordering
overlapping operations. Therefore

artificially delaying enqueue 
operations can reduce the order

of elements in the data structure.

without interval timestamping
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Interval Length
Performance of the TS deque with interval
timestamping with an increasing delay in a high-
contention producer-consumer benchmark. All
measurements are done with 80 threads on a 40-
core (2 hyperthreads per core) server machine.
The left y-axis shows the average number of op-
erations (both insert and remove operations) per
millisecond, the right y-axis shows the average
number of CAS retries per remove operation.
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Performance in a Producer/Consumer Benchmark
Performance and scalability of the TS deque in a high-contention producer-consumer benchmark with
an increasing number of threads. The baselines are a Treiber stack, an elimination-backoff stack (EB
stack), a Michael-Scott queue (MS queue), and a flat-combining queue (FC queue). Stack-specific
and queue-specific TS-Buffers (Hardcoded TS Stack and Hardcoded TS Queue) allow additional
performance gains.
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(a) TS stack with interval timestamping (b) TS stack without interval timestamping
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(c) TS queue with interval timestamping (d) TS queue without interval timestamping

TS-Buffer Design
insR: Each thread inserts at the right side of

its own linked list.

tryRemoveR: A thread searches through the
right ends of all linked lists for the right-
most element to remove. Nodes are re-
moved logically first by setting a removed
flag. Unlinking occurs in later insert or
remove operations. If setting the removed
flag fails, then tryRemoveR returns an
invalid item.

insL/tryRemoveL: Analogous to insR and
tryRemoveR, but the left side of the
linked lists is accessed.
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TS Deque Pseudo Code
TS_Deque {
  TS_Buffer buffer;
  void insertR(Element element) {
    item = buffer.insR(element);
    timestamp = buffer.newTimestamp();
    buffer.setTimestamp(item, timestamp);
  }
  Element removeR() {
    do {
      item = buffer.tryRemoveR();
    } while (!item.isValid());
    if (item.isEmpty())
      return EMPTY;
    else
      return item.element;
  }
}

insertL and removeL are defined analogously.

Correctness
• The TS deque is linearizable with respect

to the sequential specification of a deque.

• The remove operations of the TS deque are
lock-free, the insert operations are wait-
free.
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Additional Informantion
http://scal.cs.uni-salzburg.at/tsstack


