
Dependability-Aware Routing and Scheduling for
Time-Sensitive Networking
Niklas Reusch !

Technical University of Denmark Kongens Lyngby, Denmark

Silviu S. Craciunas !

TTTech Computertechnik AG, Vienna, Austria

Paul Pop !

Technical University of Denmark Kongens Lyngby, Denmark

Abstract
Time-Sensitive Networking (TSN) extends IEEE 802.1 Ethernet for safety-critical and real-time applications
in several areas, e.g., automotive, aerospace or industrial automation. However, many of these systems also
have stringent security requirements, and security attacks may impair safety. Given a TSN-based distributed
architecture, a set of applications with tasks and messages, as well as a set of security and redundancy
requirements, we are interested to synthesize a system configuration such that the real-time, safety and security
requirements are upheld. We use the Timed Efficient Stream Loss-Tolerant Authentication (TESLA) low-resource
multicast authentication protocol to guarantee the security requirements, and redundant disjunct message routes
to tolerate link failures. We consider that tasks are dispatched using a static cyclic schedule table and that the
messages use the time-sensitive traffic class in TSN, which relies on schedule tables (called Gate Control Lists,
GCLs) in the network switches. A configuration consists of the schedule tables for tasks as well as the disjoint
routes and GCLs for messages. We propose a Constraint Programming-based formulation which can be used
to find an optimal solution with respect to our cost function. Additionally, we propose a Simulated Annealing
based metaheuristic, which can find good solution for large test cases. We evaluate both approaches on several
test cases.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant systems
and networks

Keywords and phrases TSN, real-time, scheduling

1 Introduction

Many modern safety-critical real-time systems are implemented on distributed architectures. They
integrate functions with different security and safety requirements over the same deterministic
communication network. For example, the network in a modern vehicle has to integrate high-
bandwidth video and LIDAR data for Advanced Driver Assistance Systems (ADAS) functions with
the highly critical but low bandwidth traffic of e.g. the powertrain functions, but also with the
best-effort messages of the low-criticality diagnostic services. See Figure 1 for an example network
architecture of a modern vehicle.

Time-Sensitive Networking (TSN) [19], which is becoming the standard for communication in
several application areas, e.g. automotive to industrial control, is comprised of a set of amendments
and additions to the IEEE 802.1 standard, equipping Ethernet with the capabilities to handle real-time
mixed-criticality traffic with high bandwidth. A TSN network consists of several end-systems, that
run mixed-criticality applications, interconnected via network switches and physical links. Available
traffic types are Time-Triggered (TT) traffic for real-time applications, Audio-Video Bridging (AVB)
for communication that requires less stringent bounded latency guarantees, and Best-Effort (BE)
traffic for non-critical traffic.

We assume that safety-critical applications are scheduled using static cyclic scheduling and use
the TT traffic type with a given Redundancy Level (RL) for communication. We consider that the
task-level redundancy is addressed using solutions such as replication [21], and we instead focus

ar
X

iv
:2

10
9.

05
88

3v
1

 [
cs

.N
I]

 1
3

Se
p

20
21

mailto:nikre@dtu.dk
mailto:silviu.craciunas@tttech.com
mailto:paupo@dtu.dk

2 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

ES

ECU1

Switch

ECU3

ECU2

ECU4

Radar

Camera

TSN
Brakes

Steering

Figure 1 Example automotive TSN-based CPS with redundant routing

on the safety and security of the communication in TSN. The real-time safety requirements of
critical traffic in TSN networks are enforced through offline-computed schedule tables, called Gate
Control Lists (GCLs), that specify the sending and forwarding times of all critical frames in the
network. Scheduling time-sensitive traffic in TSN is non-trivial (and fundamentally different from
e.g. TTEthernet), because TSN does not schedule communication at the level of individual frames as
is the case in TTEthernet. Instead, the static schedule tables (GCLs) governs the behavior of entire
traffic classes (queues) which may lead to non-deterministic frame transmissions [9].

Since link and connector failures in TSN could result in fatal consequences, the network topology
uses redundancy, e.g., derived with methods such as [12]. In TSN, IEEE 802.1CB Frame Replication
and Elimination for Reliability (FRER) enables the transmission of duplicate frames over different
(disjoint) routes, implementing merging of frames and discarding of duplicates.

Nowadays modern Cyber-Physical Systems (CPSs) are becoming increasingly more interconnected
with the outside world opening new attack vectors [29,44] that may also compromise safety. Therefore,
the security aspects should be equally important to the safety aspects. Timed Efficient Stream Loss-
Tolerant Authentication (TESLA) [30] has been investigated as a low resource authentication protocol
for several networks, such as FlexRay and TTEthernet [47] networks. Adding security mechanisms
such as TESLA after the scheduling stage is oftentimes not possible without breaking real-time
constraints, e.g. on end-to-end latency, and degrading the performance of the system [47]. Thus
we consider TESLA and the overhead and constraints it imposes part of our configuration synthesis
problem formulation.

1.1 Related Work
Scheduling for TSN networks is a well-researched problem. It has been solved for a variety of
different traffic type combinations (TT, AVB, BE) and device capabilities using methods such as
Integer Linear Programming (ILP), Satisfiability Modulo Theories (SMT) or various metaheuristics
such as tabu search [9, 10, 13, 39].

Routing has also been extensively researched [14, 46]. The authors in [40] presented an ILP
solution to solve the routing problem for safety-critical AFDX networks. In [45] the authors used
a tabu search metaheuristic to solve the combined routing and scheduling problem for TT traffic in
TTEthernet. In [33] the authors provide a simple set of constraints to solve a general multicast routing
problem using constraint programming, which [12] builds on that to solve a combined topology and
route synthesis problem. In [27] the authors use a load-balancing heuristic to distribute the bandwidth

N. Reusch et. al. 3

usage over the network and achieve smaller latency for critical traffic.
Multiple authors have also looked at the combined routing and scheduling problem. The authors

in [24] and [26] showed that they are able to significantly reduce the latency by solving the combined
problem with an ILP formulation. In [28] the authors presented a heuristic for a more complex
application model that allows multicast streams. They were able to solve problems that were
infeasible to solve using ILP or separate routing and scheduling.

Recently authors have started to present security- and redundancy-aware problem formulations.
The authors in [47] provided a security-aware scheduling formulation for TTEthernet using TESLA
for authentication. In [25] the authors solve the combined routing and scheduling problem and
considered authentication using block ciphers. The authors in [16] and [6], on the other hand, present
a routing and scheduling formulation that is redundancy-aware but has no security considerations.

To the best of our knowledge our work is the first one to provide a formulation that is both security
and redundancy-aware.

1.2 Contributions
In this paper, we address TSN-based distributed safety-critical systems and solve the problem of
configuration synthesis such that both safety and security aspects are considered. Determining an
optimized configuration means deciding on the schedule tables for tasks as well as the disjoint routes
and GCLs for messages. Our contributions are the following:
1. We apply TESLA to TSN networks considering both the timing constraints imposed by TSN and

the security constraints imposed by TESLA.
2. We formulate an optimization problem to determine: (i) the redundant routing of all messages;

(ii) the schedule of all messages, encapsulated into Ethernet frames, represented by the GCLs in
the network devices, and (iii) the schedule of all related tasks on end-systems.

3. We extend our Constraint Programming (CP) formulation from [37] and propose a new Simulated
Annealing (SA)-based metaheuristic to tackle large scale networks that cannot be solved with CP

4. We evaluate the impact of adding the security from TESLA on the schedulability of applications
and we evaluate the solution quality and scalability of the Constraint Programming (CP) and
Simluated Annealing (SA) optimization approaches
We introduce the fundamental concepts of TSN in section 2 and of TESLA in section 3. In

section 4 we present the model of our system, consisting of the architecture of the network,
applications running on this architecture. Additionally we present a threat model and how it is
addressed by TESLA with a security model. In section 5 we formulate the problem we are solving
using the established models and present an example. In section 6 and section 7 we present the two
different optimization approaches, CP and SA. Then, we evaluate these approaches using several test
cases in section 8. section 9 concludes the paper.

2 Time-Sensitive Networking

Time-Sensitive Networking [19] has arisen out of the need to have more stringent real-time communication
capabilities within standard Ethernet networks. Other technologies that offer real-time guarantees
for distributed systems are TTEthernet (SAE AS6802 [20, 43]), PROFINET, and EtherCAT [35].
TSN comprises a set of (sub-)standards and amendments for the IEEE 802.1Q standard, introducing
several new mechanisms for Ethernet bridges, extensions to the IEEE 802.3 media access control
(MAC) layer, as well as other standards and protocols (e.g., 802.1ASrev).

The fundamental mechanisms that enable deterministic temporal behavior over Ethernet are, on
the one hand, the clock synchronization protocol defined in IEEE 802.1ASrev [18], which provides a
common clock reference with bounded deviation for all nodes in the network, and on the other hand,

4 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

Port A
(ingress) Sw

itching fabric

Priority 7

Priority 6

Priority 0

…

Priority filter

Transm
ission selection

Gate

Gate

Gate

T00: oCooCooo
T01: CoCooCCo
T02: CoCCCCCC
T03: oCooCooo
T04: oCooCooo
……

Port B
(ingress)

Port C
(egress)

Figure 2 Simplified TSN switch representation

the timed-gate functionality (IEEE 802.1Qbv [3]) enhancing the transmission selection on egress
ports. The timed-gate functionality (IEEE 802.1Qbv [3]) enables the predictable transmission of
communication streams according to the predefined times encoded in so-called Gate-Control Lists
(GCL). A stream in TSN definition is a communication carrying a certain payload size from a talker
(sender) to one or more listeners (receivers), which may or may not have timing requirements. In the
case of critical streams, the communication has a defined period and a maximum allowed end-to-end
latency.

Other amendments within TSN (c.f. [19]) provide additional mechanisms that can be used either
in conjunction with 802.1Qbv or stand-alone. IEEE 802.1CB [5] enables stream identification, based
on e.g., the destination MAC and VLAN-tag fields in the frame, as well as frame replication and
elimination for redundant transmission. IEEE 802.1Qbu [2] enables preemption modes for mixed-
criticality traffic, allowing express frames to preempt lower-priority traffic. IEEE 802.1Qci [4] defines
frame metering, filtering, and time-based policing mechanisms on a per-stream basis using the stream
identification function defined in 802.1CB.

We detail the Time-Aware Shaper (TAS) mechanism defined in IEEE 802.1Qbv [3] via the
simplified representation of a TSN switch in Figure 2. The figure presents a scenario in which
communication received on one of two available ingress ports (A and B) will be routed to an egress
port C. The switching fabric will determine, based on internal routing tables and stream properties,
to which egress port a frame belonging to the respective stream will be routed (in our logical
representation, there is only one egress port). Each port will have a priority filter that determines
which of the available 8 traffic classes (priorities) of that port the frame will be enqueued in. This
selection will be made based on either the priority code point (PCP) contained in the VLAN-tag of
802.1Q frames or the stream gate instance table of 802.1Qci, which can be used to circumvent traffic
class assignment of the PCP code. As opposed to regular 802.1Q bridges, where the transmission
selection sends enqueued frames according to their respective priority, in 802.1Qbv bridges, there
is a Time-Aware Shaper (TAS), also called timed-gate, associated with each traffic class queue and
positioned before the transmission selection algorithm. A timed-gate can be either in an open (o) or
closed (C) state. When the gate is open, traffic from the respected queue is allowed to be transmitted,
while a closed gate will not allow the respective queue to be selected for transmission, even if the
queue is not empty. The state of the queues is encoded in a local schedule called Gate-Control List
(GCL). Each entry defines a time value and a state (o or C) for each of the 8 queues. Hence whenever
the local clock reaches the specified time, the timed-gates will be changed to the respective open

N. Reusch et. al. 5

or closed state. If multiple non-empty queues are open at the same time, the transmission selection
selects the queue with the highest priority for transmission.

The Time-Aware Shaper functionality of 802.1Qbv, together with the synchronization protocol
defined in 802.1ASrev, enables a global communication schedule that orchestrates the transmission of
frames across the network such that real-time constraints (usually end-to-end latencies) are fulfilled.
The global schedule synthesis has been studied in [9, 10, 34, 39] focusing on enforcing deterministic
transmission, temporal isolation, and compositional system design for critical streams with end-to-end
latency requirements.

Craciunas et al. [9] define correctness conditions for generating GCL schedules, resulting in a
strictly deterministic transmission of frames with 0 jitter. Apart from the technological constraints,
e.g., only one frame transmitted on a link at a time, the deterministic behavior over TSN is enforced
in [9] through isolation constraints. Since the TAS determines the temporal behavior of entire traffic
classes (as opposed to individual frames like in TTEthernet [42]), the queue state always has to be
deterministic. Hence, in [9], critical streams are isolated from each other either in the time or space
domain by either allowing only one stream to be present in a queue at a time or by isolating streams
that are received at the same time in different queues. This condition is called frame/stream isolation
in [9]. In [39], critical streams are allowed to overlap to some degree (determined by a given jitter
requirement) in the same queue in the time domain, thus relaxing the strict isolation.

Both approaches enforce that gate states of different scheduled queues are mutually exclusive,
i.e., only one gate is open at any time, thus preventing the transmission selection from sending frames
based on their assigned traffic class’s priority. By circumventing the priority mechanism through the
TAS, it is ensured that no additional delay is produced through streams of higher priorities, enforcing
thus a highly deterministic temporal behavior.

3 Timed Efficient Stream Loss-Tolerant Authentication

TESLA provides a resource efficient way to do asymmetric authentication in a multicast setting [30].
It is described in detail in [30] and [32].

We are considering systems where one end-system wants to send a multicast-signal to multiple
receiver end-systems, e.g., periodic sensor data. A message authentication code (MAC), which is
appended to each signal, can guarantee authenticity, i.e., that the sender is who he claims to be, and
integrity, i.e., that the message has not been altered. The MAC is generated and authenticated by a
secret key that all end-systems share (i.e., symmetric authentication). The downside of this approach
is that if any of the receiving end-systems is compromised, the attacker would be able to masquerade
as the sender by knowing the secret key. In a multicast setting, an asymmetric approach, in which the
receivers do not have to trust each other, is preferable.

The traditional asymmetric authentication approach is to use asymmetric cryptography with digital
signatures (i.e., private and public keys); however, as stated in [31], the method is computationally
intensive and not well suited for systems with limited resources and strict timing constraints.

TESLA, however, uses an approach where the source of asymmetry is a time-delayed key
disclosure [30]. While this can be implemented with much less overhead, it requires time synchronization
between the network nodes. For TSN, the time synchronization is given through the 802.1ASrev
protocol.

Figure 3 visualizes the TESLA protocol. As described in [31], when using TESLA, time is
divided into fixed intervals of length Pint . At startup a one-way chain of self authenticating keys Ki is
generated using a hash function H, where Ki = H(Ki+1). Each key is assigned to one interval. The
protocol is bootstrapped by creating this chain and securely distributing K0 to all receivers [47].

Normally in TESLA, as described in [47], when a sender sends a message m in the i-th interval,

6 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

i-1 i i+1 i+2 timeInterval

Ki-1 Ki Ki+1 Ki+2
H(Ki) H(Ki+1) H(Ki+2)

Figure 3 TESLA key chain (Adapted from [31])

it appends to that message: i, a keyed-MAC using the key of that interval Ki, and a previously used
key Ki−d . Thus, a key remains secret for d intervals. When a receiver receives a message m in the
interval i it can not yet authenticate it. It must wait until a message arrives in the interval i+d. This
message discloses Ki, which can be used to decrypt the MAC of m and thus authenticate it. To ensure
that Ki itself is valid, we can use any previously validated key. For example, we can check that
H(Ki) = Ki−1, H(H(Ki)) = Ki−2 etc. This makes TESLA also robust to packet loss since any lost
keys can be reconstructed from a later key, and any key can always be checked against K0.

Due to the deterministic nature of our schedule, we can make some modifications to the basic
TESLA protocol without sacrificing security. The first modification is adopted from [47]. Since
bandwidth is scarce, we do not release the key Ki−d with every message/stream. Instead, it will
be released once in its own stream with an appropriate redundancy level. The second modification
concerns the TESLA parameter d. This parameter is useful in a non-deterministic setting. Since the
arrival time of a stream is uncertain, a high value for d makes it more likely that a stream can be
authenticated, at the cost of an increased latency. [32] However, in our case, we know the exact time
a stream will be sent and arrive. Thus, we assume that a stream’s keyed-MAC will be generated using
the key from the interval it arrives at the last receiver. Furthermore, we will release the key Ki in the
interval, i+1 minimizing the latency before a stream can be authenticated.

4 System Models

This section presents the architecture and application models, as well as the threat, security and fault
models. Our application model is similar to the one used in related work [47], but we have extended it
to consider TSN networks and the optimization of redundant routing in conjunction with scheduling.

4.1 Architecture Model

We model our TSN network as a directed graph consisting of a set of nodes N and a set of edges L.
The nodes of the graph are either end-systems (ESs) or switches (SWs): N = ES ∪SW . The edges
L of the graph represent the network links.

We assume that all of the nodes in the network are TSN-capable, specifically that they support
the standards 802.1ASrev [18] and 802.1Qbv [3]. Thus we assume the whole network, including
the end-systems, to be time-synchronized with a known bounded precision δ . All nodes use the
time-aware shaper mechanism from 802.1Qbv to control the traffic flow.

Each end-system ei ∈ ES features a real-time operating system with a periodic table-driven task
scheduler. Hash computations, which will be necessary for TESLA operations on that end-system,
take ei.H µs.

A network link between nodes na ∈ N and nb ∈ N is defined as la,b ∈ L. Since in Ethernet-
compliant networks all links are bi-directional and full-duplex, we have that for each la,b ∈ L there is
also lb,a ∈ L. A link la,b ∈ L is defined by a link speed la,b.s.

Figure 4a shows a small example architecture with four end-systems, two switches, and full-duplex
links.

N. Reusch et. al. 7

Table 1 Notations

Description Notation Unit
Header overhead OH Byte
Maximum transmission unit MTU Byte
TESLA key size KS Byte
TESLA MAC size MAC Byte
Hyperperiod H µs
TSN Network Graph (N ,L)
- Nodes N = ES ∪SW

- End-system ei ∈ ES
- Hash computation time ei.H µs

- Switch sw j ∈ SW
- Links L⊆N ×N

- Network link la,b
- Link speed la,b.s µs

Application λl ∈ Λ

- Tuple (Γl ,El)

- Period λl .T µs
- Communication Depth λl .C
- Tasks tm ∈ T

- Execution end-system tm.e
- Worst-case execution time tm.w µs
- Period tm.T µs

- Streams sn ∈ S
- Source task sn.ts
- Destination tasks sn.Td

- Size sn.b Byte
- Period sn.T µs
- Redundancy Level sn.rl
- Security Level sn.sl
- MAC generation task tg

sn

- MAC verification task tmv
sn

Security Application λ s
l ∈ Λsec

- Key release task tr
m

- Key verification task tv
m

- Key source end-system tv
m.src

- Key stream sk
n ∈ Sk

8 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

(a) Example Architecture

Application 1 (λ1):

(b) Example Application

Figure 4 Example architecture and application models

4.2 Application Model
An application λl ∈ Λ is modeled as a directed, acyclic graph consisting of a set of nodes representing
tasks Γl and a set of edges El represents a data dependency between tasks.

A task is executed on a certain end-system tm.e. The worst-case execution time (WCET) of a
task is defined by tm.w µs. A task needs all its incoming streams (incoming edges in the application
graph) to arrive before it can be executed. It produces outgoing streams at the end of its execution
time. Communication dependencies between tasks that run on the same end-system are usually done
via, e.g., shared memory pools or message queues, where the overhead of reading/writing data is
negligible and included in the WCET definition of the respective tasks. Dependencies between tasks
on separate end-systems constitute communication requirements and are modeled by streams. A
stream in the TSN context is a communication requirement between a sender and one (unicast) or
multiple (multicast) receivers. An example application can be seen in Figure 4b. An application is
periodic with a period λl .T , which is inherited by all its tasks and streams.

A stream sn originates at a source task sn.ts and travels to set of destination tasks sn.Td (since
we consider multicast streams). The stream size sn.b is assumed to be smaller than the maximum
transmission unit (MTU) of the network. Each stream has a redundancy level sn.rl, which determines
the amount of required disjunct redundant routes for the stream to take. For each of these routes we
model a sub-stream: si

n ∈ Ssn ,0 ≤ i < sn.rl Hereby Ssn is a set containing all sub-streams of sn. This
notation is useful to differentiate the different routes a stream takes through the network, and to make
sure those routes do not overlap. A stream also has a binary security level sn.sl which determines if it
is authenticated using TESLA (sl = 1) or not (sl = 0).

We define the hyperperiod H as the least-common multiple of all application periods: H =

lcm({λl .T |λl ∈ Λ}) We define the set T to contain all tasks and the set S to contain all streams
(including redundant copies).

4.3 Fault Model
Reliability models discussed in [12] (e.g., Siemens SN 29500) indicate that the most common type
of permanent hardware failures is due to link failures (especially physical connectors) and that ESs

N. Reusch et. al. 9

and SWs are less likely to fail. These models are complementary to Mean Time to Failure (MTTF)
targets established for various safety integrity levels in certification standards such as ISO 26262
for automotive [12]. As mentioned, we assume we know the required redundancy level to protect
against permanent link failures. Our disjoint routing can guarantee the transmission of a stream of RL
n despite any n−1 link failures. For example, for the routing of s2 with RL 2 in Figure 4a, any 1-link
failure would still result in a successful transmission.

4.4 Threat Model

We use a similar threat model as [47] and assume that an attacker is capable of gaining access to some
end-systems of our system, e.g., through an external gateway or physical access.

We consider that the attackers have the following abilities:

They know about the network schedule and the content of the streams on the network;

They can replay streams sent by other ES;

They can attempt to masquerade as other ES by faking the source address of streams they send;

They have access to all keys released and received by the ES they control;

4.5 Security Model

We use TESLA to address the threats identified in the previous section, which means that additional
security-related models are required. These additional applications, tasks and streams can be
automatically generated from a given architecture and application model.

First off, we need to generate, send, and verify a key in each interval for each set of communicating
end-systems. We generate a key authentication application λs ∈ Λsec for each sender end-system,
which is modeled similarly to a normal application as a directed acyclic graph. The period λs.T
is equal to Pint (see section 3) and again inherited by tasks and streams. Each of these application
consists of one key release task tr

m scheduled on the sending end-system ei. Additionally, it consists of
key verification tasks tv

j on each end-system e j that receives a stream from ei. The release task sends
a multicast key-stream sk

n to each of those verification tasks. The redundancy level of a key-stream
sk

n.rl is set to the maximum redundancy level of all streams emitted by ei. The size of a key stream
sk

n.b is equal to the key size KS specified by the TESLA implementation. The security model for our
example from Figure 4 can be seen in Figure 5.

For a key verification task tv
m.src is the end-system ei whose key this task is verifying. Its execution

time is equal to the length of one hash execution on its execution end-system: tv
m.w = (tv

m.e).H. A key
release task’s execution time is very short, since the key it releases has already been generated during
bootstrapping. We model it to be last half the time of a hash execution: tr

m.w = (tr
m.e).H

2
Secondly, we need to append MACs to all non-key-streams with sn.sl = 1. Thus, their length

increases by the MAC length MAC specified by the TESLA implementation. For each stream sn, a
MAC generation task tg

sn is added to the sender and a MAC validation task tmv
sn to each receiver. Those

tasks take the time of one MAC computation on the processing element to execute.
We define the set T n

kr to contain all key release tasks and T n
kv to contain all key verification tasks

for a given node n. Furthermore let Sk contain all key streams.
Figure 4a shows key release and verification tasks in orange and MAC generation and validation

tasks in red.
Figure 5 shows the security applications for our example.

10 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

Security Application 1 (λ2):

Security Application 2 (λ3):

Figure 5 Example security model for the applications in Figure 4

5 Problem Formulation

Given a set of applications running on TSN-capable end-systems that are interconnected in a TSN
network as described in the architecture, application, and security models in section 4, we want to
determine a system configuration consisting of:

an interval duration Pint for TESLA operations,
the routing of streams,
the task schedule,
the network schedule as 802.1Qbv Gate-Control Lists (GCLs),

such that:

all deadline requirements of all applications are satisfied.
the redundancy requirements of all streams and the security conditions of TESLA are fulfilled.
the overall latency of applications is minimized.

5.1 Motivational Example
We illustrate the problem using the architecture and application from Figure 4. We have one
application Figure 4b with 4 tasks, 2 streams and a period and deadline of 1000 µs. The tasks are
mapped to the end-systems as indicated in the figure. Stream s2 will be multicast. The size of both
streams is 50 B. For TESLA’s security requirements, i.e. s1.sl = s2.sl = 1, we generate two additional
security applications (Figure 5).

We have a TSN network with a link speed of 10 Mbit/s and zero propagation delay. Our TESLA
implementation uses keys that are 16 B and MACs that are 16 B. A hash computation takes 10 µs on
every ES.

A solution that does not consider the security and redundancy requirements is shown in Figure 6a.
With the TSN stream isolation constraint outlined in section 2 taken into consideration, the GCLs

N. Reusch et. al. 11

0 500 1000

(a) Schedule without security & redundancy

0 500 1000

(b) Schedule with security & redundancy

Figure 6 Example solution schedules for the models in Figure 4

are equivalent to frame schedules. We depict in Figure 6a the GCLs as a Gantt chart, where the red
rectangles show the transmission of streams s1 and s2 on network links, and the blue rectangles show
the tasks’ execution on the respective end-systems. To guarantee deterministic message transmission
in TSN, we have to isolate the frames in the time (or space) domain, leading to the delay of s1 and
thus t3. We refer the reader to [9] for an in-depth discussion on the non-determinism problem and
isolation solution in TSN.

In this paper, we are interested in solutions such as the one in Figure 6b, which considers both
the redundancy and security requirements. The black dashed line in the figure separates the TESLA
key release intervals, where Pint was determined to be 500 µs. Streams carrying keys are orange, key
generation tasks pink, key verification tasks green, and the MAC generation/validation operations on
ESs are shown in red. The routing of the non-key streams can be seen in Figure 4a. Note how the two
redundant copies of s2, s0

2 and s1
2 use non-overlapping paths.

Of particular importance is the delay incurred by the time-delayed release of keys: tasks t3 and t4
can only be executed after the keys authenticating s1 and s2 have arrived in the second interval, and
after key verification and MAC validation tasks have been run.

Scheduling problems like the one addressed in this paper are NP-hard as they can be reduced to
the Bin-Packing problem [11] and may be intractable for large input sizes. In the following sections,
we will propose a Constraint Programming (CP) formulation to solve the problem optimally for small
test cases, and a heuristic to solve the problem for large test cases.

12 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

X s1 s2_0 s2_1
ES1 ES1 nil nil
ES2 nil ES2 ES2
ES3 SW1 SW1 SW2
ES4 nil SW1 SW2
SW1 ES1 ES2 nil
SW2 nil nil ES2

Table 2 Matrix X for example from subsection 5.1

6 Constraint Programming Formulation

Constraint Programming (CP) is a technique to solve combinatorial problems defined using sets of
constraints on decision variables. For large scheduling problems it becomes intractable to use CP
due to the exponential increase in the size of the solution space [38]. In order to achieve reasonable
runtime performance, we split the problem into 3 sub-problems which we solve sequentially: (i)
finding a route for all streams, (ii) finding Pint , and (iii) finding the network and task schedule.

6.1 Optimizing redundant routing

The first step of solving the proposed problem is to find a set of (partially) disjoint routes for each
stream, depending on the stream’s redundancy level. The constraints in this section are inspired
by [12] and [33].

We model the stream routes with an integer matrix X , where the columns represent streams
(including their redundant copies) and rows represent nodes of the network. An entry at the position
of a stream sn and a node n in this matrix referring to a node m, represents a link from m to n on the
route of stream sn. Alternatively the entry could be nil, in which case n is not part of the route.

Using the matrix X , we can construct the route for each stream bottom-up as a tree, by starting at
the receiver nodes. See Table 2 for the matrix of our example.

To determine the route for each stream sn ∈ S, for each node n ∈ N we have the following
optimization variables:

x(sn,n) represents an entry of our matrix X. The domain of x(sn,n) is defined as: D(x(sn,n)) =
{m ∈ N|lm,n ∈ L}∪{n}∪ {nil}. We refer to x(sn,n) as the successor of n on the path to the
stream sender node.
y(sn,n) represents the length of the path from n to sn.ts.e, i.e. the length of the path from node n
to the sender node of the stream. D(y(sn,n)) = {i|0 <= i <= |SW|+1}

Furthermore, we define a few helper variables and functions. First off, we define Sd as the set
of all distinct streams, i.e., excluding the redundant copies of streams with redundancy level (RL)
greater than one. Additionally we define Ssd as the set of all redundant copies (including the stream
itself) of sd . Then we define the following helper function:

xsum(sd ,n,m) = ∑
s′d∈Ssd

(x(s′d ,n) == m) (1)

This function allows us, for any given sd ∈ Sd , to determine the number of redundant copies (including
sd itself) that use the link from m to n (nil is counted as zero).

N. Reusch et. al. 13

Then we have the following constraint optimization problem:

Minimize : ∑
sn∈S

cost(sn) (RC1)

where

cost(sn) = ∑
n∈N\{sn.ts.e}

(x(sn,n)! = nil) (RC2)

s.t.

x(sn,n) ̸= nil ⇒ y(sn,n) = y(f ,x(sn,n))+1, (R1)

∀sn ∈ S, n ∈N \{sn.ts.e}
x(sn,m) = nil ⇔ x(sn,n) ̸= m, (R2)

∀sn ∈ S, n,m ∈N
x(sn,n) ̸= nil, (R3.1)

∀sn ∈ S, n ∈ {tr.e|tr ∈ sn.Td}
x(sn,sn.ts.e) = sn.ts.e, (R3.2)

∀sn ∈ S
x(sn,n) = nil, (R3.3)

∀sn ∈ S, n ∈ ES \{tr.e|tr ∈ sn.Td}
y(sn,sn.ts.e) = 0, (R4)

∀sn ∈ S

∑
sd∈Sd

(
(xsum(sd ,n,m)> 0

)
× sd .b

sd .T
)≤ [m,n].s, (R5)

n,m ∈N
x(sn,n) ̸= x(s′n,n), (R6)

∀sn ∈ S, s′n ∈ Ssn \ sn, n ∈N \{sn.ts.e},

Please note that == and != are boolean expressions that evaluate to 1 if true and to 0 otherwise.
The cost function we are minimizing ((RC1),(RC2)) measures the length of the route of each

stream. 1

The constraint (R1) prevents cycles in the route, as defined in [33]. The constraint (R2) disallows
“loose ends”, i.e., a node that has a successor/predecessor must have a predecessor/successor itself.
Please note that we refer to the successor on the path from receiver to sender, i.e., the predecessor on
the route. The constraint (R3.1) states that all receivers of a stream have to have a successor. The
constraints (R3.2), (R3.3), and (R4) impose that the sender of the stream has itself as the successor,
no other end-system has a successor, and the path length is 0 at the sender node, respectively. The
constraint (R5) restricts the bandwidth usage of each link to be under 100%. If multiple copies of the
same stream use the same link, only one of them is counted as consuming bandwidth since we assume
that streams are intelligently split and merged using IEEE 802.1CB. The constraint (R6) forbids the
routes of redundant copies of a stream to overlap at any point.

1For some use cases, fully disjoint routes are not necessary. Refer to Appendix A for an updated formulation for
this case

14 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

6.2 Optimizing Pint

To set up the TESLA protocol, we need to choose the parameter Pint . Pint is the duration of one
key disclosure interval. It has a big influence on the latency of secure streams and thus on the
feasibility/quality of the schedule.

When choosing Pint there is a trade-off between overhead and latency. A small Pint reduces the
latency of secure streams but necessitates more key generation/verification tasks and key streams.
Thus, we want to determine the maximum value of Pint for which the latency is still within all deadline
bounds. To this end, we formulate constraints inspired by [47] for which we then determine the
optimal solution. This value is used as a constant in the subsequent optimization of the schedule.

We introduce a new notation: For each application λl ∈ Λ we define λl .C to be the communication
depth, i.e. the length of the longest path in the application graph where only edges with associated
secure streams are counted (ES-internal dependencies and non-secure streams are ignored). This
gives us a measure of the longest chain of secure communications within the application, which we
can use to estimate the amount of necessary TESLA intervals.

Then we have the following formulation:

Maximize : Pint (P0)

s.t.

∀λl ∈ Λ, Pint · (λl .C+1)≤ λl .T (P1)

H mod Pint = 0 (P2)

Pint mod gcd({λl .T |λl ∈ Λ}) = 0 or

Pint ∗n = gcd({λl .T |λl ∈ Λ}), n ∈ N (P3)

The constraint (P1) guarantees that Pint is small enough to accommodate the authentication of all
secure streams for all applications. The communication depth λl .C of an application gives a lower
bound of how many TESLA intervals are necessary to accommodate all these streams within the
period of the application, since there have to be n+1 intervals to accommodate the authentication of
n secure streams.

The purpose of the constraints (P2) and (P3) is to align the TESLA intervals with the schedule.
The (P2) makes Pint a divisor of the hyperperiod, while constraint (P3) makes Pint either a multiple
or a divisor of the greatest common divisor of all application periods.

6.3 Optimizing scheduling
In this step, we want to find a schedule for all tasks and streams which minimizes the overall latency
of streams while fulfilling all constraints imposed by deadlines, TESLA, and TSN. The routes for
each stream and Pint are given by the previous scheduling steps and assumed constant here.

We define the following integer optimization variables:

os
l as the offset of stream s on link or node l

cs
l as the transmission duration of stream s on link or node l

as
l as the end-time of stream s on link or node l

ϕs as the index of the earliest interval where stream s can be authenticated on any receiver
ot

n as the offset of task t (on node t.e)
at

n as the end-time of task t (on node t.e)

N. Reusch et. al. 15

As an example, let us assume a hyperperiod of 1000us and a stream s with a period of 500us.
os

l = 100, cs
l = 50, as

l = 150 would imply that the stream s is scheduled on link l in the following
time intervals: (100, 150) and (600, 650).

Furthermore we define several helper variables. Let E s be the set containing all receiver end-
systems of stream s:

E s = {t.e | t ∈ s.Td}

Let Rs be the set containing all links on the route of stream s as well as sender and receiver nodes:

Rs = {s.ts.e}∪E s ∪{la,b | x(s,b) = a, la,b ∈ L} (2)

Using these helper functions we define the following constraint-optimization problem for the task
and network scheduling step:

Minimize : ∑
λl∈Λ

cost(λl) (CS1)

where

cost(λl) = max({at | t ∈ Γl})−min({ot | t ∈ Γl}) (CS2)

s.t.

cost(λl)≤ λl .T (S1)

∀λl ∈ Λ

os
l = cs

l = as
l = 0, (S2.1)

∀s ∈ S, la,b ∈ L, la,b ̸∈ Rs

os
n = cs

n = as
n = 0, (S2.2)

∀s ∈ S, n ∈N , n ̸∈ Rs

os
l + cs

l = as
l , (S3.1)

∀s ∈ S, la,b ∈ L, la,b ∈Rs

os
n + cs

n = as
n, (S3.2)

∀s ∈ S, n ∈N , n ∈Rs

cs
l =

⌈
s.b
l.s

⌉
, (S4.1)

∀s ∈ S, la,b ∈ L, la,b ∈Rs

cs
n = n.H, (S4.2)

∀s ∈ S, n ∈N ∩Rs,s.secure == 1

The constraint (S1) sets the deadline for the completion of an application to its period. The
constraints (S2.1) and (S2.2) set all optimization variables to zero for every stream, for all nodes
and links not part of its route. For all other links and nodes constraints, (S3.1) and (S3.2) set the
end-time to be the sum of offset a length. For each link on the route of a stream constraint (S4.1) sets
the length to be the byte-size of the stream divided by the link-speed. In constraint (S4.2) the length
of secure streams on end-systems is set to the length of one hash-computation on that end-system,
approximating the duration of MAC generation/verification.

16 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

ϕ
s >

⌊
as

n

Pint

⌋
, (S5)

∀s ∈ S, la,b ∈ L∩Rs, b ∈ E s, s.secure == 1

os
n ≥ atkey +ϕ

s ∗Pint (S6)

∀s ∈ S, n ∈ E s,s.secure = 1

∀tkey ∈ T n
kv

as
la,b ≤ os

lb,c (S7.1)

∀s ∈ S, lb,c ∈ L∩Rs

a = x(s,b)

as
a ≤ os

la,b (S7.2)

∀s ∈ S, s.secure == 1,

la,b ∈ {la,b | la,b ∈ L∩Rs, a = s.ts.e}
as

la,b ≤ os
b (S7.3)

∀s ∈ S, s.secure == 1,

la,b ∈ {la,b | la,b ∈ L∩Rs, b ∈ E s}

In constraint (S5) the earliest authentication interval for a stream ϕs is bound to be after the latest
interval where the stream is transmitted. In constraint (S6) the start time of the stream on any receiver
end-system is then bound to be greater or equal to the start time of that interval plus the end-time of
the necessary preceding key verification task. The constraints (S7.1), (S7.2) and (S7.3) make sure
that every stream is scheduled consecutively along its route. Hereby constraint (S7.1) enforces the
precedence among two links, (S7.2) among the MAC generation on the sender and the first link and
(S7.3) among the last link and the following MAC verification.

(α × s1.T +as1
l ≤ β × s2.T +os2

l)∨ (β × s2.T +as2
l <= α × s1.T +os1

l) (S8)

∀s1,s2 ∈ S,s1 ̸= s2,∀l ∈Rs
1 ∩Rs

2,

∀α ∈ {0, ..., lcm(s1.T,s2.T)/s1.T}, ∀β ∈ {0, ..., lcm(s1.T,s2.T)/s2.T}
(α × s2.T +os2

lb,c
<= β × s1.T +os1

la1 ,b
)∨ (β × s1.T +os1

lb,c
<= α × s2.T +os2

la2 ,b
) (S9)

∀s1,s2 ∈ S,s1 ̸= s2,∀l ∈Rs
1 ∩Rs

2,

a1 = x(s1,b), a2 = x(s2,b),

∀α ∈ {0, ..., lcm(s1.T,s2.T)/s1.T}, ∀β ∈ {0, ..., lcm(s1.T,s2.T)/s2.T}

The constraint (S8) prevents any streams from overlapping on any nodes or links. Furthermore,
constraint (S9) guarantees that for each link connected to an output port of a switch, the frames
arriving on all input ports of that switch that want to use this output port cannot overlap in the time
domain. This is the frame isolation necessary for determinism in our TSN configuration, which is
further explained in [9].

N. Reusch et. al. 17

ot + t.w = at (T1)

∀t ∈ T
at ≤ os

t.e (T2.1)

∀t ∈ T , s ∈ S, s.ts = t, s.secure == 1

at ≤ os
la,b (T2.2)

∀t ∈ T , s ∈ S, s.ts = t, s.secure == 0

∀la,b ∈ L∩Rs, a == t.e

as
t.e ≤ ot (T3.1)

∀t ∈ T , s ∈ S, t ∈ s.Td , s.secure == 1

as
la,b ≤ ot (T3.2)

∀t ∈ T , s ∈ S, t ∈ s.Ts, s.secure == 0

∀la,b ∈ L∩Rs, b ∈ E s

(α × t1.T +at1 ≤ β × t2.T +ot2) ∨ (T4)

(β × t2.T +at2 ≤ α × t1.T +ot1)

∀t1, t2 ∈ T , t1 ̸= t2,

∀α ∈ {0, ..., lcm(t1.T, t2.T)/t1.T},
∀β ∈ {0, ..., lcm(t1.T, t2.T)/t2.T}

(α × t.T +at ≤ β × s.T +os
t.e) ∨ (T5)

(β × s.T +as
t.e ≤ α × t.T +ot)

∀t ∈ T , s ∈ S,s.secure == 1, t.e ∈Rs

∀α ∈ {0, ..., lcm(t.T,s.T)/t.T},
∀β ∈ {0, ..., lcm(t.T,s.T)/s.T}

The constraint (T1) sets the end-time of a task to be the sum of offset and length. The constraints
(T2.1) and (T2.2) model the dependency between a task and all its outgoing streams: such streams may
only start after the task has finished. Similarly, constraints (T3.1) and (T3.2) model the dependency
between a task and its incoming streams: such a task may only start after all incoming streams
have arrived. Finally, constraint (T4) prevents any two tasks from overlapping, while constraint (T5)
prevents a task from overlapping with a MAC generation/verification operation.

7 Metaheuristic Formulation

As mentioned in section 6, the scheduling problem addressed in this paper is NP-hard. As a
consequence, a pure CP formulation solved using a CP solver is not tractable for large problem sizes.
Hence, in this section, we propose a metaheuristic-based strategy, which aims to find good solutions
(without the guarantee of optimality) in a reasonable time, even for large test cases.

An overview of our strategy is presented in algorithm 1. We use a Simulated Annealing (SA)
metaheuristic [23] to find solutions Φ = (R,Σ), consisting of a set of routes R and a schedule Σ.
As an input, we provide our architecture model (N ,L) and the application model Λ. SA randomly
explorers the solution space in each iteration by generating “‘neighbors” of the current solution using
design transformations (or “moves”). We consider both routing and scheduling-related moves, and

18 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

Algorithm 1 Simulated Annealing Metaheuristic

1 Function heuristic(N ,L,Λ,Tstart ,α,k, prmv,a,b,w)
2 Φbest = Φ = InitialSolution(N ,L,Λ, k);
3 cbest = c = Cost(Φ, a, b);
4 t = Tstart ;
5 while stopping-criterion not True do
6 Φnew = RandomNeighbour(Φ, prmv);
7 cnew = Cost(Φnew, a, b);
8 δ = cnew − c;

9 if δ < 0 or random[0,1) < e−
δ
t then

10 Φ = Φnew;
11 c = cnew;
12 if cnew < cbest then
13 Φbest = Φnew;
14 cbest = cnew

15 t = t ∗α;
16 end
17 return Φbest ;

the choice is controlled by a prmv parameter that gives the probability of a routing move. To measure
the quality of a solution we use a cost function with two parameters a and b which are factors for
punishing overlap of redundant streams and missed deadlines for applications, respectively. While
we always accept better solutions, the central idea of Simulated Annealing is to also accept worse
solutions with a certain probability in order to not get stuck in local optima [7].

algorithm 1 shows the main loop of the heuristic. We start out with an initial solution, a cost value,
and a positive temperature. (line 2-4). Then, we repeat the steps described below until a stopping
criterion like a time- or iteration-limit is met. We create a slight permutation of the current solution Φ

by using the RandomNeighbour function (line 6). We calculate the cost of the new solution (line 7)
and a delta of the new and old cost (line 8). Now, if the delta is smaller than 0, i.e., if Φnew is a better
solution than Φ, we choose Φnew as the current solution (line 10-12). Alternatively, the new solution
is also accepted if a random chosen value between 0 and 1 is smaller than the value of the acceptance
probability function e−

δ
t . This acceptance probability will decrease with the temperature over time

and is also influenced by δ , which gives a measure of how much worse the new solution is. Finally,
since we will occasionally accept worse solutions, we keep track of the best cost achieved overall and
adjust it if necessary (line 12-14).

7.1 Precedence graph

We introduce a helper data structure in the form of a precedence graph. A precedence graph is a
collection of special DAGs, one for each application. These DAGs are expanded versions of the
DAGs from the application model. Here, streams are modeled as nodes instead of edges, and each
redundant copy of a stream has its own node. See Figure 7 for an example. This data structure helps
to model all the dependencies between tasks and streams in the scheduling algorithm. Additionally,
we will use the set of all topological orders of this graph as our solution space for the scheduling step.
An order can be seen as a scheduling priority assignment that respects all precedence constraints.

N. Reusch et. al. 19

7.2 Initial solution

In the beginning, we create an initial solution Φ from the given architecture and application model. A
solution is a tuple (R,Σ) consisting of a set of routes R and a schedule Σ. algorithm 2 details the
function to find the initial solution.

To find an initial set of routes, we iterate through all streams and all pairs of sender and receiver
ES (lines 2-3). For each such pair, we calculate and store k shortest paths for the given topology (line
5). For each redundant copy of a stream beyond the first, we calculate the shortest path in a weighted
graph, where we weight all link used by previous copies with w instead of 1 (line 7). For the initial
solution, we choose the shortest path for each pair (line 8). Note that our k-shortest-path algorithm
only generates paths without repeated nodes that do not traverse any end-system.

To find an initial schedule, we have to create the precedence graph P (line 11) and decide an order
O of this graph.

For the initial solution, we construct an order on the level of applications, i.e., we avoid interleaving
nodes of different applications. We prioritize key applications (lines 12-14) before other (normal)
applications (lines 15-17). This order is consequently used to create a schedule (line 19). See Figure 7
for an example order.

7.3 Neighbourhood function

The neighbourhood function RandomNeighbour(Λ, prmv) is detailed in algorithm 3. It is used during
Simulated Annealing to create a slight permutation of a given solution/candidate Φ. It contains two
fundamental moves: Changing the routing Λ.R or changing the schedule Λ.Σ. Which move is taken
is decided randomly (line 3). The parameter prmv influences how likely it is that the routing move is
taken, e.g., prmv = 0.5 would result in a probability of 50%.

A routing move consists of choosing a random stream s out of the set of all streams (line 4),
choosing a random receiver er out of all receivers of that stream (line 5) and then assigning a random
path out of the set of k-shortest-paths calculated during the creation of the initial solution (line 6).

A scheduling move consists of choosing two random normal (non-key) applications d1 and d2

(lines 8,9), switching their order O in the precedence graph P (line 10) and recalculating the schedule
(line 11). Whenever a new schedule is calculated, we also optimize its latency (line 12). This is
further explained in subsection 7.6.

Order:

Figure 7 Example precedence graph with associated order

20 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

Algorithm 2 InitialSolution

1 Function InitialSolution(N ,L,Λ,k,w)
// routing

2 foreach s ∈ S do
3 foreach er ∈ {tr.e|tr ∈ s.Td} do
4 if IsFirstCopyOfStream(s) then
5 Ker

s = ShortestPaths(s.ts.e,er,k,N ,L);
6 else
7 Ker

s = ShortestPathsWeighted(s.ts.e,er,k,N ,L,w);
8 Φ.Rs = ShortestPath(Ker

s) ;
9 end

10 end
// schedule

11 P = CreatePrecedenceGraph(Λ);
12 foreach λs ∈ Λsec do
13 O = O ∪ TopologicalOrder(λs,P);
14 end
15 foreach λn ∈ Λ\Λsec do
16 O = O ∪ TopologicalOrder(λn,P);
17 end
18 Φ.K = K;Φ.P = P;Φ.O = O;
19 Φ.Σ = Schedule(O,Φ.R);
20 return Φ;

Algorithm 3 RandomNeighbour

1 Function RandomNeighbour(Φ, prmv)
2 p = random[0,1];
3 if p < prmv then
4 s = RandomStream(Φ);
5 er = RandomReceiver(s);
6 Φ.Rs = RandomPath(Φ.Ker

s);
7 else
8 d1 = RandomNormalApplication(Φ);
9 d2 = RandomNormalApplication(Φ);

10 Φ.O = SwitchSchedulingOrder(d1, d2, Φ.O);
11 Φ.Σ = Schedule(Φ.O,Φ.R);
12 Φ.Σ = OptimizeLatency(Φ.Σ, Φ.P);
13 end
14 return Φ;

N. Reusch et. al. 21

7.4 Cost function
The cost function is used in the simulated annealing metaheuristic to evaluate the quality of a solution.
A lower cost means a better solution. algorithm 4 shows how our cost function is calculated. It consists
of two components: a routing cost croute and a schedule cost csched . The routing cost is the sum of the
number of overlaps of redundant stream (one for each stream for each link) which is punished with
a factor a and the total accrued length of all routes. The schedule cost is the sum of the number of
infeasible applications, which is punished with a factor b, and the total sum of all application latencies
(distance between start-time of first task and end-time of the last task). The factors a and b should be
sufficiently high such that solutions with less overlap and infeasible applications are preferred.

Algorithm 4 Cost

1 Function Cost(Φ, a, b)
2 croute = a * Overlaps(Φ.R) + Length(Φ.R);
3 csched = b * Infeasible(Φ.Σ) + Latency(Φ.Σ);
4 return croute + csched ;

7.5 ASAP list scheduling
To calculate a schedule for a given precedence graph with associated order and routing, we use an
ASAP list-scheduling heuristic [41], which schedules each node of the precedence graph in the given
order.

The algorithm, presented in algorithm 5, starts by iterating through each entry n of the given order
O (line 2). An entry may either be a task or a stream. For each entry, we determine where it will be
scheduled and create an indexable list L with all these locations (line 3). For a task, that set would
contain just one end-system, while for a stream, it may contain many links (which are synonymous to
an output port of a switch/ES) and also multiple end-systems, if the stream is secure, thus requiring
MAC generation/verification.

Using these locations we also create a set of blocks (line 4). A block b is a tuple (e, l,o,o,o, prev,next)
which is associated to an entry e (task/stream) and a location l (node/link). o represents the block
offset. o and o are parameters representing a lower and upper bound on the offset, which are used
during the algorithm. The set B is implemented as a linked list, where prev and next are references
to neighboring blocks on the route L. Note that in the case of multicast streams next could contain
references to multiple blocks.

We now iterate over all these blocks (lines 7-8). For each block we begin by calculating the lower
bound on the offset (line 9)2. Usually, this lower bound is going to be the end-time (offset+length) of
the block on the previous link, making sure that a stream is scheduled consecutively along its route.
The first block is the maximum of all end-times of the last blocks of the predecessors of the current
entry n in the precedence graph. For example for application λ1 in Figure 7, the lower bound of the
offset of the block of t3 would be set to the maximum of the end-times of the last blocks of s1, s0

2 and
s1

2.
Also, for a secure stream, for all blocks on receiver ESs (i.e., MAC validation tasks), the lower

bound is set to the end-time of the corresponding key verification task in the TESLA interval after the
stream was received on the ES, since, according to the TESLA security condition, the stream can
only be authenticated from that point on.

2The algorithm can be found in Appendix B

22 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

Algorithm 5 Scheduling - ASAP Heuristic

1 Function Schedule(P,R)
2 foreach n ∈ O do
3 L = GetRoute(n, R);
4 B = CreateBlocks(n, L);
5 l = L[0];
6 i = 0;
7 while true do
8 b = B[l];
9 b.o = CalculateLowerBound(n, b, P, R);

10 o = EarliestOffset(b, l);

11 if o == ∞ then
12 return false;
13 else if o ≤ b.o then
14 b.o = o;
15 foreach g ∈ b.next do
16 if IsBlockOnLink(g) then
17 g.o = LatestQueueAvailableTime(g, o);
18 end
19 i = i + 1;
20 if i < len(L) then
21 l = L[i];
22 else
23 break;
24 end
25 else
26 g = b.prev;
27 g.o = EarliestQueueAvailableTime(b, o);
28 l = b.prev.l;
29 i = L.indexOf(l);
30 end
31 end
32 Σ = UpdateSchedule(B);
33 end
34 return Σ;

N. Reusch et. al. 23

(a) Step 1

(b) Step 2

(c) Step 3

Figure 8 Backtrack example: Scheduling s2

In the next step, the earliest possible offset for the current block is calculated (line 10). This
function returns the earliest offset greater or equal to the lower bound within the feasible region. For
more detail see subsubsection 7.5.1.

If such an offset is found and it is smaller than or equal to the upper bound, we can assign it to
the block (line 14). We then iterate through each of the following blocks and set their upper bound
to the latest point in time when their node is available and has been since the offset (line 15-18).
This is done to fulfill the TSN constraint which forbids different streams to interleave within a queue
(c.f. [36], [9] for a more detailed explanation).

If such an offset is found but it is larger than the upper bound, it is impossible to schedule the block
while the port is still available, i.e., without it interleaving with other streams (line 25). Consequently,
we have to backtrack and schedule the previous block at a later time. Therefore we set the lower
bound of the previous block to the earliest time when the current port is available and remains so until
the offset (line 26-27).

Figure 8 gives an example of this process. In step 1, s1 has already been scheduled, and we are
in the process of scheduling s2. We have scheduled the first block on le2,sw1 and are now trying to
schedule the second one on lsw1,e3 . The lower bound of our offset o is set to the end-time of the first
block. The upper bound o is set to the latest time after which lsw1,e3 is still available after the offset of
the first block, i.e., the start time of s1 on that link. Finally, we find the earliest offset o to be only after

24 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

the end time of s1. It cannot be earlier since then the blocks of s2 and s1 would overlap. However,
scheduling s2 at that time is not possible since it would mean that the two streams interleave at the
same port. Consequently, in step 2, we backtrack and reschedule the first block of s2 by setting the
lower bound on its offset to the earliest time when its port is available and remains so until o. In step
3, we are able to schedule the second block of s2 without problems.

Once we have successfully found an offset for each block, we can update the schedule (line 32).
This will remove the found blocks B from the feasible region.

7.5.1 Calculating the earliest offset
Calculating the earliest offset (algorithm 6 shows the function) for a given block is an important part
of the heuristic. It takes a block b as an input and calculates the feasible region for that block (line 2).
It then returns the lowest possible time that is within the feasible region and greater or equal than the
lower bound (lines 3-6).

Algorithm 6 ASAP Heuristic - EarliestOffset

1 Function EarliestOffset(b)
/* ordered set of intervals */

2 I = GetFeasibleRegion(b);
3 foreach i ∈ I do
4 o = max(b.o, i.begin);
5 if i.contains(o) then
6 return o;
7 end

The function to calculate the feasible regions for a given block b is detailed in algorithm 7. We
start by getting all free intervals on the node/link b.l for the period b.e.T of the block (line 3). This
ensures that the feasible region does not include any previously scheduled blocks on that node/link.
The function then proceeds to fill the data structure R f eas with the free intervals, while cutting of a
piece with the length of the block b from the end of each such interval (lines 4-7). This makes the
feasible region represent all feasible values for the offset of the block.

7.6 Optimizing the latency for secure streams
If the block is assigned to a link, we have to cut down the feasible region further. Due to the TSN
isolation constraint, it is not allowed to transmit two different streams on the same port at the same
time. Thus, we iterate here over all the subsequent blocks bnext of the current block b, i.e., the blocks
on the next links/ES on the route of the stream associated with the block (line 9). If the next block
is also assigned to a link (not to an ES), we iterate through all already scheduled blocks bother on
that link bnext .l. These are blocks from other streams with whose predecessors, wherever they are
scheduled, we are not allowed to overlap. Thus, we cut the interval (bother.prev.o, bother.o) from the
feasible region (line 13).

Figure 9 provides two examples of feasible regions, shown in green, for a stream s2 on two
different routes. Looking at Figure 9(a), note the free space at the end of the period and before s1

on lsw1,e3 . Choosing an offset anywhere in this space would result in s2 being scheduled outside its
period or overlapping with s1. Choosing an offset in the first free space on le2,sw1 would result in s1

and s2 being transmitted to the same port at the same time, breaking the TSN isolation constraint.
Note how in Figure 9(b) this is not the case, since s2 is transmitted to a different port (lsw1,e4) than s1.

N. Reusch et. al. 25

Feasible regions for: Along the route:

(a) Route 1

Feasible regions for: Along the route:

(b) Route 2

Figure 9 Feasible region example

Algorithm 7 ASAP Heuristic - GetFeasibleRegion

1 Function GetFeasibleRegion(b)
2 R f eas = /0;
3 B f ree = GetFreeIntervals(b.l, b.e.T);

/* (i) Add all free intervals that could contain block b */
4 foreach iv ∈ B f ree do
5 if iv.end −Length(b)≥ iv.begin then
6 R f eas = AddToFeasibleRegion(R f eas, (iv.begin, iv.end - Length(b)));
7 end

8 if IsLink(b.l) then
/* (ii) Cut out the interval blocked by other streams on the

next port (TSN Stream Isolation) */
9 foreach bnext ∈ b.next do

10 if IsLink(bnext .l) then
11 foreach bother ∈ GetAllBlocksForLink(bnext .l) do
12 if bother ̸= bnext then
13 R f eas = CutFromFeasibleRegion(R f eas, (bother.prev.o,bother.o));
14 end
15 end
16 return R f eas;

26 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

After we have created a new schedule, we can apply some post-processing to minimize its
latency. Since TESLA requires a separation of sending and receiving tasks into separate intervals
and since we are using an ASAP heuristic, there can be a significant gap between those tasks, as can
be seen in Figure 10(a), resulting in an increased latency. To minimize the latency, the algorithm
in algorithm 8 will go through each secure stream of each application (line 4). It will use the
OptimizeLatencyForSecureStream function in algorithm 9 to optimize each stream individually. This
function shifts all instances of the given stream as close to the instances on the receiver end-system
as possible, without breaking the TESLA constraint. It also has an optional boolean parameter. If
that is set, it also shifts the sending task of the given stream (otherwise there would be no latency
gain). However, when we are optimizing a redundant stream, i.e. a stream where multiple copies
originate at the same task, said task should only be moved when the last copy is optimized (lines
6-11). Otherwise, we can shift it immediately (line 13)

Algorithm 8 ASAP Heuristic - OptimizeLatency

1 Function OptimizeLatency(Σ,P)
2 foreach λ inΛ do
3 foreach n ∈ TopologicalOrder(λ ,P) do
4 if IsStream(n.e) and n.e.secure and n.e ∈ Sd then
5 if n.e.rl > 1 then
6 foreach sr ∈ Sn.e do
7 if sr ̸= n.e then
8 nr = GetNode(sr, P);
9 OptimizeLatencyForStream(nr, False);

10 end
11 OptimizeLatencyForStream(n.e, True);
12 else
13 OptimizeLatencyForStream(n, True);
14 end
15 end

The OptimizeLatencyForSecureStream function in algorithm 9 works internally by looping through
the list of receivers of the given stream (line 2, multiple in case of a multicast stream). It goes
backwards through the linked list of blocks for the stream, starting with the block on the last link
before the current receiver (line 4). For each block, it will increase the offset as much as possible
(move them as far as possible to the right) (line 10). After changing the offset we update the schedule
(line 11). Then we continue iterating through the linked list (lines 17-19). If we arrive at the last
block and the move_task boolean is set, we finish by the offset of the sender task (lines 12-16).

8 Experimental Results

In this section, we evaluate our two solutions to the formulated problem: The Constraint Programming
formulation (referred to as CP, described in section 6) and the Simulated Annealing metaheuristic
(referred to as SA, described in section 7). We analyze their scalability, runtime and solution quality
and evaluate the impact of added redundancy and security.

Both solutions were implemented in Python 3.9. We developed a software tool with a web-based
interactive user interface to display the models and solutions, including a routing graph and the

N. Reusch et. al. 27

Algorithm 9 ASAP Heuristic - OptimizeLatencyForStream

1 Function OptimizeLatencyForStream(n, move_task)
2 foreach esrecv ∈ receivers(n) do
3 b = BlockOnLink(esrecv, n);
4 bprev = b.prev;
5 tkv = GetKeyVerificationTask(n.src, e);
6 bkv = GetBlock(tkv);
7 i = GetTESLAIntervalForBlock(bkv);
8 ub = i∗ tkv.T −bprev.L;

9 while bprev ̸= /0 do
10 bprev.o = min(ub, bprev.o);
11 UpdateSchedule(bprev);
12 if bprev.prev == /0 and move_task and IsLastReceiver(esrecv) then

/* Also move the sender task closer to the first block of
the stream */

13 tsender = GetSenderTask(n);
14 bsender = GetBlock(tsender);
15 ub = bprev.o−bsender.L;
16 bprev = tsender;
17 else if bprev.prev ̸= /0 then
18 ub = bprev.o−bprev.prev.L;
19 bprev = bprev.prev;
20 end
21 end

(a) Non-optimized stream

(b) Optimized stream

Figure 10 Latency optimization for secure streams

28 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

schedule.3 For solving the CP formulation we use the CP-SAT solver from Google OR-Tools [1]. For
calculating k-shortest-paths in the metaheuristic we use the shortest_simple_paths function from the
NetworkX [15] library. All evaluations were run on a High Performance Computing (HPC) cluster,
with each node configured with 2xIntel Xeon Processor 2660v3 (10 cores, 2.60GHz) and 16 GB
memory. Both CP and SA run on one node at a time

8.1 Test cases used for the evaluation

For the scalability evaluation we used the following test cases, see Table 3: the example presented in
section 5 (example), a realistic automotive test case from a large automotive manufacturer (auto) [12],
a medium-sized automotive case study from [22] (case_study) and 16 synthetic test cases of increasing
size and complexity. The topology of the auto test case was adjusted to allow disjunct redundant
routes.

For the redundancy/security impact evaluation, we used a further set of 100 synthetic test cases
grouped into four batches.

We created the synthetic test cases to be as realistic as possible: They all feature secure streams,
redundancy levels between 1 and 3, applications with complex dependencies and a realistic network
topology that allows disjunct redundant paths.

To create realistic topologies, we developed a custom algorithm, as follows. For a given number
of switches and end-systems, we create that many random points in 2D space. Then we connect each
switch to its closest neighbor until every switch is connected to 4 other switches. Afterwards, we
connect each end-system to the closest 3 switches.

To create realistic application DAGs, we used the GGen tool presented in [8] and the layer-by-
layer method with a depth of 3 and a connection probability of 50%. If a DAG contains separate
subgraphs these are split into separate applications. The application period is chosen randomly among
the set {10, 15, 20, 50ms}. Nodes of the generated DAG are interpreted as tasks with a random
WCET, upper bound at 6% of the period. Tasks are divided randomly between ES. All outgoing edges
of a node in the DAG combined are interpreted as a stream, with the source node as sender task and
the destination nodes as receiver tasks. The stream has a random size below or equal to 1.500 Bytes,
with a random RL between 1-3 and a 30% probability to be considered security critical.

We used a global link speed of 1000 Mbit/s. TESLA uses 16 B keys and MACs. A hash
computation takes 10 µs on every ES.

8.2 Scalability evaluation

To evaluate the scalability, we ran both the CP and the SA solutions on the same test cases with
the same computing resources. Table 3 shows the results for each test case for both solutions.
The columns # ES, # SW, # Streams, # Tasks give the total number of ES, SW, streams and tasks
respectively. # Receiver Tasks gives the total sum of stream receiver task (since we consider multicast
streams, one stream can have multiple). The Cost column gives the total cost of the found solution
following the cost function in algorithm 4. The T column shows the total runtime of the solver.

The CP solution was given a timeout of 60min. If CP failed to find an optimal solution in time, or
ran out of memory, we reported Cost and T as empty “/”. The SA solution was given a timeout of
10min (20min for the largest test case, giant1). We used ParamILS [17] to optimize the following
parameters for the SA heuristic: Tstart , α , k, prmv and w. a was set to 50000, b to 10000.

3The tool including the obtained results is available on GitHub: https://github.com/nreusch/TSNConf

https://github.com/nreusch/TSNConf

N. Reusch et. al. 29

Test case Method # ES # SW # Streams # Recv. Tasks # Tasks Cost T
example CP 4 2 6 10 9 467 1 s
example SA 4 2 6 10 9 477 10 m

auto CP 20 32 84 102 74 / /
auto SA 20 32 84 102 74 38031 10 m

case_study CP 6 2 29 31 28 3771 130 s
case_study SA 6 2 29 31 28 6114 10 m

tiny1 CP 4 2 2 2 6 1708 0.2 s
tiny1 SA 4 2 2 2 6 1708 10 m
tiny2 CP 4 2 3 4 6 1732 0.2 s
tiny2 SA 4 2 3 4 6 1732 10 m
tiny3 CP 4 2 11 13 15 7450 14 m
tiny3 SA 4 2 11 13 15 18088 10 m

small1 CP 8 4 10 16 20 5421 2 s
small1 SA 8 4 10 16 20 13303 10 m
small2 CP 8 4 14 20 23 9110 60 m
small2 SA 8 4 14 20 23 13794 10 m
small3 CP 8 4 29 48 35 7705 17.5 m
small3 SA 8 4 29 48 35 13781 10 m

medium1 CP 16 8 23 34 37 12991 4.5 m
medium1 SA 16 8 23 34 37 22883 10 m
medium2 CP 16 8 30 47 43 6552 5.2 m
medium2 SA 16 8 30 47 43 19455 10 m
medium3 CP 16 8 36 53 47 15515 60 m
medium3 SA 16 8 36 53 47 26486 10 m

large1 CP 32 16 47 86 73 / /
large1 SA 32 16 47 86 73 43872 10 m
large2 CP 32 16 33 65 72 24953 25 m
large2 SA 32 16 33 65 72 41026 10 m
large3 CP 32 16 69 170 104 / /
large3 SA 32 16 69 170 104 34860 10 m
huge1 CP 64 32 84 183 133 / /
huge1 SA 64 32 84 183 133 73070 10 m
huge2 CP 64 32 99 213 161 / /
huge2 SA 64 32 99 213 161 57246 10 m
huge3 CP 64 32 99 197 169 / /
huge3 SA 64 32 99 197 169 93357 10 m
giant1 CP 128 64 144 347 261 / /
giant1 SA 128 64 144 347 261 101799 20 m

Table 3 Scalability tests

Note that the CP solver will return once the optimal solution is found, while the SA solver will
always run until the timeout and return the best feasible (i.e. no missed deadlines or overlap) solution
found up to that point. However, SA is able to find a first feasible solution in a very quick time. For
all test cases in Table 3 it could find one in less than 10 s.

The table shows that CP is able to find solutions up to medium-sized test cases within the given

30 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

timeout, but it does not scale to the larger test cases. SA is scalable; it is able to find solutions even
for the the largest test cases. This scalability comes at an increase in cost by 67% on average, which
can be reduced by giving a longer timeout. This increase is mostly caused by increased application
latencies (scheduling cost), which are still within the deadlines, while the routing cost is usually
close to or equal to the optimal routing cost from the CP solution. The conclusion is that SA can be
successfully used to route and schedule large realistic test cases, and its quality is comparable to the
optimal solutions obtained by CP.

8.3 Impact of adding redundancy and security to a test case

Batch name Security Redundancy Cost Bandwidth CPU
0 batch0 - large streams, small tasks no no 3822.08 0.09 1.44
1 no yes +1.34% +25.45% +0.00%
2 yes no +256.25% +5.49% +12.99%
3 yes yes +258.10% +36.64% +15.93%
4 batch1 - large streams, large tasks no no 17721.32 0.08 7.06
5 no yes +-0.00% +15.91% +0.00%
6 yes no +64.31% +3.18% +1.39%
7 yes yes +64.98% +22.16% +1.75%
8 batch2 - small streams, large tasks no no 18547.6 0.01 7.51
9 no yes +0.06% +31.29% +0.00%
10 yes no +52.86% +33.92% +0.21%
11 yes yes +53.12% +97.96% +0.70%
12 batch3 - small streams, small tasks no no 3713.32 0.01 1.55
13 no yes +0.37% +26.62% +0.00%
14 yes no +238.77% +27.73% +8.54%
15 yes yes +245.32% +85.57% +10.57%

Table 4 Impact of security and redundancy measures

The feasible solutions fulfil the security and redundancy requirements of streams. These
requirements introduce extra tasks and streams that need to be routed and scheduled, leading to
an overhead compared to the case when we would ignore the security and redundancy requirements
of an application. In this set of experiments, we were interested to evaluate the overhead fulfilling
the redundancy and security requirements compared to the case these are ignored. These overheads
were measured on solution cost, available bandwidth, and CPU resources. Hence, we created four
batches of 25 synthetic test cases each. Each test case has a random topology with 8 switches and
16 end-systems, 24 tasks and multiple applications with random DAGs. Streams have a random RL
between 1 and 3 and 30% probability to be considered security critical.

Each batch features either large (1000-1500 B) or small (1-250B) streams and either large (≤10%
of period) or small (≤2% of period) tasks. Each batch was run 4 times using the first feasible
SA solution with different combinations of enabled/disabled security and redundancy requirements.
Disabled security means that all streams are set to a security level of 0, which disabled redundancy
means that all streams are set to a redundancy level of 1.

Table 4 shows the results. We always take the results for the no-security, no-redundancy run as a
baseline and note the percentual increase in total cost, total bandwidth occupation percentage and
total CPU utilization percentage in the following rows. Bandwidth and CPU utilization are measured
as the mean of the total utilization over all links and ESs respectively.

N. Reusch et. al. 31

As can be seen, the impact of adding security and redundancy differs significantly, depending on
the size of initial streams and tasks. Note that an increase in overhead is expected with an increase in
the number and difficulty of the security and redundancy requirements.

Adding redundancy has a negligible impact on cost and CPU utilization but always has a significant
impact on bandwidth. Adding security always has a significant impact on cost, as each application
with secure streams has to be split into multiple TESLA intervals. The impact of adding security on
bandwidth and CPU utilization depends largely on the relative size of streams and WCET of tasks
compared to the TESLA overhead. For example, 16 bytes of overhead for a MAC a much more
significant for a 100 B stream than for a 1000 B stream.

8.4 Discussion
Our proposed SA implementation is able to determine good solutions in a reasonable time, even for
large test cases. In addition, it can find feasible solutions (where all timing, safety and redundancy
requirements are satisfied) extremely quickly, within 10 s even for large test cases. This can be useful,
e.g., for evaluating several architectures in terms of their monetary costs and redundancy allowed by
the physical topology, prototyping or for rapid runtime reconfiguration in case of failures or changes
in traffic patterns. Although CP can find optimal solutions, it does not scale for large test cases, and it
is not flexible, that is, it will not report solutions which are not feasible. An advantage of SA is its
ability to find return near-feasible solutions for those test cases that cannot be solved, i.e. solutions
with some infeasible applications or overlapping streams. SA is able to point out the names of the
offending apps/tasks and streams, which can give a good indication on where the configuration has to
be improved to become feasible, e.g., by increasing the redundancy in the physical topology or by
changing the mapping of tasks to ESs.

9 Conclusion

In this paper, we addressed the combined TSN routing and scheduling problem for complex
applications with redundancy and security requirements.

We proposed TESLA as an efficient authentication protocol for use-cases with low-powered
devices and multicast communication. We proposed a modification to the protocol that makes it more
lightweight, made possible by the real-time guarantees of our network.

We developed two methods to solve the combined routing and scheduling problem: A Constraint
Programming solution which can solve small and medium-sized test cases optimally and a solution
that combines a Simulated Annealing metaheuristic and an ASAP list scheduling which can solve
very large test cases.

We formalized the constraints governing our problem and came up with novel ways to handle
the complexities introduced by TESLA and redundancy while calculating correct solutions in the
heuristic. Furthermore, we developed and shared a useful tool for reuse of our solutions and interactive
visualization of routes and schedules.

We evaluated the impact of adding security and redundancy to existing applications and showed
that much the overheads depend on the size of existing tasks and streams.

References
1 CP-SAT Solver Guide.
2 IEEE Standard for Local and metropolitan area networks – Bridges and Bridged Networks – Amendment

26: Frame Preemption. IEEE Std 802.1Qbu-2016 (Amendment to IEEE Std 802.1Q-2014) (Aug 2016),
1–52.

32 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

3 IEEE Standard for Local and metropolitan area networks – Bridges and Bridged Networks - Amendment
25: Enhancements for Scheduled Traffic. IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q— as
amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q—/Cor 1-2015)
(March 2016), 1–57.

4 IEEE Standard for Local and metropolitan area networks–Bridges and Bridged Networks–Amendment
28: Per-Stream Filtering and Policing. IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014
as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, IEEE Std 802.1Q-2014/Cor 1-2015,
IEEE Std 802.1Qbv-2015, IEEE Std 802.1Qbu-2016, and IEEE Std 802.1Qbz-2016) (Sep. 2017), 1–65.

5 IEEE standard for local and metropolitan area networks–frame replication and elimination for reliability.
IEEE Std 802.1CB-2017 (2017), 1–102.

6 ATALLAH, A. A., HAMAD, G. B., AND MOHAMED, O. A. Routing and scheduling of time-triggered
traffic in time-sensitive networks. IEEE Transactions on Industrial Informatics 16, 7 (2020), 4525–4534.

7 BURKE, E. K., KENDALL, G., ET AL. Search methodologies. Springer, 2005.
8 CORDEIRO, D., MOUNIÉ, G., PERARNAU, S., TRYSTRAM, D., VINCENT, J. M., AND WAGNER, F.

Random graph generation for scheduling simulations. Simutools 2010 - 3rd International Icst Conference
on Simulation Tools and Techniques (2010).

9 CRACIUNAS, S. S., SERNA OLIVER, R., CHMELIK, M., AND STEINER, W. Scheduling real-time
communication in IEEE 802.1Qbv Time Sensitive Networks. In 24th International Conference on
Real-Time Networks and Systems (RTNS) (2016), ACM.

10 DÜRR, F., AND NAYAK, N. G. No-wait Packet Scheduling for IEEE Time-sensitive Networks (TSN). In
Proc. RTNS (2016), ACM.

11 FALK, J., DÜRR, F., AND ROTHERMEL, K. Exploring practical limitations of joint routing and scheduling
for tsn with ilp. In Proc. RTCSA (2018), pp. 136–146.

12 GAVRILUT, V., ZARRIN, B., POP, P., AND SAMII, S. Fault-tolerant topology and routing synthesis
for ieee time-sensitive networking. In Proceedings of the 25th International Conference on Real-Time
Networks and Systems (2017), Association for Computing Machinery, p. 267–276.

13 GAVRILUŢ, V., ZHAO, L., RAAGAARD, M. L., AND POP, P. Avb-aware routing and scheduling of
time-triggered traffic for tsn. IEEE Access 6 (2018), 75229–75243.

14 GRAMMATIKAKIS, M. D., HSU, D., KRAETZL, M., AND SIBEYN, J. F. Packet routing in fixed-
connection networks: A survey. Journal of Parallel and Distributed Computing 54, 2 (1998), 77–132.

15 HAGBERG, A. A., SCHULT, D. A., AND SWART, P. J. Exploring network structure, dynamics, and
function using networkx. In Proceedings of the 7th Python in Science Conference (Pasadena, CA USA,
2008), G. Varoquaux, T. Vaught, and J. Millman, Eds., pp. 11 – 15.

16 HUANG, K., WAN, X., WANG, K., JIANG, X., CHEN, J., DENG, Q., XU, W., PENG, Y., AND LIU, Z.
Reliability-aware multipath routing of time-triggered traffic in time-sensitive networks. Electronics 10, 2
(2021).

17 HUTTER, F., HOOS, H. H., LEYTON-BROWN, K., AND STÜTZLE, T. ParamILS: an automatic algorithm
configuration framework. Journal of Artificial Intelligence Research 36 (October 2009), 267–306.

18 IEEE. 802.1AS-Rev - Timing and Synchronization for Time-Sensitive Applications. http://www.
ieee802.org/1/pages/802.1AS-rev.html, 2016. Accessed: 11.06.2019.

19 IEEE. Official Website of the 802.1 Time-Sensitive Networking Task Group. http://www.ieee802.
org/1/pages/tsn.html, 2016. Accessed: 11.06.2019.

20 ISSUING COMMITTEE: AS-2D2 DETERMINISTIC ETHERNET AND UNIFIED NETWORKING. SAE
AS6802 Time-Triggered Ethernet. http://standards.sae.org/as6802/, 2011. retrieved 20-May-
2014.

21 IZOSIMOV, V., POP, P., ELES, P., AND PENG, Z. Design optimization of time- and cost-constrained fault-
tolerant distributed embedded systems. In Design, Automation and Test in Europe (2005), pp. 864–869
Vol. 2.

22 KANDASAMY, N., HAYES, J. P., AND MURRAY, B. T. Dependable communication synthesis for
distributed embedded systems. Reliability Engineering and System Safety 89, 1 (2005), 81–92.

23 KIRKPATRICK, S., GELATT, C. D., JR., AND VECCHI, M. P. Optimization by simulated annealing.
Science 220 (1983), 671–680.

http://www.ieee802.org/1/pages/802.1AS-rev.html
http://www.ieee802.org/1/pages/802.1AS-rev.html
http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html
http://standards.sae.org/as6802/

N. Reusch et. al. 33

24 LAURSEN, S. M., POP, P., AND STEINER, W. Routing optimization of avb streams in tsn networks.
SIGBED Rev. 13, 4 (Nov. 2016), 43–48.

25 MAHFOUZI, R., AMINIFAR, A., SAMII, S., ELES, P., AND PENG, Z. Security-aware routing and
scheduling for control applications on ethernet tsn networks.

26 NAYAK, N. G., DÜRR, F., AND ROTHERMEL, K. Routing algorithms for ieee802.1qbv networks.
SIGBED Rev. 15, 3 (Aug. 2018), 13–18.

27 OJEWALE, M. A., AND YOMSI, P. M. Routing heuristics for load-balanced transmission in tsn-based
networks. SIGBED Rev. 16, 4 (Jan. 2020), 20–25.

28 PAHLEVAN, M., TABASSAM, N., AND OBERMAISSER, R. Heuristic list scheduler for time triggered
traffic in time sensitive networks. SIGBED Rev. 16, 1 (Feb. 2019), 15–20.

29 PEREIRA, T., BARRETO, L., AND AMARAL, A. Network and information security challenges within
industry 4.0 paradigm. Procedia Manufacturing 13 (2017), 1253 – 1260.

30 PERRIG, A., CANETTI, R., SONG, D., AND TYGAR, J. D. Efficient and secure source authentication for
multicast. In Network and Distributed System Security Symposium, NDSS (2001), vol. 1, pp. 35–46.

31 PERRIG, A., CANETTI, R., TYGAR, J. D., AND SONG, D. The tesla broadcast authentication protocol.
RSA CRYPTOBYTES (2002), 2002.

32 PERRIG, A., SONG, D., CANETTI, R., TYGAR, J. D., AND BRISCOE, B. Timed efficient stream
loss-tolerant authentication (tesla): Multicast source authentication transform introduction. RFC 4082,
RFC Editor, June 2005.

33 PHAM, Q. D., AND DEVILLE, Y. Solving the quorumcast routing problem by constraint programming.
Constraints 17, 4 (2012), 409–431.

34 POP, P., LANDER RAAGAARD, M., CRACIUNAS, S. S., AND STEINER, W. Design optimization of
cyber-physical distributed systems using IEEE time-sensitive networks (TSN). IET Cyber-Physical
Systems: Theory and Applications 1, 1 (2016), 86–94.

35 PRYTZ, G. A performance analysis of EtherCAT and PROFINET IRT. In Proc. ETFA (2008), IEEE
Computer Society.

36 RAAGAARD, M. L., AND POP, P. Optimization algorithms for the scheduling of IEEE 802.1 Time-
Sensitive Networking (TSN). Tech. rep., DTU Compute, Technical University of Denmark, 2017.

37 REUSCH, N., POP, P., AND CRACIUNAS, S. S. Work-in-progress: Safe and secure configuration
synthesis for tsn using constraint programming. In 2020 IEEE Real-Time Systems Symposium (RTSS)
(2020), pp. 387–390.

38 ROSSI, F., VAN BEEK, P., AND WALSH, T. Handbook of constraint programming. Elsevier, 2006.
39 SERNA OLIVER, R., CRACIUNAS, S. S., AND STEINER, W. IEEE 802.1Qbv Gate Control List Synthesis

using Array Theory Encoding. In Proc. Real-Time and Embedded Technology and Applications Symposium
(RTAS) (2018), IEEE.

40 SHEIKH, A., BRUN, O., CHÉRAMY, M., AND HLADIK, P.-E. Optimal design of virtual links in afdx
networks. Real-Time Systems 49 (05 2013), 308–336.

41 SINNEN, O. Fundamental Heuristics. John Wiley & Sons, Ltd, 2007, ch. 5, pp. 108–144.
42 STEINER, W. An evaluation of SMT-based schedule synthesis for time-triggered multi-hop networks. In

Proc. RTSS (2010), IEEE.
43 STEINER, W., BAUER, G., HALL, B., AND PAULITSCH, M. TTEthernet: Time-Triggered Ethernet. In

Time-Triggered Communication, R. Obermaisser, Ed. CRC Press, Aug 2011.
44 STUDNIA, I., NICOMETTE, V., ALATA, E., DESWARTE, Y., KAANICHE, M., AND LAAROUCHI, Y.

Survey on security threats and protection mechanisms in embedded automotive networks. Proceedings of
the International Conference on Dependable Systems and Networks (2013), 6615528.

45 TĂMAŞ-SELICEAN, D., POP, P., AND STEINER, W. Design optimization of ttethernet-based distributed
real-time systems. Real-Time Syst. 51, 1 (Jan. 2015), 1–35.

46 WANG, B., AND HOU, J. Multicast routing and its qos extension: problems, algorithms, and protocols.
IEEE Network 14, 1 (2000), 22–36.

47 ZHAO, R., QIN, G., LYU, Y., AND YAN, J. Security-aware scheduling for ttethernet-based real-time
automotive systems. IEEE Access 7 (2019), 85971–85984.

34 Dependability-Aware Routing and Scheduling for Time-Sensitive Networking

A Routing constraint formulation for forbidden overlap

To achieve a constraint formulation in which overlap is possible do the following:
Replace (RC2):

cost(sn) = length_cost(sn)+100∗overlap_cost(sn) (RC2)

Introduce the following:

length_cost(sn) = ∑
n∈N\{sn.ts.e}

(x(sn,n)! = nil) (RC3)

overlap_cost(sn) = ∑
n∈N\{sn.ts.e}

∑
m∈N\{n}

link_cost(sn,n,m) (RC4)

link_cost(sn,n,m) = (xsum(sn,n,m)−1)∗ (x(sn,n) == m) (RC5)

Remove (R6)

B Additional functions from metaheuristic formulation

B.1 CalculateLowerBound

Algorithm 10 ASAP Heuristic - CalculateLowerBound

1 Function CalculateLowerBound(n, b, P, R)
2 lb = 0;
3 if b.prev == /0 then

/* If n is a task or the first stream instance */
4 foreach nprev ∈ Predecessors(n,P) do
5 b = LastBlock(nprev);
6 lb = max(lb, b.o+Length(b));
7 end
8 else if IsLink(b.l) then

/* If n is a stream and b.l is a link */
9 foreach lprev ∈ PredecessorLinks(b.l,n,R) do

10 bprev = BlockOnLink(b.l, n);
11 lb = max(lb, bprev.o+Length(bprev));
12 end
13 else

/* If n is a stream and l is a receiver end-system */
14 tveri f y

key = GetKeyVerificationTask(n, l);

15 bveri f y
key = GetBlockForEntry(tveri f y

key);

16 i = GetTESLAIntervalForBlock(bveri f y
key);

17 lb = bveri f y
key .o+ i∗bveri f y

key .e.T +Length(bveri f y
key);

18 end
19 return max(lb, b.o);

N. Reusch et. al. 35

B.2 BlockQueues

Algorithm 11 ASAP Heuristic - BlockQueues

1 Function BlockQueues(n, B, L)
2 foreach l ∈ L do

/* Calculate blocks for each frame of n */
3 i = 0;
4 foreach b ∈ B do
5 offsets[i] = b.o+ i∗b.e.T ;
6 endtimes[i] = b.o+ i∗b.e.T +Length(b);
7 i = i + 1;
8 end

/* Block queues/end-systems */
9 foreach T ∈ Periods do

10 for i = 0 to len(offsets)-1 do
11 o = offset[i];
12 e = endtimes[i];
13 if e%T < o%T then

/* Handle wrap around period border */
14 CutFromFeasibleRegion(l, o%T , T);
15 CutFromFeasibleRegion(l, 0, e%T);
16 else
17 CutFromFeasibleRegion(l, o%T , e%T);
18 end
19 end
20 end
21 end

	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Time-Sensitive Networking
	3 Timed Efficient Stream Loss-Tolerant Authentication
	4 System Models
	4.1 Architecture Model
	4.2 Application Model
	4.3 Fault Model
	4.4 Threat Model
	4.5 Security Model

	5 Problem Formulation
	5.1 Motivational Example

	6 Constraint Programming Formulation
	6.1 Optimizing redundant routing
	6.2 Optimizing Pint
	6.3 Optimizing scheduling

	7 Metaheuristic Formulation
	7.1 Precedence graph
	7.2 Initial solution
	7.3 Neighbourhood function
	7.4 Cost function
	7.5 ASAP list scheduling
	7.5.1 Calculating the earliest offset

	7.6 Optimizing the latency for secure streams

	8 Experimental Results
	8.1 Test cases used for the evaluation
	8.2 Scalability evaluation
	8.3 Impact of adding redundancy and security to a test case
	8.4 Discussion

	9 Conclusion
	A Routing constraint formulation for forbidden overlap
	B Additional functions from metaheuristic formulation
	B.1 CalculateLowerBound
	B.2 BlockQueues

