
Everyone Virtualizes Everything But Time
Silviu Craciunas, Christoph Kirsch, Hannes Payer, Harald Röck, Ana Sokolova
Department of Computer Sciences
University of Salzburg, Austria
firstname.lastname@cs.uni-salzburg.at

Contribution

Imagine a virtualized execution environment
(VEE) that virtualizes not only the host system
it runs on, even not only other systems slower
than the host system, but also maintains and
adjusts the exact speed at which these systems
operate, in strong temporal isolation from each
other, when they execute code, process I/O,
and manage memory.
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On the lowest level, there is a microkernel,
which contains the VBS scheduler and an IPC
mechanism. On top of the microkernel, pro-
cesses using the channel subsystem, and oper-
ating system services, e.g., device drivers, may
run along with operating system instances en-
capsulated in system VMs, and process VMs,
which may take advantage of CF and the chan-
nel subsystem. Scheduling parameters for the
VBS scheduler are set via system calls. [1]

Integration

The key problem is to design all system com-
ponents such that there always exists at most a
linear relationship between the amount of CPU
time required by each component to process a
workload and the actual amount of the work-
load.

VBS Scheduling

Tiptoe uses a real-time scheduler for schedul-
ing all system activities. Tiptoe assigns each
scheduling task, i.e., process or VM instance,
in the system to a unique VBS, which essen-
tially controls the execution speed of the as-
signed task and may even change the speed at
any time upon request.
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A VBS is configured by a single number u
that determines a utilization bound (band-
width cap). To configure their actual execu-
tion speed, each action of a process chooses a
pair (λ, π) (virtual periodic resource) such that
λ over π is less than or equal to the bandwidth
cap u of the used VBS. Switching to different
periods allows to trade off scheduling overhead
and temporal isolation at runtime.
Let {Pi | i ∈ I} be a set of processes each run-
ning on a VBS with utilization ui. If∑

i∈I

ui ≤ 1, (1)

then this set of processes is schedu-
lable using the EDF strategy so that
each action meets its response bounds.

Three different implementations:

list array matrix/tree
time O(n2) O(log(t) + n · log(t)) Θ(t)

space Θ(n) Θ(t + n) O(t2 + n)
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Compact-fit

Process VMs that use an object-based memory
model may use our Compact-fit explicit mem-
ory management system [2] to manage their
internal heaps in real time. Compact-fit is a
compacting memory management system for
allocating, deallocating, and accessing memory
in real time. The system provides predictable
memory fragmentation and response times that
are constant or linear in the size of the request,
independently of the global memory state.
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Results

Consider a process implementing a simple
feedback controller. The first action (α1) reads
sensor values, computes a new control com-
mand, and writes the actuators. The second
action (α2) updates the state of the controller
and has less stringent timing requirements. Ac-
tion α1 is associated with the virtual periodic
resource R1 = (320µs, 3550µs) while action α2

uses the resource R2 = (500µs, 5340µs).
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We show the minimum, maximum, and av-
erage response times of action α1 and α2, re-
spectively (left y-axis). The response time jitter
varies within two periods of the virtual peri-
odic resource independently of the overall sys-
tem utilization (right y-axis). CPU utilization
increases from 9% up to 92% when 9 additional
processes run concurrently.
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Zero vs. non-zero overhead

Zero overhead response bounds :

bi,j = πi,j − 1 +
⌈
li,j
λi,j

⌉
· πi,j (2)

Non-zero overhead response bounds:

bri,j = πi,j − 1 +
⌈

li,j
λi,j − δSi,j

⌉
· πi,j (3)

δSi,j
=
(⌈

πi,j

gcd(Π)

⌉
+ 1
)
· σ
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