
Concurrency and Scalability versus
Fragmentation and Compaction with

Compact-fit

Silviu S. Craciunas Christoph M. Kirsch Hannes Payer
Harald Röck Ana Sokolova

Technical Report 2009-02 April 2009

Department of Computer Sciences

Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.cosy.sbg.ac.at

Technical Report Series

Concurrency and Scalability
versus

Fragmentation and Compaction
with Compact-fit?

Silviu S. Craciunas Christoph M. Kirsch Hannes Payer
Harald Röck Ana Sokolova

Department of Computer Sciences
University of Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Abstract. We study, formally and experimentally, the trade-off in tem-
poral and spatial performance when managing contiguous pieces of mem-
ory using the explicit, dynamic memory management system Compact-fit
(CF). The key property of CF is that temporal and spatial performance
can be bounded, related, and predicted in constant time through the
notion of partial and incremental compaction. Partial compaction deter-
mines the maximally tolerated degree of memory fragmentation. Incre-
mental compaction, introduced here, determines the maximal amount of
memory involved in any, logically atomic portion of a compaction opera-
tion. We explore CF’s potential application space on (1) multiprocessor
and multicore systems as well as on (2) memory-constrained uniproces-
sor systems. For (1), we argue that little or no compaction is likely to
avoid the worst case in temporal as well as spatial performance but also
observe that scalability only improves by a constant factor. Scalability
can be further improved significantly by reducing overall data sharing
through separate instances of Compact-fit. For (2), we observe that in-
cremental compaction can effectively trade-off throughput and memory
fragmentation for lower latency.

1 Introduction

Compact-fit (CF) [7] is an explicit, dynamic memory management system. CF
partitions memory into virtual pages of equal size by maintaining a list of free
pages and a segregated list of finitely many so-called size-classes where each size-
class is a doubly-linked list of used pages that are further partitioned into virtual,
so-called page-blocks of equal and unique size. A memory object is allocated as
contiguous piece of memory in a free page-block of the size-class with the smallest
page-block size that still fits the object. Memory allocation, deallocation, and
access takes constant time (unless compaction is necessary when deallocating,
? Supported by a 2007 IBM Faculty Award, the EU ArtistDesign Network of Excel-

lence on Embedded Systems Design, and the Austrian Science Fund No. P18913-N15.

which takes linear time in the size of the deallocated object). Allocation of
memory objects larger than the page size is not part of CF itself but may be
done on top of CF by array, tree-, or list-based data structures that combine
sufficiently many pages to accommodate large objects resulting in allocation and
deallocation times that are linear and memory access times that are constant,
logarithmic, or linear, respectively, in the size of the objects. However, we do not
consider large-object management here.

The size-class concept is generally subject to fragmentation through parti-
tioning, that is, to bounded page-block-internal, page-internal, and size-external
fragmentation [2], but enables CF to keep memory size-class-compact at all
times [7]. Memory is size-class-compact if each of its size-classes is compact.
A size-class is compact with respect to a so-called partial compaction bound κ
if the size-class contains only non-empty pages of which at most κ are not-full.
A size-class is said to be totally compact, fully compact, or partially compact if
it is compact with respect to κ = 0, κ = 1, or κ > 1, respectively. Note that,
as opposed to the leftover space caused by fragmentation through partitioning,
which is wasted for any request, the free space in not-full pages of a size-class,
called size-class fragmentation, is wasted for any request but the requests that
actually match the size-class. Partial compaction can only control the degree of
size-class fragmentation.

CF always keeps all size-classes compact with respect to individual, per-
size-class partial compaction bounds κ > 0. Overall memory fragmentation is
therefore bounded and predictable in constant time. Note that κ = ∞ is also
permissible and means that any number of not-full pages in a size-class is toler-
ated. A memory object is allocated, in constant time, in a free page-block either
of a not-full page of the adequate size-class (implicitly compacting allocation),
or else, if there is no not-full page in the size-class, of a free page that is then re-
moved from the list of free pages and assigned to the size-class (non-compacting
allocation). A memory object is deallocated, either in constant time, by mark-
ing the page-block used by the object as free, if the size-class remains partially
compact (non-compacting deallocation), or else in linear time in the size of the
object, by marking a used page-block of a not-full, so-called source page as free
after copying the content of that (source) page-block to the (target) page-block
used by the object, which, in this case, must be located in a full, so-called target
page (compacting deallocation). If the page in which a page-block was marked
as free becomes empty, the page is removed from the size-class and returned to
the list of free pages.

In order to facilitate compacting memory (that may contain references) in
time linear in the size of the moved objects, CF maintains a map (A2C) from
abstract object addresses (that do not change when moving objects) to the
concrete object addresses in memory. Objects may only refer to other objects
using their abstract addresses, which implies that memory access requires one
level of indirection, unless compaction is turned off with κ = ∞. As a result,
whenever an object is moved in memory, only its concrete address in the A2C
map needs to be updated. CF stores the abstract address of each object in the

object itself so that the object’s entry in the A2C map can be determined in
constant time. Otherwise, determining the abstract addresses of objects selected
for compaction, for which only the concrete addresses are known, would require
searching the A2C map.

After discussing related work (Section 2) and discussing the previously de-
scribed, moving (and non-incremental) version of CF in detail (Section 3), we
first argue probabilistically that, for any mutator behavior, both compaction
and worst-case size-class fragmentation are less likely to happen with increas-
ing partial compaction bounds κ. For systems whose memory resources are less
constrained and applications that do not require tight guarantees, partial com-
paction may therefore be set to large κ, or even turned off entirely. This observa-
tion has lead us to develop an optimized, non-compacting version of CF without
abstract addressing that does not maintain the A2C map and can therefore
be used in any application without modifications. Macrobenchmarks show that
the optimized version performs almost as fast as other constant-time systems
but requires up to 35% more memory, of which less than 5% can be attributed
to size-class fragmentation and the rest to fragmentation through partitioning
(Section 8). We argue that partitioning memory as in CF still has the benefit
of being subject to a probabilistic and not just an experimental fragmentation
analysis (Section 4), at the expense of increased memory consumption.

Low

Medium

High Low

Medium

High

Low

Medium

High

LatencyThroughput

M
em

or
y

n−CF(∞,∞)

1−CF(∞,∞)

n−CF(1,∞)

n−CF(κ,∞)

1−CF(κ,∞) 1−CF(κ,ι)

1−CF(1,∞) 1−CF(1,ι)

in
cr

ea
si

ng
 κ

Fig. 1. Deallocation throughput, system latency, and memory fragmentation with dif-
ferent versions and configurations of Compact-fit

We then introduce incremental CF for slow systems, at the other end of
the spectrum, whose memory resources are constrained and that run applica-
tions requiring tight guarantees, in particular on system latency and memory
consumption (Section 5). Incremental CF uses a global compaction increment
ι > 0, which breaks up compaction into logically atomic operations that do not
move more than ι bytes at a time. If n is the degree of concurrency, then there

may be at most n pending incremental compaction operations moving objects
stored in n source page-blocks from n source pages to n target pages. The mem-
ory occupied by the n source page-blocks causes so-called transient size-class
fragmentation in the n source pages. The key result is that the time complex-
ity of memory allocation, deallocation, and access remains asymptotically the
same as with non-incremental CF while overall memory fragmentation is still
bounded and predictable in constant time (Section 6). Incremental CF may im-
prove system latency at the expense of allocation and deallocation throughput
and transient size-class fragmentation (Section 8).

Figure 1 gives an intuitive overview of the effect of different versions and con-
figurations of CF on allocation and deallocation throughput, system latency, and
memory fragmentation. A configuration 1-CF(κ, ι) denotes a single instance of
a CF system with a per-size-class partial compaction bound κ > 0 and a global
compaction increment ι > 0. The instance may be shared by concurrently run-
ning threads using a number of different, standard synchronization techniques
(Section 7). Incremental compaction is off if ι =∞. Partial compaction is off if
κ = ∞, which implies that incremental compaction is also off. Full compaction
is on if κ = 1. The fully compacting, non-incremental 1-CF(1,∞) configuration
minimizes memory fragmentation at the expense of throughput and latency. In
comparison, the fully compacting, incremental 1-CF(1, ι) configuration may re-
quire more memory because of transient size-class fragmentation and provide
less throughput but may reduce latency. With κ > 1, memory fragmentation
may go up proportionally to κ with both configurations while throughput may
be higher and latency may be lower as there may be fewer compaction opera-
tions. The non-compacting 1-CF(∞,∞) configuration may provide even higher
throughput and lower latency but may also consume even more memory. The
key advantage of this configuration is that it may be optimized as mentioned
above.

A configuration n-CF(κ, ι) denotes n instances of a CF system, one for each of
n threads, which is meant to improve scalability on multiprocessor and multicore
systems (Section 7). Compared to the single-instance configurations, throughput
may be higher but memory fragmentation may also go up with the compacting
configurations since partial compaction bounds are enforced per instance and
therefore per thread. Our experiments show that partial compaction on fast
systems may only have an effect on scalability by a constant factor since the
time required to perform a single compaction operation on such systems is close
to the time required to perform any other CF operation, independently of the
size of the involved object. More relevant to scalability is the degree of data
sharing, in particular, through the A2C map (Section 8).

The contributions of this paper are the design, implementation, and com-
prehensive, formal and experimental evaluation of concurrent versions of (1) an
optimized, non-compacting CF system, (2) the previously described, compact-
ing, non-incremental CF system [7], and (3) a new, compacting, incremental CF
system.

2 Related Work

We relate our work to dynamic memory management systems of different
kinds: explicit sequential allocators, explicit concurrent allocators, and concur-
rent garbage-collection-based systems with compaction (cf. [12] for an extensive
online bibliography).

Most of the established explicit sequential dynamic memory management
systems [16, 22] are optimized to offer excellent best-case and average-case re-
sponse times, but in the worst-case are unbounded in the size of the memory
allocation or deallocation request, i.e., depend on the global state of memory.
The best known are First-fit, Best-fit [14] and DL [15] with allocation times de-
pending on the global state of memory. Half-fit [19] and TLSF [17] are exceptions
offering constant response-time bounds for allocation and deallocation, but even
they may suffer from unbounded and unpredictable memory fragmentation.

Several concurrent dynamic memory allocators have been designed for scal-
able performance on multiprocessor systems. Hoard [5] provides fast and scalable
memory allocation and deallocation operations, using locks for synchronization
and avoiding false sharing of cache lines. A lock-free memory allocator with
lower latency based on the principles of Hoard is given in [18]. A partly lock-free
non-portable memory allocator, which requires special operating system sup-
port, is discussed in [8]. McRT-Malloc [10] is a non-blocking scalable memory
management algorithm, which avoids atomic operations on typical code paths
by accessing only thread-local data and uses the same memory layout (pages and
size-classes) as CF. None of these systems provides temporal or spatial guaran-
tees.

There are many concurrent compaction strategies implemented in garbage-
collected systems, which do not provide temporal or spatial guarantees. In [9]
a parallel stop-the-world memory compaction algorithm is given, where multi-
ple threads compact the whole heap. Compressor [13] is a concurrent, parallel,
and incremental compaction algorithm which compacts the whole heap during
a single heap pass, achieving perfect compaction. A further parallel incremen-
tal compaction approach is presented in [4] where the heap is split into pieces
which are compacted one at a time by moving objects to a new memory re-
gion. A fixup pass takes care of reference updates. An algorithm with improved
compaction pause times via concurrent reference updates, using only half of the
heap, is given in [20]. Each thread performs reference updates proportional to
its allocation requests.

Garbage-collecting memory management systems that do provide response-
time guarantees on allocation and deallocation operations are Jamaica [24] and
Metronome [3]. With Jamaica allocation and deallocation take linear time in the
size of the operation request. Compaction is not needed since memory objects do
not occupy contiguous pieces of memory. Metronome is a time-triggered garbage
collector, which uses the same memory layout as CF. Compaction in Metronome
is part of the garbage collection cycles. The time used for compaction is esti-
mated to at most 6% of the collection time [2], without precise guarantees. The
performance of Metronome depends highly on the mutator behavior. MC2 [23] is

an incremental soft real-time garbage collector designed for memory constrained
devices, which cannot provide hard guarantees on maximum pause time and
CPU utilization, but comes with low space overhead and tight space bounds.
Stopless [21] is another garbage collector with soft guarantees on response times.
It provides low latency while preserving lock-freedom, supporting atomic opera-
tions, controlling fragmentation by compaction, and supporting multiprocessor
platforms. The main contribution of Stopless is a compaction algorithm which
moves objects in the heap concurrently with program execution. Exact bounds
for response times, as well as fragmentation, are missing in Stopless.

We remark that CF, like many of the above mentioned systems, is based on
segregated lists. Approaches that are not based on segregated lists, but rather on
data structures which maintain locality of objects, are known to perform better
when accessing objects by utilizing memory caches more effectively. However,
the use of segregated lists enables providing and trading-off temporal and spatial
guarantees.

3 Non-incremental Compact-fit

EMPTY NOT-FULL

FULL

COMPACTION

Fig. 2. Size-class automaton with π > 1

Compact-Fit (CF) is a dynamic memory management system that provides
strict temporal and spatial (fragmentation) guarantees. Allocation as well as
deallocation without compaction takes constant time, whereas deallocation with
compaction takes linear time in the size of the object.

To be precise, there are two CF implementations [7], but in this paper we
only focus on the more fundamental so-called moving implementation.

The set-up of CF is as follows: The memory is divided in pages of equal size.
Each page (in use) contains a certain number of constant-sized page-blocks. In
total there are finitely many available page-block sizes, which determine to which
size-class a page belongs (namely all pages with a given page-block size belong
to one size-class). The pages are assigned to a size-class only if they are used
(non-empty). The number of page-blocks π per page in a size-class is therefore

determined by the size of a page and the block size. The state of a size-class
depends on the state of the pages that belong to it and is described by the
values of the variable tuple

〈h, n, u1, . . . un〉

where h is the total number of allocated page-blocks in the size-class (its portion
of the heap), n is the number of not-full pages, and for each not-full page i, ui
is the number of used page-blocks in the page.

An allocation request for an object of size l is served by a page of a best-
fitting size-class. That is, for allocating an object a single page-block is used in
a page whose page-blocks are of the smallest size still big enough to fit l. For
example, if there are two size-classes, one with page-blocks of size 10 and one
with page-blocks of size 20 units, then an allocation request for an object of size
l ∈ {11, 12, . . . 20} will be served by a page of the size-class 20. If all pages in the
best-fitting size-class are full, then a new empty page is added to the size-class
and the object is allocated in this new page.

We allow for a constant number κ > 0 of not-full pages per size-class. The
aim in the design of CF is to control size-class fragmentation, which is the space
occupied by free page-blocks in not-full pages (space not available for allocation
in other size-classes). If deallocation happens, and the number of not-full pages
becomes κ + 1 after this deallocation operation, then compaction is invoked.
Compaction consists of moving a single object from a not-full page to the page-
block of the deallocated object, which is the only empty page-block in that page.
As a result, after compaction, the number of not-full pages in a size-class does
not exceed κ.

An object is assigned a unique abstract address (pointer indirection table
entry), which has to be dereferenced whenever accessing an object field. This
introduces a constant object dereferencing overhead but facilitates predictability
of reference updates during compaction, i.e., whenever an object is moved in
memory it requires to update just its abstract address space entry.

We show the CF algorithm in full detail in Figure 2, using a deterministic au-
tomaton, one per size-class. For presentation purposes, we draw a quotient of the
state space of the size-class: EMPTY stands for the single state 〈0, 0〉 representing
an empty size-class; NOT-FULL represents all states with at least one not-full page
where no compaction is needed, that is 〈h, n, u1, . . . un〉 with 0 < n ≤ κ; the state
FULL represents all states with no not-full pages and at least one full page, that
is 〈h, 0〉 with h > 0; finally, COMPACTION represents states 〈h, κ+ 1, u1, . . . , uκ+1〉
in which compaction must be invoked.

The transitions in the automaton are labelled in the following way: A denotes
allocation, Di deallocation in page i (which may be full or not-full, the latter is
recognized by i ≤ n), and C denotes a compaction step. Moreover, a transition
fires if its premise is satisfied, and results in a change of state described by its
conclusion. For updating a state, we use the operators← for assignment, dec for
decrement, inc for increment, and sl for shift left. More precisely, sl(i) removes ui
from a state sequence, i.e., it changes a state 〈h, n, u1, . . . , ui−1, ui, ui+1, . . . , un〉
to the sequence 〈h, n, u1, . . . , ui−1, ui+1, . . . , un〉.

We explain several instructive transitions in full detail, and refer the reader
to Figure 2 for the full algorithm.

A
(
h←1, n←1, u1←1

)
from EMPTY to NOT-FULL

This transition fires whenever allocation is requested in the empty state. As a
result the state changes to 〈1, 1, 1〉.

Di

(
i≤n, ui > 1

dec(h), dec(ui)

)
from NOT-FULL to NOT-FULL

This transition is taken upon a deallocation step in a not-full page which
remains non-empty after the deallocation. The change in the state is that the
number of used page-blocks is decremented by 1, and, as in every deallocation
step, the heap size decreases by 1.

A
(

inc(h), n←1, u1←1

)
from FULL to NOT-FULL

Whenever an object is allocated in a state of the class FULL a new empty page
has to be added to the size-class, and allocation happens in this page. As a
result this new page becomes the only not-full page of the size-class with a
single page-block used. The value of h increases by one, as with any allocation
operation.

Di

(
n=κ, i>n

dec(h),inc(n),un←π−1

)
from NOT-FULL to COMPACTION

With this transition we are in a situation when after the required deallocation
operation, in the i-th page which was full, we have more than κ not-full pages.
Therefore, compaction must be invoked in the next step.

C
(

u1=1, n>2
sl(1), dec(dec(n))

)
from COMPACTION to NOT-FULL

Being in state COMPACTION, the next transition has to be of type C. Moreover,
note that n = κ + 1 ≥ 2. During the compaction step a page-block is moved
from the first not-full page (represented by u1) to the last not-full page, namely
the one in which deallocation just happened. This particular transition fires if
the first not-full page has just one page-block. As a result it becomes empty
after the transition, whereas the last not-full page becomes full. Since n > 2
the transition leads to the state NOT-FULL. The operation shift left is needed to
remove the value u1 for the now empty page.

We note that in case π = 1, i.e., in a size-class in which each page consists of
exactly one page-block, there are no not-full pages. A page is either empty or full.
In this case compaction can never happen. Therefore, the size-class automaton
simplifies significantly as shown in Figure 3.

We have chosen the automaton presentation of CF in order to prepare the
ground for the concurrent version. For the original presentation of CF, we refer

EMPTY FULL

Fig. 3. Size-class automaton with π = 1

the interested reader to [7]. We extend the non-incremental CF with blocking and
non-blocking synchronization mechanisms so that multiple threads can share a
single (or multiple) instance(s). In particular, we make the size-class automaton
transitions (including a combination of a deallocating transition followed by a
compacting step) atomic. As a result, multiple threads can execute and use CF
in parallel, interleaving between the atomic transitions. The details of the par-
ticular implementation and the various choices of synchronization mechanisms
are discussed in Section 7. The results are encouraging for throughput oriented
environments, see Section 8.

4 Probabilistic Analysis

We present initial results of a probabilistic CF analysis. A complete study re-
mains for future work. Interestingly, it is the partitioned memory layout of CF
that allows for such an analysis, since the partitioning into pages and size-classes
significantly reduces the state space of the model. We aim at answering the fol-
lowing two questions:

1. What is the probability that compaction happens?
2. What is the probability of worst-case fragmentation?

We analyze the behavior of CF given a mutator, which is a sequence of
allocations A and deallocations D, hence a word in {A,D}∗. A mutator is not
aware of the internal CF configuration, e.g. in which page deallocation happens.
Therefore, we abstract away from the index i in the deallocation label Di and the
CF size-class automaton becomes a probabilistic I/O automaton (PIOA) [25],
with input actions A and D provided by the mutator, and an output action C
provided by CF. Note that the states of this automaton are either input states
in which A and D are enabled, or output states in which C is enforced, which
makes it simpler than general PIOA. For brevity we only discuss the behavior
of a single state. In a state 〈h, n, u1, . . . , un〉 with n ≤ κ, upon deallocation D,
there are several possible next states that are reached with different probabilities:
for all i with ui > 1, with probability ui

h deallocation happens in the not-full
page i which will remain not-full afterwards and the next state becomes 〈h −
1, n, u1, . . . , ui−1, ui− 1, ui+1, . . . , un〉; for all i such that ui = 1 with probability

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

pr
ob

ab
ili

ty
 o

f c
om

pa
ct

io
n

deallocation level

κ=1
κ=2
κ=3
κ=4
κ=5
κ=6
κ=7
κ=8
κ=9

κ=10

(a) compaction

0

1.0e-5

0.001

0.01

0.1

1

 0 5 10 15

pr
ob

ab
ili

ty
 o

f w
or

st
-c

as
e

fr
ag

m
en

ta
tio

n

deallocation level

κ=1 κ=2 κ=3 κ=4 κ=5 κ=6

(b) worst-case fragmentation

Fig. 4. Probability of reaching compaction and worst-case fragmentation

1
h deallocation happens in page i reducing the number of not-full pages and
the next state is 〈h − 1, n − 1, u1, . . . , ui−1, ui+1 . . . , un〉; and with probability
h−

P
i ui

h the next state is 〈h− 1, n+ 1, u1, . . . , un, π− 1〉 as deallocation happens
in a full page. The allocation and compaction transitions remain the same as in
the deterministic automaton, they happen with probability 1 in states in which
they are enabled. This way we get the full PIOA model, with initial state 〈0, 0〉.

The full PIOA model together with a mutator induces a discrete-time Markov
chain, the full DTMC, by pruning out the allocation/deallocation possibilities
that the mutator does not prescribe in each state and abstracting away from the
transition labels. The full DTMC model results in a large state space already
for small values of h, π, and κ.

To reduce the number of states, we consider only mutators of the shape AhDd

which perform h allocations followed by d deallocations. We analyze portions of
the full model by setting the state reached after performing h allocations as initial
state. This is the state 〈h, 0〉 if h mod π = 0, or 〈h, 1, h mod π〉 otherwise. Then
we consider the portion of the full model reachable in d deallocations. We refer
to d as the deallocation level. Even such versions of the full model are too big:
for h = 80, π = 10, and κ = 5 the DTMC model in Prism [1] has 1429506 states
and 2818395 transitions, and for h = 80, π = 10, and κ = 6, Prism runs out of
memory.

The probability of compaction is the probability of reaching a compacting
state, i.e., a state with n = κ+1. The probability of reaching a specified state in

a DTMC is the sum over all paths of the probability of reaching the state along a
path, where the probability of reaching the state along a path is calculated as the
product of the probabilities on the path until the state is reached, or equals zero
if the state is not reached (in at most d steps). We run both Prism and our own
program for exact calculation of the probability of compaction on the model (in
Prism only as long as no state space explosion occurs). The results of our exact
calculations and of Prism coincide, and they are presented in Figure 4(a) for the
values h = 1400, π = 100, and varying values of κ and d. The particular values of
h and π are not significant, we have chosen them so that the probability graphs
are sufficiently apart from each other. As expected, the probability of reaching
a state where compaction happens for a fixed κ increases with increasing d, and
it overall decreases when increasing κ.

Given a state 〈h, n, u1, . . . , un〉 the (size-class) fragmentation in this state is
calculated as F = n · π −

∑n
i=1 ui. The probability of worst-case fragmentation

is the probability of reaching a worst-case fragmentation state, i.e., a state with
fragmentation F = κ · (π − 1). The results are shown in Figure 4(b) for h =
120, π = 3, and varying values of κ and d. We present the results for small
values of π so that the effect of emptying a page within d deallocations can
be seen even for small values of d. Given a partial compaction bound κ, the
probability of worst-case fragmentation oscillates periodically as d increases,
reaching a maximum value for certain values of d. This maximal probability
of worst-case fragmentation decreases with increasing κ, as intuitively expected.
Note that the y-axes has a logarithmic scale, and the maximum probabilities of
worst-case fragmentation are very low, for κ > 1.

5 Incremental Compact-fit

For applications which require low latency and run on memory-constrained sys-
tems, we provide an extension of CF that allows for incremental compaction,
i.e., incremental moving of a single object.

The incremental extension of CF performs compaction, i.e., moving of a sin-
gle object, by an incremental moving operation. The reason why compaction is
made incremental is its dominating linear complexity. This incremental exten-
sion is the first step towards a design of latency-efficient concurrent CF. For a
concurrent incremental version of CF, allocation, deallocation, and incremental
compaction are made atomic, leaving space for other interleaving threads be-
tween the atomic steps. As a result the waiting times of concurrent threads, and
therefore their response times, decrease, although the compaction throughput
may also decrease.

There is a global fixed compaction increment ι > 0 which determines the
portion of a page-block being moved in an incremental step. The value of ι may
even be larger than some page-block sizes, in which case the whole compaction
operation is done non-incrementally, in one step. We refer to a page-block un-
der incremental moving as the source page-block, and the page-block to which
the object is moved as the target page-block. The state of each size-class and its

administration gain complexity in the incremental version. In a size-class, apart
from the full and not-full pages, there may exist one source page. In a source
page there are used page-blocks and source page-blocks. The latter are page-
blocks that are in the process of being incrementally moved. One source page
suffices, since compaction in CF requires moving a used page-block which is now
always taken from the source page. Allocation never happens in a source page.
A source page always contains at least one used page-block. If a source page
looses all its used page-blocks (due to deallocation or compaction), it is removed
from the size-class and placed into a global pool E of emptying source pages.
All pages in the pool contain page-blocks that are involved in ongoing incremen-
tal compaction operations. The space occupied by source page-blocks and free
page-blocks in (emptying) source pages, which is (temporarily) not available for
allocation in any size-class, is called transient size-class fragmentation. When
all incremental compaction operations in an emptying source page finish, then
the page is returned to the global list of free pages. On the other hand, if all
incremental compaction operations within a source page finish, i.e., the source
page has no more source page-blocks, and if there are still used page-blocks in
the source page, then there are two possibilities: (1) the source page becomes
a not-full page, if the number of not-full pages is smaller than the partial com-
paction bound, or (2) the source page is kept as a potential source page without
source page-blocks, otherwise. The evolution of a page is shown in Figure 5.

full not-full source

emptying
source

empty

in a size-class

Fig. 5. The lifetime of a page

The state of a size-class is described by a tuple

〈h, n, u1, . . . , un, us, s,m1, . . . ,ms〉

where, as before, h denotes the current heap size, n is the number of not-full
pages such that n ≤ κ+ 1 with κ being the partial compaction bound, and the
values of u1, . . . , un are the numbers of used page-blocks in the not-full pages,
respectively. The value of us equals the number of used page-blocks in the source
page, with us = 0 representing that there is no source page in the size-class. The
variable s contains the number of source page-blocks in the source page and
equals 0 if there is no source page. Note that s = 0 and us > 0 represents

the existence of a potential source page, as discussed above. Finally, m1, . . . ,ms

are the sizes of the portions of the s source page-blocks that have already been
moved.

Figure 6 shows an abstraction of the size-class behavior. Similar to Figure 2,
we use abstract states to describe the state changes: EMPTY stands for the single
state 〈0, 0, 0, 0〉 representing an empty size-class; the state NOT-FULL, no source rep-
resents all states with at least one not-full page where no compaction is needed
and no source page is present, that is 〈h, n, u1, . . . un, 0, 0〉 with 0 < n ≤ κ; the
state FULL, no source represents all states with no not-full pages, at least one full
page, and no source page, that is 〈h, 0, 0, 0〉 with h > 0; NOT-FULL, source represents
all states with at least one not-full page where no compaction is needed and a
source page, that is 〈h, n, u1, . . . un, us, s,m1, . . . ,ms〉 with 0 < n ≤ κ, us > 0;
FULL, source represents all states with no not-full pages, at least one full page, and
a source page, that is 〈h, 0, us, s,m1, . . . ,ms〉 with h > 0 and us > 0; finally,
COMPACTION is used to represent states 〈h, κ + 1, u1, . . . , uκ+1, us, s,m1, . . . ,ms〉
in which compaction must be invoked. We note that the automaton and the dis-
cussion in this section is under the assumption that the number of page-blocks in
a page is larger than 1, π > 1. The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation
(Di, D

t
i), or incremental compaction (I, Ij , IE) transitions. The distinction be-

tween Di and Dt
i transitions will be clarified in the sequel and does not influence

the global state changes. A transition I represents an initial incremental com-
paction step, Ij is any further incremental compaction step which involves a
source page, and IE is a further incremental compaction step which involves an
emptying source page.

EMPTY NOT-FULL FULL

COMPACTION

no source no source

NOT-FULL FULL
source source

Fig. 6. Incremental size-class automaton with π > 1

We next present the actual changes of states in a size-class in full detail
upon allocation, deallocation, and incremental compaction.

Allocation. Allocation steps are the same as in the non-incremental automa-
ton since the source page is not influenced by allocation. In detail, in a state
〈h, n, u1, . . . , un, us, s,m1, . . . ,ms〉 there are three cases:

1. If n = 0, that is, there are no not-full pages, then after allocation h increases
by 1, n becomes 1, and u1 becomes 1.

2. If 0 < n ≤ κ and un < π − 1, that is, there is a not-full page and after an
allocation it will not get full, then both h and un increase by 1.

3. If 0 < n ≤ κ and un = π − 1, that is, a not-full page will get full, then h
increases by 1 and n decreases by 1. Note that this may change a state from
“not-full” to “full” in case n = 1.

Allocation is not possible in a “compaction” state, i.e., a state with n = κ+ 1.

Deallocation. We distinguish two types of deallocation steps denoted by Di

and Dt
i . A step Di denotes deallocation in page i where the deallocated page-

block is not a target of an ongoing incremental moving. In contrast, Dt
i denotes

deallocation in page i of a page-block which happens to be a target of an ongoing
incremental moving. If i = 0, then deallocation happens in the source page; if
1 ≤ i ≤ n, then deallocation happens in one of the not-full pages; and if i > n a
page-block is deallocated in a full page.

Similar to the non-incremental CF, the change of state after Di can be de-
scribed by the following cases:

1. If 1 ≤ i ≤ n ≤ κ and ui > 1, or if i = 0, us > 1, and n ≤ κ, i.e., deallocation
happens in a not-full or source page which will not get empty(ing), then h
decreases by 1 and either ui or us decreases by 1, respectively.

2. If 1 ≤ i ≤ n ≤ κ and ui = 1, i.e., deallocation happens in a not-full page
which becomes empty afterwards, then both h and n decrease by 1, and the
variable ui is removed from the state.

3. If i = 0, us = 1, and n ≤ κ, i.e., deallocation happens in a source page which
becomes emptying afterwards, then the source page is moved to the pool of
emptying source pages E and both s and us are set to 0. As a result the
size-class does not have a source page.

4. If i > n ≤ κ, which means that deallocation happens in a full page, then h
decreases by 1, n increases by 1, and un gets the value π − 1. If originally
n = κ, then this step triggers a compaction operation.

In addition, there are four cases describing the change of state after Dt
i

steps. They correspond to the cases for Di except that at the end of such a step
the ongoing incremental compaction operation to the deallocated target page-
block is canceled and the source page-block is deallocated. Hence, the (canceled)
ongoing compaction operation finishes earlier than it normally would. We refer
to the situation when a thread performs a Dt

i step as a deallocation conflict.
Deallocation is also not possible in a “compaction” state with n = κ+ 1.

Incremental compaction. Incremental compaction is triggered in case n =
κ+ 1, just like compaction is triggered in the non-incremental CF. In addition,

there may be incremental compaction steps involving emptying source pages
from any other state, and incremental compaction steps involving the source
page from any state with a source page.

In a state 〈h, κ + 1, u1 . . . , un, us, s,m1, . . . ,ms〉 an initial incremental com-
paction step is the only possible step. Note that in such a state un = π− 1 since
the previous step was a deallocation in a full page. We refer to this unique free
page-block in the last not-full page as tb. The initial incremental compaction
step must be atomic together with the preceding deallocation step. We use β to
denote the size of page-blocks in the size-class. We have the following cases:

1. If us = 0, meaning that there is no source page in the size-class, then since
n = κ+ 1 ≥ 2 the first page becomes the new (potential) source page, i.e., us
is assigned the value of u1, s becomes 0, n decreases by 1, and u1 is removed
from the state. After this, the state is no longer a “compaction” state.

2. If us > 0, then a source page-block pb is to be moved to tb. There are two
possible cases:
- The page-block pb is not a target page-block of an ongoing incremental

moving operation. In this case there are two subcases representing an initial
incremental compaction step: (1) if ι < β, in which case the compaction
operation needs more than just one step, then us decreases by 1, s increases
by one, ms is assigned the value of ι and a portion of size ι is moved from
pb to tb; (2) if ι ≥ β, then the whole pb is moved to tb in one step and us
decreases by 1.

- The page-block pb is a target of a (unique) ongoing incremental operation
from a source page-block sb. In this case we are in a situation of a com-
paction conflict. Note that sb must be in an emptying source page in E.
Then the ongoing incremental moving operation from sb to pb is canceled,
pb is deallocated, and a new initial incremental moving operation starts
from sb to tb. Again us decreases by 1.

In any case, n decreases by 1. In case us = 0, the source page becomes
emptying, it is moved to the pool of emptying source pages E, and s becomes
0.

Note that the chosen way to resolve the compaction conflict is crucial for bounded
compaction response times, since it avoids transitive compaction chains. Namely,
a compaction conflict ends an existing compaction and starts a new one, so
the duration of a particular compaction operation may only decrease due to a
compaction conflict.

In addition, there are three more cases for a change of state due to an ongoing
incremental compaction step Ij , where j is an index of a source page-block in
the source page that the incremental compaction step applies to. In a state
〈h, n, u1 . . . , un, us, s,m1, . . . ,ms〉 where Ij is applicable, i.e., us > 0 and s ≥ j,
after an incremental compaction step Ij we have:

3. If mj + ι < β, then mj is incremented by ι, i.e., another portion of the source
page-block gets copied to the target page-block.

4. Ifmj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction
operation which still keeps the source page, then the number of source page-
blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this
incremental step and the source page will no longer exist in the size-class,
then s gets the value 0. Furthermore, the source page either becomes a not-
full page if n < κ (in which case n increases by 1, un is assigned the value of
us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not
change the state, but only change the global pool E of emptying source pages.
We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence
of allocations and deallocations. If a deallocation triggers compaction, then be-
fore the thread can continue with any other allocation or deallocation operation
all incremental steps needed for the compaction must be finished. The first of
these steps is an initial incremental compaction step I which may be an initial
incremental moving step in case of compaction conflict. If it is the case, then
all other incremental steps are of type IE . Otherwise, if there is no compaction
conflict, a sequence of Ij incremental steps will be performed, and in case the
source page becomes emptying a sequence of IE incremental steps, in order to
complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency

1-CF(∞,∞) O(n) O(n) O(1)

1-CF(κ,∞) O(n) O(n+ β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)

n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n+ β + bβ
ι
c) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case
system latency, and Table 2 shows the memory size and size-class fragmentation
per CF configuration with n threads and m per-thread-allocated page-blocks in
a size-class with π page-blocks of size β per page. The fragmentation caused
by partitioning memory [2, 7] is not considered here. Although the partial com-
paction bound κ and the compaction increment ι are kept constant in our current
implementations, both κ and ι may be changed dynamically at runtime, which
is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation

1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)

1-CF(κ,∞) O((n ∗m+ κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)

n-CF(κ,∞) O(n ∗ (m+ κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m+ n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation
actually begins executing, caused by currently executing, non-preemptive CF
operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take
constant time, the complexity of malloc and free only depends linearly on
the number of competing threads assuming fair scheduling. System latency is
bounded by a constant. However, the worst case in memory consumption is
one page for each allocated object due to potentially high size-class fragmenta-
tion, which has asymptotically the same bound as the overall memory consump-
tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and
worst-case latency for better bounds on memory consumption by limiting size-
class fragmentation through partial compaction. Note that in this case size-class
fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in
memory size and size-class fragmentation, as shown here, are obtained under
the assumption that there is no sharing among the n CF instances. The time
complexity of malloc and free of both multiple-instance configurations goes up
to the respective single-instance cases if there is sharing among the n CF in-
stances. While the non-compacting n-CF(∞,∞) configuration requires in the
worst case no more memory than the non-compacting single-instance configura-
tion, the compacting n-CF(κ,∞) configuration actually does require in the worst
case more memory than the compacting single-instance configuration since par-
tial compaction is performed per instance. However, allocation and deallocation
throughput may increase with both multiple-instance configurations with a de-
creasing degree of sharing among the n CF instances (without an increase in
worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case
in system latency whenever the compaction increment ι is less than the page-
block size of the size-class with the largest page-blocks, at the expense of the
complexity of free through more preemptions and at the expense of memory
consumption through increased transient size-class fragmentation. In comparison
to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up
to n additional (emptying) source pages in the system where n is the number
of threads. The worst case in non-transient size-class fragmentation does not
increase.

7 Implementation

Sequential CF [7] uses three data structures to manage its heap: abstract address,
page, and size-class. Additionally, empty pages and available abstract addresses
are organized in global lifo lists.

An abstract address is a forwarding pointer word.
A page contains a page header holding the meta data of the page and the

storage space into which objects are allocated. The size of each page is 16KB. All
pages are kept aligned in memory. The page header consists of: two pointers used
to insert the page into a doubly-linked list, a counter of allocated page-blocks
in the page, a reference to the size-class of the page, and a bitmap where each
set bit represents a used page-block in the storage space. The bitmap is used for
fast location of free and used blocks.

A size-class contains two doubly-linked lists of pages which store the full and
the not-full pages, respectively, and a counter of the number of not-full pages.

Global data structures are used to organize data structures which do not
belong to a particular size-class. Such are a lifo list of empty pages and a lifo
list of free abstract addresses. The implementation details that make these data
structures concurrent and scalable will be discussed in the following subsections.

Figure 7 presents an overview of all implemented CF versions (leafs of the
tree) and introduces terminology.

size-class lock

incremental

thread-local size-classes global size-classes

non-incremental

non-compacting

page lock

incremental non-incremental

non-compacting non-compacting

size-class lock

incremental non-incremental

non-compacting

page lock

incremental non-incremental

Fig. 7. Concurrent CF versions

7.1 Concurrent Non-incremental CF

We use blocking and non-blocking mechanisms to allow for concurrent use of CF
by multiple threads. In particular, locks are used to make the size-class automa-
ton transitions atomic (allocation, deallocation that does not cause compaction,
and deallocation with compaction) and non-blocking mechanisms are used to
render access to the global lifo lists atomic and scalable.

In all concurrent implementations size-classes are kept 128B aligned in mem-
ory, to avoid cache conflicts of concurrent threads.

We implement locks at two possible levels: size-class locks and page locks.
The choice of lock level is evident in the different implementation versions in

Figure 7. The page lock level is finer than the size-class lock level, which exists
in all implementations. In the presence of page locks, during compaction the
size-class lock is released and only the page locks of the source and target page
are locked. As a result, other threads may perform memory operations within
the size-class that do not affect the source and the target page.

Our managing of the global lists of empty pages and free abstract addresses
is inspired by the free list implementation used in [10]. Each of the two lists is or-
ganized on two (public and private) levels. Each thread owns one private list (of
free elements) which is only accessible to the owner thread. Therefore the access
to free elements in the private list needs no synchronization mechanisms. The
public list is a list of lists of free elements. Its head contains a version number
(used for synchronization between threads) and a reference to the first element
(sublist) in the list. Both fields in the list head are updated simultaneously using
a double-word compare-and-swap operation, hence the update is atomic. When-
ever the reference to the first element changes, the version number increases,
which prevents the ABA problem. If a thread needs a free element, then it first
accesses its private list. If the private list is empty, then it accesses the public
list, in order to fetch the head of the public list of lists. After this, the newly
fetched list becomes the private list of the thread. There is also a mechanism
that returns elements from a private list to the public list, which is invoked if
the private list grows beyond a predefined bound.

There is a slight difference in the implementation of the public list for the list
of empty pages and for the list of free abstract addresses. In order to represent
the public list in memory, we need for each sublist a pointer to the next sublist.
In case of the list of empty pages, we use the empty space of the first page of
each sublist to store such a pointer. For the list of free abstract addresses, an
additional two-word data structure for storing the pointers is needed.

7.2 Concurrent Incremental CF

For incremental compaction, each page-block stores an additional field called
compaction-block field. The field has a size of 4B, which is relatively small com-
pared to the size of the page-blocks in size-classes with large page-blocks (larger
than 1KB), which are typically subject to incremental compaction. If a page-
block becomes a source/target of an incremental compaction operation, then its
compaction-block field stores a reference to its corresponding target/source page-
block, respectively. Whether a page-block involved in incremental compaction is
a source or a target page-block is determined by the status of its page and the
status of the page of its compaction block.

In addition, each abstract address contains a flag bit which signals whether
the object that the abstract address refers to is a target of a canceled incremental
compaction operation. We have discussed deallocation and compaction conflicts
in Section 5. In the implementation, a deallocation conflict is detected if the
compaction-block field of the page-block under deallocation contains a memory
reference. A compaction conflict is also recognized by a memory reference in the
compaction-block field of the source page-block under compaction. In case of a

deallocation or a compaction conflict, an ongoing compaction operation needs
to be canceled. This is done by setting the flag bit in the abstract address of the
object that was deallocated and triggered the compaction operation. When the
thread in charge of the canceled compaction gets to execute again, it first checks
the flag in the abstract address and if the flag is set the thread terminates its
compaction operation and releases the abstract address.

7.3 Local vs. Global Size-classes

An orthogonal optimization for concurrent CF which improves scalability is using
thread-local size-classes. Every thread has a private heap organized in private
size-classes. Each thread allocates only in its private heap, but may deallocate
shared objects in other thread’s heaps. If the percentage of shared objects in
the system is low, this optimization leads to less conflicts, thus improving the
overall performance.

7.4 Dereferencing Objects

If arbitrary interleaving of deallocation and dereferencing objects is allowed, e.g.
with a garbage collector running in parallel with the mutators, then dereferenc-
ing objects is likely to require potentially expensive synchronization. Support
of such fully concurrent dereferencing is future work. If either deallocation is
not performed when dereferencing objects, e.g. with a stop-the-world garbage
collector, or non-compacting CF configurations are used, then synchronization
is not required, even in the presence of concurrent allocation.

8 Experiments

We report on micro- and macrobenchmarks with concurrent non-incremental
CF, and microbenchmarks with concurrent incremental CF.

8.1 Hardware Setup

The experiments with concurrent non-incremental CF ran on a server machine
with two quad-core 2GHz AMD Opteron processors and 16GB of memory. The
experiments with concurrent incremental CF were conducted on an XScale PXA
270 CPU with 600MHz and 128MB of memory. The operating system for both
machines was Linux with real-time preemption patches applied. On the Opteron
machine and the XScale machine the Linux kernel version was 2.6.24 and 2.6.21,
respectively. In all experiments the benchmark threads were executed with real-
time priorities.

8.2 Concurrent Non-incremental CF

The microbenchmarks run mutator threads that each allocate 2048 objects of
random size, then deallocate the objects, and then start over again. The sizes
of allocated objects correspond to the distribution of object sizes allocated in a
popular optimizer for programmable logic arrays called Espresso used in several
memory allocator performance evaluations, e.g. in [11]. Each microbenchmark
runs for ten seconds performing more than one million allocation/deallocation
operations.

 1e+06

 1.05e+06

 1.1e+06

 1.15e+06

 1.2e+06

 1.25e+06

 1.3e+06

 1.35e+06

1 3 5 ∞

al
lo

ca
tio

ns
/s

ec

partial compaction bound κ

size-class lock, global size-class
size-class lock, thread-local size-class

page lock, global size-class
page lock, thread-local size-class

Fig. 8. Allocation throughput of a single thread with decreasing partial compaction

Figure 8 shows the impact of partial compaction on the allocation throughput
of a single thread. Larger partial compaction bounds κ provide higher allocation
throughput because of less compaction activity. Independently of κ, the size-
class lock configuration performs better then the page-lock configuration since
the latter needs locks for both the size-class and the source and target pages.

Figure 9 depicts the allocation throughput with an increasing number of
threads. Up to seven threads run in parallel on seven cores while the eighth core
is used to minimize the influence of collecting data on the performance data. The
performance of the fully compacting and the optimized, non-compacting version
of CF without abstract addressing (in both cases with no sharing across the
thread-local CF instances) are shown in Figures 9(a) and 9(b), respectively. The
thread-local size-class versions show linear scalability in the number of threads
whereas the global size-class versions neither scale in the fully compacting nor
in the non-compacting configurations. Again, the size-class lock configurations
result in better allocation throughput than the page lock configurations. Scala-
bility only improves by a constant factor with increasing partial compaction (cf.
Figures 9(a) versus 9(b)). Scalability of the thread-local size-class versions de-
pends on the degree of sharing across the thread-local CF instances. Figure 9(c)
shows allocation throughput at varying degrees of sharing: mutator threads al-
locate and deallocate 512 objects periodically according to the Espresso object
size distribution. Each mutator frees its own just allocated objects and objects
previously allocated by other threads in a ratio that determines the degree of
sharing.

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

al
lo

ca
tio

ns
/s

ec

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(a) full compaction

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

al
lo

ca
tio

ns
/s

ec

number of threads

size-class lock, thread-local size-class
page lock, thread-local size-class
size-class lock, global size-class

page lock, global size-class

(b) optimized, non-compacting

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 1 2 3 4 5 6 7

al
lo

ca
tio

ns
/s

ec

number of threads

0% sharing
6.25% sharing
12.5% sharing

25% sharing
50% sharing

100% sharing

(c) opt., non-comp. with sharing

Fig. 9. Allocation throughput with an increasing number of threads

 370000

 380000

 390000

 400000

 410000

 420000

1 3 5 10 15 20 25 ∞

al
lo

ca
tio

ns
/s

ec

partial compaction bound κ

emacs

 186000
 188000
 190000
 192000
 194000
 196000
 198000
 200000
 202000
 204000

1 3 5 10 15 20 25 ∞

al
lo

ca
tio

ns
/s

ec

hummingbird

Fig. 10. Allocation throughput for Hummingbird and Emacs

The macrobenchmarks are based on Emacs and Hummingbird alloca-
tion/deallocation traces [6]. In the Emacs trace about 51% of the allocated
objects are of size 40B, 15% are of size 648B, and 11% are of size 104B. The
remaining objects of the trace are also of small size. In the Hummingbird trace
about 25% of the allocated objects are of size 8B and 23% are of size 32B. The
remaining allocation requests vary from 16B to around 38.1MB (object sizes
greater than 16KB are ignored here). Hummingbird’s allocation behavior is very
different from the behavior of a typical mutator where 99% of the objects are of
small and similar sizes [11].

Figure 10 shows the allocation throughput of a single thread running the
Hummingbird and Emacs benchmarks. Larger κ values allow the Hummingbird
benchmark to allocate more objects per second. In the Emacs benchmark the
allocation throughput does not improve for larger κ.

 2160

 2162

 2164

 2166

 2168

 2170

1 3 5 10 15 20 25 ∞
 40

 50

 60

 70

 80

 90

 100

m
em

or
y

si
ze

 in
 p

ag
es

nu
m

be
r

of
 n

ot
-f

ul
l p

ag
es

partial compaction bound κ

emacs

memory size
not-full pages

 15320

 15325

 15330

 15335

 15340

1 3 5 10 15 20 25 ∞
 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000

m
em

or
y

si
ze

 in
 p

ag
es

nu
m

be
r

of
 n

ot
-f

ul
l p

ag
eshummingbird

memory size
not-full pages

Fig. 11. Memory usage and size-class fragmentation for Hummingbird and Emacs

Figure 11 shows the required memory size (in number of used pages) and
size-class fragmentation (in number of not-full pages) during the execution of
the Hummingbird and Emacs traces with increasing κ. As expected, size-class
fragmentation increases with increasing κ, whereas the required memory size
remains constant for κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the
Emacs trace since most not-full pages with smaller page-block sizes tend to
remain relatively full (in line with our probabilistic claims of Section 4).

memory (in MB)

TLSF CF (16B blocks) CF (32B blocks)

memory memory size-class memory size-class
size size fragmentation size fragmentation

Emacs 25.7 34.6 0.46 34.5 0.38

Hummingbird 203.7 245.3 8.3 245.9 11.4

Table 3. Memory consumption of TLSF versus optimized, non-compacting CF (with-
out abstract addressing)

malloc (in clock ticks) free (in clock ticks)

TLSF CF TLSF CF

avg max avg max avg max avg max
time time time time time time time time

Emacs 228 93359 260 81662 153 71159 279 74798

Hummingbird 411 109079 529 98820 500 69192 574 79914

Table 4. Performance of TLSF versus optimized, non-compacting CF (without ab-
stract addressing)

Finally, Table 3 and Table 4 show the results of macrobenchmarking
TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
block size). For Emacs, CF consumes around 35% more memory of which only
around 1.3% comes from size-class fragmentation while the difference between
the 16B and 32B configurations is only marginal. For Hummingbird, CF con-
sumes around 21% more memory of which only around 4.6% comes from size-
class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

128512102420484096∞

al
lo

ca
tio

ns
/s

ec

compaction increment ι

1 thread
2 threads
4 threads
6 threads
8 threads

(a) allocation throughput

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

16 48 160 552 2048 8000

sy
st

em
 la

te
nc

y
in

 µ
se

c

block size in bytes

ι 128
ι 512

ι 1024
ι 2048
ι 4096

ι ∞

(b) system latency with 8 threads

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

128512102420484096∞

nu
m

be
r

of
 s

ou
rc

e
pa

ge
s

compaction increment ι

1 thread
2 threads
4 threads
6 threads
8 threads

(c) transient size-class fragmentation

Fig. 12. Allocation throughput, system latency, and transient size-class fragmentation
with decreasing compaction increments

8.3 Concurrent Incremental CF

The microbenchmark runs mutator threads allocating and deallocating objects
from 16B to 16KB randomly. The threads operate on global size classes.

Figure 12(a) shows that the allocation throughput decreases with decreasing
compaction increments ι since the incremental compaction overhead increases,
due to an increasing number of lock acquire/release operations, administrative
data updates, and memory copy interruptions. System latency, shown in Fig-
ure 12(b), tends to decrease, measurably if page-block sizes larger than around
512B are involved, with decreasing ι. Here, we ran one mutator thread with
higher priority than seven other mutator threads, periodically yielding to avoid
starvation, and measured the maximum time the higher-priority thread spent
in the atomic portion of any incremental compaction operation. True system
latency that includes the wait time for locking was too noisy with the version
of Linux we used. Transient size-class fragmentation, which is bounded by the
number of threads, generally increases slightly with increasing ι as shown in
Figure 12(c).

9 Conclusions

Compact-fit is an explicit, dynamic memory management system that allows,
through the notion of partial and incremental compaction, formally relating
fragmentation, compaction, throughput, and latency when managing contiguous
pieces of memory. We have studied this relationship, formally and experimen-
tally. All versions of CF can be made concurrent and scalable with partial com-
paction being only a constant factor. Scalability rather depends on the degree of
sharing and synchronization mechanisms, similar to other memory management
systems.

Incremental CF may open up a path to dynamic memory management on
memory-constrained systems running high-performance applications that require
tight temporal and spatial guarantees, although further studies involving spe-
cialized operating system infrastructure for embedded devices may be necessary
there.

References

1. PRISM - probabilistic symbolic model checker. http://www.prismmodelchecker.
org.

2. Bacon, D. F., Cheng, P., and Rajan, V. T. Controlling fragmentation and
space consumption in the Metronome, a real-time garbage collector for Java. In
Proc. LCTES (2003).

3. Bacon, D. F., Cheng, P., and Rajan, V. T. A real-time garbage collector with
low overhead and consistent utilization. In Proc. POPL (2003).

4. Ben-Yitzhak, O., Goft, I., Kolodner, E. K., Kuiper, K., and Leikehman,
V. An algorithm for parallel incremental compaction. In Proc. MSP/ISMM (2002).

5. Berger, E. D., McKinley, K. S., Blumofe, R. D., and Wilson, P. R. Hoard:
A scalable memory allocator for multithreaded applications. In Proc. ASPLOS
(2000).

6. Bohra, A., and Gabber, E. Are mallocs free of fragmentation? In Proc. ATC
(2001), USENIX.

7. Craciunas, S. S., Kirsch, C. M., Payer, H., Sokolova, A., Stadler, H., and
Staudinger, R. A compacting real-time memory management system. In Proc.
ATC (2008), USENIX.

8. Dice, D., and Garthwaite, A. Mostly lock-free malloc. In Proc. ISMM (2002).
9. Flood, C. H., Detlefs, D., Shavit, N., and Zhang, X. Parallel garbage col-

lection for shared memory multiprocessors. In Proc. JVM (2001).
10. Hudson, R. L., Saha, B., Adl-Tabatabai, A.-R., and Hertzberg, B. C.

McRT-Malloc: a scalable transactional memory allocator. In Proc. ISMM (2006).
11. Johnstone, M. S., and Wilson, P. R. The memory fragmentation problem:

solved? In Proc. ISMM (1998).
12. Jones, R. The garbage collection page. http://www.cs.ukc.ac.uk/people/

staff/rej/gc.html.
13. Kermany, H., and Petrank, E. The Compressor: concurrent, incremental, and

parallel compaction. In Proc. PLDI (2006).
14. Knuth, D. E. Fundamental Algorithms. The Art of Computer Programming.

Addison-Wesley, 1973.
15. Lea, D. A memory allocator. Unix/Mail/, 6/96, 1996.
16. Masmano, M., Ripoll, I., and Crespo, A. A comparison of memory allocators

for real-time applications. In Proc. JTRES (2006).
17. Masmano, M., Ripoll, I., Crespo, A., and Real, J. TLSF: A new dynamic

memory allocator for real-time systems. In Proc. ECRTS (2004).
18. Michael, M. M. Scalable lock-free dynamic memory allocation. SIGPLAN 39, 6

(2004).
19. Ogasawara, T. An algorithm with constant execution time for dynamic storage

allocation. In Proc. RTCSA (1995).
20. Ossia, Y., Ben-Yitzhak, O., and Segal, M. Mostly concurrent compaction for

mark-sweep GC. In Proc. ISMM (2004).
21. Pizlo, F., Frampton, D., Petrank, E., and Steensgaard, B. Stopless: a

real-time garbage collector for multiprocessors. In Proc. ISMM (2007).
22. Puaut, I. Real-time performance of dynamic memory allocation algorithms. In

Proc. ECRTS (2002).

23. Sachindran, N., Moss, J. E. B., and Berger, E. D. MC2: high-performance
garbage collection for memory-constrained environments. In Proc. OOPSLA
(2004).

24. Siebert, F. Real-time garbage collection in the Jamaica VM 3.0. In Proc. JTRES
(2007).

25. Wu, S.-H., Smolka, S. A., and Stark, E. W. Composition and behaviors of
probabilistic I/O automata. Theoretical Computer Science 176 (1997).

