
Model & Problem Formulation

Given:

• TSN network architecture

• Set of periodic applications with security,

redundancy & function path (chain of

task with deadline) requirements

Determine:

• Set of TESLA security applications

generated based on security

requirements

• Set of TSN streams

• Packing

• Routing

• Static periodic task schedule

• GCL-based network schedule

Such that:

• Redundancy, TESLA security & function

path deadline requirements are met

• Latency of function paths is minimized

Work-In-Progress: Safe and Secure Configuration

Synthesis for TSN using Constraint Programming

Introduction & Technologies

Our work targets safety-critical real-time

systems as found in the automotive,

aerospace or industrial domains.

Our network technology of choice is Time-

Sensitve Networking (TSN):

• Extension to Ethernet to allow real-time

scheduling

• Provides clock synchronisation across

network (802.1 ASrev)

• Provides deterministic message

scheduling (802.1 Qbv)

• Provides support for message redundancy

(802.1CB FRER)

To provide authentication we use Timed

Efficient Stream Loss-Tolerant Authentication

(TESLA):

• Asymmetric authentication

• Multicast

• Resource efficient

Constraints

• TESLA Interval: Maximum value to fulfill

requirements.

• Routing: No cycles, Bandwidth not

exceeded, Redundant streams don’t

overlap

• Scheduling: No Overlap,

Dependencies, TESLA security

condition, TSN frame isolation,

Function-path deadlines

Solution

Solution implemented in Python using

Google OR-Tools. Created a nice UI

using Plotly/Dash, presented in

RTSS@Work Paper.

Synthetic + Automotive Testcases

Figure 1: An example network archcitecure consisting of end-systems and

switches. Additionally the mappping of tasks to end-systems is shown

Figure 2: An example application, consisting of multiple tasks with

interdependecies, mapped to different end-systems

Figure 3.1: Schedule without security & redundancy: TESLA is not used for security and redundant routing is not

used for fault-tolerance.

Niklas Reusch, Paul Pop (Technical University of Denmark)

Silviu S. Craciunas (TTTech Computertechnik AG)

Results

• Result 1: TESLA overhead is considerable

for small messages

• Result 2: Our solution significantly improves

schedulability/laxity compared to an ASAP

solution

• Result 3: Scalable up to medium sized

architectures

Tool available on GitHub:

https://github.com/nreusch/TSNConf

Future Work

Compare with heuristic solution

Evaluate scalability

Compare with other authentication protocols

Figure 3.2: Schedule with security & redundancy: TESLA is applied to secure the streams and redundant routing is

used for fault-tolerance

https://github.com/nreusch/TSNConf

