
Power-Aware Temporal Isolation with
Variable-Bandwidth Servers

Silviu S. Craciunas, Christoph M. Kirsch, Ana Sokolova
Department of Computer Sciences

University of Salzburg

Process Model

time
process

Process Model

time
process

action

arrival termination

↵1

Process Model

time
process

action

arrival termination

↵1

• action is a piece of code

Process Model

time
process

action

arrival termination

load

↵1

• action is a piece of code

Process Model

time
process

action

arrival termination

response time

load

↵1

• action is a piece of code

Process Model

time
process

action action

arrival termination

response time

load

• process is a sequence of actions

↵1 ↵2

• action is a piece of code

Process Model

time
process

action action

arrival termination

response time

load

• process is a sequence of actions

↵1 ↵2

• action is a piece of code

• throughput vs latency of process execution

Scheduling Problem

process 1

process 2

process n

uniprocessor

schedule the processes so that each of their actions maintains
its response time

Scheduling Problem

process 1

process 2

process n

uniprocessor

schedule the processes so that each of their actions maintains
its response time

Solvable with variable-bandwidth servers
(VBS)

Scheduling Problem

process 1

process 2

process n

uniprocessor

schedule the processes so that each of their actions maintains
its response time

Solvable with variable-bandwidth servers
(VBS)

Results [SIES09]:
• constant-time scheduling algorithm
• constant time admission test

Resources and VBS
 virtual periodic resources

period limit utilization⇡ �
�

⇡

Resources and VBS
 virtual periodic resources

period limit utilization

�1 �2

⇡2⇡1

⇡ �
�

⇡

Resources and VBS

• VBS is determined by a bandwidth cap ()
• VBS processes dynamically adjust speed (change resources)

• generalization of constant bandwidth servers (CBS)
[Abeni and Buttazzo 2004]

 virtual periodic resources
period limit utilization

�1

⇡1
 u

�2

⇡2
 u

�1 �2

⇡2⇡1

u

⇡ �
�

⇡

One Process on a VBS

time
process

action

response time

load

↵1

time

process
running on

a VBS

One Process on a VBS

time
process

action

response time

load

↵1

time

process
running on

a VBS ⇡1

One Process on a VBS

time
process

action

response time

load

↵1

time

process
running on

a VBS ⇡1

One Process on a VBS

time
process

action

response time

load

↵1

time

process
running on

a VBS

�1

⇡1

One Process on a VBS

time
process

action action

response time

load

↵1 ↵2

response time

load

time

process
running on

a VBS

�1

⇡1

One Process on a VBS

time
process

action action

response time

load

↵1 ↵2

response time

load

time

process
running on

a VBS

�1 �2

⇡2⇡1

VBS

time

process
running on

a VBS

VBS

time

process
running on

a VBS

arrival

VBS

time

process
running on

a VBS

arrival

release

VBS

time

process
running on

a VBS

arrival

release

limit

VBS

time

process
running on

a VBS

arrival

release

limit

release

VBS

time

process
running on

a VBS

arrival

release

preemption

limit

release

VBS

time

process
running on

a VBS

arrival

release

preemption

limit limit

release

VBS

time

process
running on

a VBS

arrival

release

preemption

limit limit

release release

VBS

time

process
running on

a VBS

arrival completion

release

preemption

limit limit

release release

VBS

time

process
running on

a VBS

arrival

termination

completion

release

preemption

limit limit

release release

VBS

time

process
running on

a VBS

arrival

termination

response time under VBS

completion

release

preemption

limit limit

release release

VBS

process 1
(2,4)

0

multiple processes are EDF-scheduled

4 8 12 16 20

process 2
(2,8)

0 8 16

process 3
(1,6)

0 6 12 18

VBS

process 1
(2,4)

0

multiple processes are EDF-scheduled

4 8 12 16 20

process 2
(2,8)

0 8 16

process 3
(1,6)

0 6 12 18

VBS

process 1
(2,4)

0

multiple processes are EDF-scheduled

4 8 12 16 20

process 2
(2,8)

0 8 16

process 3
(1,6)

0 6 12 18

VBS

process 1
(2,4)

0

multiple processes are EDF-scheduled

4 8 12 16 20

process 2
(2,8)

0 8 16

process 3
(1,6)

0 6 12 18

VBS

process 1
(2,4)

0

multiple processes are EDF-scheduled

4 8 12 16 20

process 2
(2,8)

0 8 16

process 3
(1,6)

0 6 12 18

VBS

process 1
(2,4)

0

multiple processes are EDF-scheduled

4 8 12 16 20

process 2
(2,8)

0 8 16

process 3
(1,6)

0 6 12 18

VBS

process 1
(2,4)

0

multiple processes are EDF-scheduled

4 8 12 16 20

process 2
(2,8)

0 8 16

process 3
(1,6)

0 6 12 18

Scheduling Result and Bounds
[SIES09]

Processes P1, P2, . . . , Pn on VBSs u1, u2, . . . , un

are schedulable if

Pn
i=1 ui  1

Scheduling Result and Bounds
[SIES09]

Processes P1, P2, . . . , Pn on VBSs u1, u2, . . . , un

are schedulable if

Pn
i=1 ui  1

For any action ↵ on a resource (�,⇡) we have:

• upper response-time bound

⌃
load

�

⌥
⇡ + ⇡ � 1

• lower response-time bound

⌃
load

�

⌥
⇡

• jitter ⇡ � 1

Scheduling Result and Bounds
[SIES09]

Processes P1, P2, . . . , Pn on VBSs u1, u2, . . . , un

are schedulable if

Pn
i=1 ui  1

For any action ↵ on a resource (�,⇡) we have:

• upper response-time bound

⌃
load

�

⌥
⇡ + ⇡ � 1

• lower response-time bound

⌃
load

�

⌥
⇡

• jitter ⇡ � 1

temporal isolation

Scheduler Overhead
[SIES09]

Power-Aware VBS

Dynamic Voltage and Frequency Scaling

Power-Aware VBS

Maintain VBS properties (temporal isolation, bounds)

Dynamic Voltage and Frequency Scaling

Power-Aware VBS

process 1
(1,4)

0 4 8 12

process 2
(1,4)

0 4 8 12

Maintain VBS properties (temporal isolation, bounds)

Dynamic Voltage and Frequency Scaling

Power-Aware VBS

process 1
(2,4)

0 4 8 12

process 2
(2,4)

0 4 8 12

Maintain VBS properties (temporal isolation, bounds)

Dynamic Voltage and Frequency Scaling

Power-Aware VBS

process 1
(2,4)

0 4 8 12

process 2
(2,4)

0 4 8 12

Maintain VBS properties (temporal isolation, bounds)

Possible whenever there is slack in the system

Dynamic Voltage and Frequency Scaling

Power-Aware VBS

EDF frequency scaling result:

An EDF-schedulable set of tasks is still
schedulable if the processor frequency in
between any two release times is set to at least

 
Uc · fmax

process 1
(2,4)

0 4 8 12

0 4 8 12

0.5 fmax

current total utilization of all released
tasks in the considered interval of
time between two releases

Frequency-scaling VBS

Slack

Frequency-scaling VBS

Slack

Static Slack

Dynamic Slack

Termination Slack

Action Slack

Frequency-scaling VBS

Slack

Static Slack

Dynamic Slack

Termination Slack

Action Slack

Frequency is scaled to the sum of
the bandwidth caps and not

changed at runtime

Frequency-scaling VBS

Slack

Static Slack

Dynamic Slack

Termination Slack

Action Slack

Frequency is scaled to the sum of
the bandwidth caps and not

changed at runtime

Frequency is scaled at release time
to the sum of the utilizations of the

released actions

Frequency-scaling VBS

Slack

Static Slack

Dynamic Slack

Termination Slack

Action Slack

Frequency is scaled to the sum of
the bandwidth caps and not

changed at runtime

New limits are computed for each
action such that the upper

response-time bound is maintained

Frequency is scaled at release time
to the sum of the utilizations of the

released actions

Frequency-scaling VBS

Frequency-scaling VBS
Static slack

f =
nX

i=1

u
i

· f
max

Frequency-scaling VBS
Static slack

f =
nX

i=1

u
i

· f
max

Action slack

f =
nX

i=1

�
i,j

⇡
i,j

· f
max

Frequency-scaling VBS
Static slack

f =
nX

i=1

u
i

· f
max

Action slack

f =
nX

i=1

�
i,j

⇡
i,j

· f
max

Termination slack

�⇤
i,j =

⇠
li,j
ni,j

⇡
ni,j =

⇠
li,j
�i,j

⇡
f =

nX

i=1

�⇤
i,j

⇡
i,j

· f
max

Frequency-scaling VBS

Termination and action slack can be used separately or together

Static slack

f =
nX

i=1

u
i

· f
max

Action slack

f =
nX

i=1

�
i,j

⇡
i,j

· f
max

Termination slack

�⇤
i,j =

⇠
li,j
ni,j

⇡
ni,j =

⇠
li,j
�i,j

⇡
f =

nX

i=1

�⇤
i,j

⇡
i,j

· f
max

Power-Aware VBS

Assuming a simple power model (P ∝ V)2

Look-ahead FS-VBS

Look-ahead FS-VBS

With knowledge of future events:
redistribute computation time between periods

Look-ahead FS-VBS

With knowledge of future events:
redistribute computation time between periods
optimal offline method

Look-ahead FS-VBS

With knowledge of future events:
redistribute computation time between periods
optimal offline method
feasible online method

Look-ahead FS-VBS

more complex power models

With knowledge of future events:
redistribute computation time between periods
optimal offline method
feasible online method

May help to handle:

Look-ahead FS-VBS

more complex power models

frequency switching cost (time and power)

With knowledge of future events:
redistribute computation time between periods
optimal offline method
feasible online method

May help to handle:

Look-ahead FS-VBS

more complex power models

frequency switching cost (time and power)
time overhead included using overhead accounting [RTAS10]

With knowledge of future events:
redistribute computation time between periods
optimal offline method
feasible online method

May help to handle:

Look-ahead FS-VBS

process 1
30 %

other utilization

total utilization

70 % 30 %

30 % 30 %

100 % 60 %

⇡1 ⇡1

Look-ahead FS-VBS

process 1
30 %

other utilization

total utilization

70 % 30 %

30 % 30 %

100 % 60 %

⇡1 ⇡1

knowledge of
future events

Look-ahead FS-VBS

process 1
modified

other utilization

total utilization

70 % 30 %

10 % 50 %

80 % 80 %

⇡1 ⇡1

Look-ahead FS-VBS

process 1
modified

other utilization

total utilization

70 % 30 %

10 % 50 %

80 % 80 %

actual improvement depends
on the power model

⇡1 ⇡1

Look-ahead FS-VBS

Assuming a simple power model (P ∝ V)2

Look-ahead online FS-VBS

Look-ahead online FS-VBS
Assume a simple power model (P ∝ V)2

where ⇤i,j,kn is the new limit for the period instance ⌅i,j that
contains the mentioned interval of the active action �i,j .

The total power consumption is the sum of the power
consumption in each interval [n · gcd(�), (n+1) · gcd(�)] for
n ⇧ N, thus we can write that

F (⇤i,j,k | i ⇧ I, j ⌅ 0, 1 ⇤ k ⇤ ni,j) =

gcd(�)
�

n⇥N
Fn(⇤i,j,kn | i ⇧ I, j ⌅ 0).

As in the general model, we can write

Fn(⇤i,j,kn) = Ea,n(⇤i,j,kn) + Es,n(⇤i,j,kn).

By plugging particular power-consumption functions Ea,n

and Es,n, one gets the global power consumption function.
We minimize F (⇤i,j,k) subject to the following constraints
imposed by the semantics of VBS. For all ⇤i,j,k,

ni,j�

k=1

⇤i,j,k ⇤
⇤
li,j
⇤i,j

⌅
⇤i,j ,

expressing that the sum of ⇤i,j,k for an action �i,j does not
exceed the amount of work the action could do in its periods
in the standard VBS execution. Next,

ni,j�

k=1

⇤i,j,k ⌅ li,j ,

expressing that the action �i,j will execute its entire load
li,j . It may be that in a period instance an action does not
execute any of its load, yet the new limits can not be nega-
tive, ⇤i,j,k ⌅ 0. In order to respect the response-time jitter,
we have to ensure that the action will not finish earlier than
its lower response time bound. Therefore, in the last period
instance, the action must execute for at least 1 time unit and
additionally, the action must not complete its entire load in
the previous period instances. We express this through the
following two constraints

ni,j�1�

k=1

⇤i,j,k < li,j ,

⇤i,j,ni,j ⌅ 1.

Next, for every interval [n · gcd(�), (n+ 1) · gcd(�)], n ⇧ N,
the system may not be over-utilized, namely

�

i⇥I

⇤i,j,kn

⌅i,j
⇤ 1,

where kn is as before.
As an instantiation, we consider the simplified model in

which the active energy consumed is proportional to the
square of the voltage and the number of frequency switches.
In this model, we reduce the power consumption by reduc-
ing the CPU utilization jitter. CPU utilization jitter is the
di⇥erence between the system utilization at a certain time
and a computed average system utilization over the whole
life-time of the system.

In order to compute Ea and Es, we start by computing the
upper response-time bound for a loop iteration of process Pi

now assumed to be a loop, as

bui =
si�

j=1

bui,j . (3)

The average utilization uavg
i of process Pi is therefore

uavg
i =

⌥si
j=1

�
li,j
⇥i,j

⌦
⇤i,j

⇥

bui
. (4)

Next, we compute the average utilization of a system of
n processes {P1, . . . , Pn} as the sum of average process uti-
lizations, i.e.,

uavg =
n�

i=1

uavg
i .

The active energy consumption in the interval [n·gcd(�), (n+
1) · gcd(�)], for n ⇧ N, is proportional to the square of the
voltage, thus we try to minimize

Ea,n =

⇧
uavg �

�

i⇥I

⇤i,j,kn

⌅i,j

⌃2

.

Recall that the number of frequency switches over any such
interval is at most 1. Hence, the energy consumed by a fre-
quency switch is a constant ⇥. The function to be minimized
is therefore

F (⇤i,j,k) = gcd(�)
�

n⇥N

⇧⇧
uavg �

�

i⇥I

⇤i,j,kn

⌅i,j

⌃2

+ ⇥

⌃
. (5)

In real-time systems this solution may not be feasible due
to the large number of variables that need to be stored
(one for each period instance of each action) and due to
the computational complexity of finding the optimal val-
ues. We therefore elaborate on an online algorithm that
approximates the o⌅ine algorithm under the same power-
consumption model.

Figure 1: Utilization jitter with fixed limits for every
period of � (standard VBS semantics).

5.2 Look-ahead Online FS-VBS
Consider the example in Figure 1. We only look at one

action � of one process with period 100 and utilization 30%
(u�). The action needs 5 periods to finish its load of 148.
The actions of other processes in the system that run con-
currently generate a changing system utilization, uP in Fig-
ure 1, resulting in a total CPU utilization uS . We only look
at one action at a time and we will henceforth refer to it
simply as �, dropping the indices i, j, in order to simplify
the notation. At time t, when the action � arrives, we cal-

Look-ahead online FS-VBS
Assume a simple power model (P ∝ V)2

where ⇤i,j,kn is the new limit for the period instance ⌅i,j that
contains the mentioned interval of the active action �i,j .

The total power consumption is the sum of the power
consumption in each interval [n · gcd(�), (n+1) · gcd(�)] for
n ⇧ N, thus we can write that

F (⇤i,j,k | i ⇧ I, j ⌅ 0, 1 ⇤ k ⇤ ni,j) =

gcd(�)
�

n⇥N
Fn(⇤i,j,kn | i ⇧ I, j ⌅ 0).

As in the general model, we can write

Fn(⇤i,j,kn) = Ea,n(⇤i,j,kn) + Es,n(⇤i,j,kn).

By plugging particular power-consumption functions Ea,n

and Es,n, one gets the global power consumption function.
We minimize F (⇤i,j,k) subject to the following constraints
imposed by the semantics of VBS. For all ⇤i,j,k,

ni,j�

k=1

⇤i,j,k ⇤
⇤
li,j
⇤i,j

⌅
⇤i,j ,

expressing that the sum of ⇤i,j,k for an action �i,j does not
exceed the amount of work the action could do in its periods
in the standard VBS execution. Next,

ni,j�

k=1

⇤i,j,k ⌅ li,j ,

expressing that the action �i,j will execute its entire load
li,j . It may be that in a period instance an action does not
execute any of its load, yet the new limits can not be nega-
tive, ⇤i,j,k ⌅ 0. In order to respect the response-time jitter,
we have to ensure that the action will not finish earlier than
its lower response time bound. Therefore, in the last period
instance, the action must execute for at least 1 time unit and
additionally, the action must not complete its entire load in
the previous period instances. We express this through the
following two constraints

ni,j�1�

k=1

⇤i,j,k < li,j ,

⇤i,j,ni,j ⌅ 1.

Next, for every interval [n · gcd(�), (n+ 1) · gcd(�)], n ⇧ N,
the system may not be over-utilized, namely

�

i⇥I

⇤i,j,kn

⌅i,j
⇤ 1,

where kn is as before.
As an instantiation, we consider the simplified model in

which the active energy consumed is proportional to the
square of the voltage and the number of frequency switches.
In this model, we reduce the power consumption by reduc-
ing the CPU utilization jitter. CPU utilization jitter is the
di⇥erence between the system utilization at a certain time
and a computed average system utilization over the whole
life-time of the system.

In order to compute Ea and Es, we start by computing the
upper response-time bound for a loop iteration of process Pi

now assumed to be a loop, as

bui =
si�

j=1

bui,j . (3)

The average utilization uavg
i of process Pi is therefore

uavg
i =

⌥si
j=1

�
li,j
⇥i,j

⌦
⇤i,j

⇥

bui
. (4)

Next, we compute the average utilization of a system of
n processes {P1, . . . , Pn} as the sum of average process uti-
lizations, i.e.,

uavg =
n�

i=1

uavg
i .

The active energy consumption in the interval [n·gcd(�), (n+
1) · gcd(�)], for n ⇧ N, is proportional to the square of the
voltage, thus we try to minimize

Ea,n =

⇧
uavg �

�

i⇥I

⇤i,j,kn

⌅i,j

⌃2

.

Recall that the number of frequency switches over any such
interval is at most 1. Hence, the energy consumed by a fre-
quency switch is a constant ⇥. The function to be minimized
is therefore

F (⇤i,j,k) = gcd(�)
�

n⇥N

⇧⇧
uavg �

�

i⇥I

⇤i,j,kn

⌅i,j

⌃2

+ ⇥

⌃
. (5)

In real-time systems this solution may not be feasible due
to the large number of variables that need to be stored
(one for each period instance of each action) and due to
the computational complexity of finding the optimal val-
ues. We therefore elaborate on an online algorithm that
approximates the o⌅ine algorithm under the same power-
consumption model.

Figure 1: Utilization jitter with fixed limits for every
period of � (standard VBS semantics).

5.2 Look-ahead Online FS-VBS
Consider the example in Figure 1. We only look at one

action � of one process with period 100 and utilization 30%
(u�). The action needs 5 periods to finish its load of 148.
The actions of other processes in the system that run con-
currently generate a changing system utilization, uP in Fig-
ure 1, resulting in a total CPU utilization uS . We only look
at one action at a time and we will henceforth refer to it
simply as �, dropping the indices i, j, in order to simplify
the notation. At time t, when the action � arrives, we cal-

knowledge of
future events

Look-ahead online FS-VBS
Assume a simple power model (P ∝ V)

Modify the limits in each period (whenever possible)
s.t. the utilization approximates the average utilization

2

where ⇤i,j,kn is the new limit for the period instance ⌅i,j that
contains the mentioned interval of the active action �i,j .

The total power consumption is the sum of the power
consumption in each interval [n · gcd(�), (n+1) · gcd(�)] for
n ⇧ N, thus we can write that

F (⇤i,j,k | i ⇧ I, j ⌅ 0, 1 ⇤ k ⇤ ni,j) =

gcd(�)
�

n⇥N
Fn(⇤i,j,kn | i ⇧ I, j ⌅ 0).

As in the general model, we can write

Fn(⇤i,j,kn) = Ea,n(⇤i,j,kn) + Es,n(⇤i,j,kn).

By plugging particular power-consumption functions Ea,n

and Es,n, one gets the global power consumption function.
We minimize F (⇤i,j,k) subject to the following constraints
imposed by the semantics of VBS. For all ⇤i,j,k,

ni,j�

k=1

⇤i,j,k ⇤
⇤
li,j
⇤i,j

⌅
⇤i,j ,

expressing that the sum of ⇤i,j,k for an action �i,j does not
exceed the amount of work the action could do in its periods
in the standard VBS execution. Next,

ni,j�

k=1

⇤i,j,k ⌅ li,j ,

expressing that the action �i,j will execute its entire load
li,j . It may be that in a period instance an action does not
execute any of its load, yet the new limits can not be nega-
tive, ⇤i,j,k ⌅ 0. In order to respect the response-time jitter,
we have to ensure that the action will not finish earlier than
its lower response time bound. Therefore, in the last period
instance, the action must execute for at least 1 time unit and
additionally, the action must not complete its entire load in
the previous period instances. We express this through the
following two constraints

ni,j�1�

k=1

⇤i,j,k < li,j ,

⇤i,j,ni,j ⌅ 1.

Next, for every interval [n · gcd(�), (n+ 1) · gcd(�)], n ⇧ N,
the system may not be over-utilized, namely

�

i⇥I

⇤i,j,kn

⌅i,j
⇤ 1,

where kn is as before.
As an instantiation, we consider the simplified model in

which the active energy consumed is proportional to the
square of the voltage and the number of frequency switches.
In this model, we reduce the power consumption by reduc-
ing the CPU utilization jitter. CPU utilization jitter is the
di⇥erence between the system utilization at a certain time
and a computed average system utilization over the whole
life-time of the system.

In order to compute Ea and Es, we start by computing the
upper response-time bound for a loop iteration of process Pi

now assumed to be a loop, as

bui =
si�

j=1

bui,j . (3)

The average utilization uavg
i of process Pi is therefore

uavg
i =

⌥si
j=1

�
li,j
⇥i,j

⌦
⇤i,j

⇥

bui
. (4)

Next, we compute the average utilization of a system of
n processes {P1, . . . , Pn} as the sum of average process uti-
lizations, i.e.,

uavg =
n�

i=1

uavg
i .

The active energy consumption in the interval [n·gcd(�), (n+
1) · gcd(�)], for n ⇧ N, is proportional to the square of the
voltage, thus we try to minimize

Ea,n =

⇧
uavg �

�

i⇥I

⇤i,j,kn

⌅i,j

⌃2

.

Recall that the number of frequency switches over any such
interval is at most 1. Hence, the energy consumed by a fre-
quency switch is a constant ⇥. The function to be minimized
is therefore

F (⇤i,j,k) = gcd(�)
�

n⇥N

⇧⇧
uavg �

�

i⇥I

⇤i,j,kn

⌅i,j

⌃2

+ ⇥

⌃
. (5)

In real-time systems this solution may not be feasible due
to the large number of variables that need to be stored
(one for each period instance of each action) and due to
the computational complexity of finding the optimal val-
ues. We therefore elaborate on an online algorithm that
approximates the o⌅ine algorithm under the same power-
consumption model.

Figure 1: Utilization jitter with fixed limits for every
period of � (standard VBS semantics).

5.2 Look-ahead Online FS-VBS
Consider the example in Figure 1. We only look at one

action � of one process with period 100 and utilization 30%
(u�). The action needs 5 periods to finish its load of 148.
The actions of other processes in the system that run con-
currently generate a changing system utilization, uP in Fig-
ure 1, resulting in a total CPU utilization uS . We only look
at one action at a time and we will henceforth refer to it
simply as �, dropping the indices i, j, in order to simplify
the notation. At time t, when the action � arrives, we cal-

knowledge of
future events

Look-ahead online FS-VBS
Assume a simple power model (P ∝ V)

Modify the limits in each period (whenever possible)
s.t. the utilization approximates the average utilization

2

Figure 2: Reduced utilization jitter with modified
limits for each period of �.

Interval u� uP uS

[0, 60) 30% 60% 90%
[60, 160) 30% 20% 50%
[160, 220) 30% 40% 70%
[220, 300) 30% 70% 100%
[300, 500) 30% 20% 50%

Table 1: Utilization of �, concurrently running pro-
cesses and total CPU utilization in subintervals of
[0, 500].

culate the utilization over every interval where the actions
of the other processes in the system change, starting from t
until the time of termination of �. For the example in Fig-
ure 1 we have the intervals of changing CPU utilizations in
the system shown in Table 1, where u�, uP , and uS are as
before. The total system utilization uS is given by uP +u�.

The algorithm computes the average system utilization
over each period instance of action �. Additionally, we also
compute the total average system utilization uavg as in Sec-
tion 5.1. In the k-th period instance of �, let ue

k denote the
utilization error, which is the di�erence between the average
utilization in the k-th period instance and the total average
system utilization uavg. The new utilization for the k-the
period instance of � is computed as

u�⇥
k = u� � ue

k.

In the example, the first period instance of � is the interval
[0, 100). In this interval the system utilization is 90% from
time 0 to 60, and 50% from time 60 to 100. Therefore the
average system utilization for this period instance is 74%.
Since the uavg = 65%, the utilization error for this period
instance is 9%.

k Interval ue
k u�⇥

k

0 [0, 100) 9% 21%
1 [100, 200) �7% 37%
2 [200, 300) 29% 1%
3 [300, 400) �15% 45%
4 [400, 500) �15% 45%

Table 2: Utilization error and new utilization for �
in di�erent period instances.

Table 2 shows the resulting utilization error and new uti-
lization for every period instance of �.
Ideally, if action � would be modified to have the uti-

lization in each period instance equal to the computed new
utilization, the utilization jitter would be minimal. How-
ever, there are two issues to be addressed before the action
can be changed. One issue is that the response-time bounds
of � should not change. By modifying the utilization in
each period instance, the limit of the action for each period
changes. In the example, the new limits will be 21, 37, 1, 45,
and 45 for each of the 5 period instances respectively. We
have to make sure that the load of the action, which is in
this case 148, can be executed with the new limits in the
same number of period instances as in the standard VBS
algorithm.
We introduce the notion of positive and negative utiliza-

tion bound. The positive utilization bound ⇥+ denotes the
maximum amount of utilization that can be added to the ac-
tion without a�ecting the lower response-time bound. The
negative utilization bound ⇥� denotes the maximum amount
of utilization that can be subtracted from the action with-
out a�ecting the upper response-time bound. Thus, the uti-
lization bounds give the amount of error in utilization that
can be compensated for without violating the response-time
bounds. The utilization bounds are computed as follows,
with l, ⇤, and ⌅ being the load, the limit, and the period of
the considered action �,

⇥+ =
⌅ l
⇥⇧⇤� l

⌅
,

⇥� =
⇥ l
⇥⇤⇤� l

⌅
.

Note that if ⌅ l
⇥⇧ = ⇥ l

⇥⇤ then ⇥� = 1�⇥
⇤ . In the example we

have ⇥� = �0.28 and ⇥+ = 0.02.
The utilization bounds can o�er a trade-o� between per-

formance of the algorithm and temporal isolation of the ac-
tion. If the utilization bound is set to larger values then the
action may be faster than the lower response time bounds
or slower than the upper response time bound, increasing
the response time jitter by one or more periods, but it can
result in overall lower utilization jitter.
We compute the sum of the utilization error over the whole

execution time of the action, i.e. u�,e =
�

k u
e
k. In the

above example u�,e = 1%, which means that if we were to
modify the utilization of the action in each period instance
according to the table, we would have an error in the overall
utilization of the action of 1% which will be reflected in the
response time of the action.
Another issue is that in each period instance, the total

system utilization must be lower than or equal to 100%. A
change in utilization can occur at any time during a period
instance of an action but there is only one limit we can set for
a period instance. We address this issue in the algorithm by
adding a flag that specifies if at every time instant of every
period instance the system is not over-utilized. Only if this
is the case, the limits of every period instance of � can be
changed according to the computed new utilization.
The look-ahead online algorithm is presented in Listing 2.
For every action � that has an arrival at time t the algo-

rithm starts by calculating total number of period instances
(n) the action needs to finish its load (line 3). The flag c�
denotes whether the limits of action � can be changed. In

knowledge of
future events

Conclusions

Conclusions
• Server-based scheduling for

temporal isolation
process 1

process n

Conclusions
• Server-based scheduling for

temporal isolation
process 1

process n

↵1 ↵2
• VBS for variable execution

speed
process

Conclusions
• Server-based scheduling for

temporal isolation
process 1

process n

↵1 ↵2
• VBS for variable execution

speed
process

• Power-aware VBS
Static Slack

Dynamic Slack
Termination Slack

Action Slack

optimal offline FS-VBS

feasible online FS-VBS

