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Abstract—In mixed-criticality Ethernet-based time-triggered
networks, like TTEthernet, time-triggered communication (TT)
coexists with rate-constrained (RC) and best-effort (BE) traffic.
A global communication scheme, i.e., a schedule, establishes
contention-free transmission times for TT flows ensuring guar-
anteed low latency and minimal jitter. Current approaches use
Satisfiability Modulo Theories (SMT) to formulate the scheduling
constraints and solve the resulting problem. However, these
approaches do not take into consideration the impact of the TT
schedule on RC traffic. Hence, the resulting TT schedule may
cause the worst-case latency requirements of RC traffic not to
be fulfilled anymore.

In this paper, we present a novel method for including an
RC analysis in state-of-the-art SMT-based schedule synthesis
algorithms via a feedback loop in order to maintain the optimality
properties of the SMT-based approaches while also being able to
improve the RC traffic delays. Our method is designed in such
a way that it can be readily integrated into existing SMT- or
MiP-based solutions. We evaluate our approach using variants
derived from a realistic use-case and present methods to further
improve the efficiency of our feedback-based approach.

I. INTRODUCTION

For certain application domains, critical communication
flows need to be proven correct in terms of their temporal
behavior. For example, in the aerospace domain, but also in
emerging industrial automation systems, authorities require
the proof of correctness as part of the certification process
with respect to critical traffic fulfilling end-to-end latency re-
quirements. These requirements have been guaranteed through
analysis methods like Network Calculus [1], [2], [3] or the
more recent Compositional Performance Analysis [4], for
technologies like Avionics Full DupleX (AFDX) [5]. The
Network Calculus method [1] is a well-known mathematical
framework based on min-plus algebra that is widely used in the
certification process to derive worst-case end-to-end latency
bounds for individual asynchronous communication flows.

TTEthernet (SAE AS6802 [6], [7]) enhances the rate-
constrained traffic class (RC) of AFDX with a fully syn-
chronous time-triggered communication paradigm (TT) that
offers better guarantees in terms of deterministic real-time
temporal behavior as well as composability. For the TT
traffic class, determinism is ensured via offline communication
schedule that enforces a contention-free and precise delivery

of critical frames across a switched multi-hop network within
defined latency and jitter bounds.

The schedule generation for the TT traffic class is done
either through heuristic-based approaches [8] or through op-
timal algorithms based on MiP or SMT [9], [10]. While
the integration of RC analysis through network calculus is
straightforward in heuristic-based approaches, there is no
guarantee that a solution is found (or, if none exists, that a
definitive negative result can be given) or that the produced
schedule is, indeed, the optimal one (due to local minima).
Optimal algorithms on the other hand, while being exponential
in runtime complexity, do not suffer from these drawbacks.
However, the network calculus analysis cannot be readily
included in the SMT constraint formulation. Nevertheless,
many applications require the optimality criteria of SMT-based
schedulers while still being able to guarantee response times
for RC traffic.

In this paper we provide a method for including RC analysis
in state-of-the-art SMT-based schedule synthesis methods in
order to maintain the optimality properties of the algorithm
while still being able to offer delay results based on network
calculus. Our method features a feedback loop which guides
the SMT solver towards generating schedules for the TT traffic
class that, besides adhering to the correctness constraints, also
provide schedulability results for the RC traffic class. The
main idea of the presented incremental algorithm is to use the
SMT-solver to compute new offsets for TT frames such that
the impact (delay) of TT frames, represented by the arrival
curve of the TT traffic, on RC traffic is reduced. We make
use of the optimization capabilities of modern SMT solvers
to guide the placement of TT frames. Since the impact of
optimization objectives on the runtime of the SMT solver
can be significant, we also present an approximation method
for reducing the number of SMT assertions needed in order
to increase the runtime performance of the scheduler. We
evaluate our solution via real-world use-cases and show the
effectiveness of our approach.

We begin by briefly introducing TTEthernet, SMT-based
scheduling, and the Network Calculus framework in Section II.
In Section III we describe our proposed method, followed
by an evaluation in Section IV. We survey related work in
Section V and conclude the paper in Section VI.
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Fig. 1. Considered switch architecture

II. THEORETICAL BACKGROUND

A. TTEthernet
TTEthernet is an extension to standard Ethernet cur-

rently used in mixed-criticality real-time applications in the
aerospace domain but also in emerging industrial automation
systems. TTEthernet features three types of traffic that rep-
resent different criticality levels: TT traffic (used for highly
critical traffic with guaranteed end-to-end latency and min-
imal jitter), RC traffic with deterministic quality of service
(QoS) guarantees and non-critical traffic (i.e. BE traffic).
The TTEthernet [11] standard is based on the use of global
time synchronization to send Time Triggered (TT) frames at
precise, predefined times (encoded in a local schedule table
that is part of a globally computed schedule) to ensure the
lowest contention and delays. Hence, the TT flows are defined
by their size, period, and offsets (the times their transmission
should start) in each output port. The synchronization flows
have the highest priority in TTEthernet networks, the next
priority is used by the TT flows, the two next priorities are used
by the AFDX RCHIGH and RCLOW traffic, respectively,
while the remaining 4 lowest priorities are reserved for Best-
Effort (BE) communication (cf. Fig. 1).

B. SMT-based TTEthernet schedule synthesis
Here, we briefly describe, based on [9], [10], [12] the SMT-

based approach for computing communication schedules for
TTEthernet.

Satisfiability Modulo Theories (SMT) is a well-known
method, similar to SAT, used to check the satisfiability of
first-order logical formulas based on a background theory
such as linear integer arithmetic (LA(Z)) or bit-vectors
(BV) [13], [14]. Current state-of-the-art TTEthernet scheduling
approaches [10], use SMT solvers for generating the static
schedule by generating assertions to the context of an SMT
solver representing the necessary and sufficient correctness
conditions. The result of the SMT solver is a solution for
the given constraints, representing values for the offsets of
individual frames on each device. Additionally, modern SMT
solvers like Z3 [15] offer the possibility to include optimiza-
tion criteria that find the optimal solution given minimization
or maximization condition(s).

Our algorithm, which builds on top of the work in [9],
uses SMT solvers to find out the schedule for a network
based on the inherent TTEthernet technology constraints and
optional user constraints. Steiner [9] proposes an incremental
backtracking algorithm, which we also implemented, that
splits the scheduling problem in small increments, scheduling
subsets of flows at a time. If a partial solution is found for
the subset, additional frames and constraints are added until
either the complete schedule is found or a solution to a partial
problem cannot be found. In the case of in-feasibility, the
problem is backtracked and the size of the added subset is
increased. In the worst case the algorithm backtracks to the
root, scheduling the complete set of frames in one step. Our
algorithm adds each flow from the input to the SMT context
in sequence following the algorithm described in [9]. We
refer the reader to [9] for a description and formalization
of the correctness constraints for the SMT-based TTEthernet
scheduler which we use in our method.

While the SMT-based approach retains the optimality prop-
erty of SAT- or MiP-based solutions, the major downside
is that the SMT solver acts as a black box and we are
only able to influence it by defining constraints (assertions)
and optimization criteria. Moreover, we are constrained to
the expressiveness of first order logic. Hence, state-of-the-
art SMT-based schedulers only take into account the TT flow
constraints. As a result, the RC traffic can be strongly impacted
by the placement of the scheduled TT frames and miss their
required deadlines.

We propose a feedback-based approach that attempts to
drive the SMT solver via optimization criteria towards placing
TT frames on the timeline such that RC traffic will adhere to
the latency and backlog requirements.

Please note that, while the proposed method is tailored
to TTEthernet, the main feedback-based approach can also
be used in Time-Sensitive Networks (TSN) which is the
new standardized deterministic Ethernet solution for industrial
communication systems. For TSN, existing SMT-based solu-
tions (e.g. [12]) can be extended using our proposed method to
consider AVB traffic shaped by CBS by including the network
calculus-based AVB analysis results from [16].

C. Network Calculus
The timing analyses detailed in this paper are based on the

Network Calculus framework [17] which is used to compute
upper delay and backlog bounds. These bounds depend on the
traffic arrival described by the so-called arrival curve ↵, which
represents the maximum amount of data that can arrive in any
time interval, and on the resource availability described by
the so-called minimum service curve �, which represents the
minimum amount of data that can be sent in any time interval.

Definition 1 (Arrival Curve): [17] A function ↵(t) is an
arrival curve for a data flow with an input cumulative function
A(t), i.e., the number of bits received until time t, iff:

8t, A(t)  (A⌦ 1↵)(t)

1f ⌦ g(t) = inf0st{f(t� s) + g(s)}



Definition 2 (Strict minimum service curve): [17] The func-
tion � is the minimum strict service curve for a data flow
with an output cumulative function A⇤, if for any backlogged
period ]s, t]2: A⇤(t)�A⇤(s) � �(t� s)

To compute the main performance metrics, we need the
following results:

Theorem 1 (Performance Bounds): [17] Consider a flow F
constrained by an arrival curve ↵ crossing a system S that
offers a minimum service curve �. The performance bounds
obtained at any time t are:
Backlog3 : 8 t : q(t)  v(↵,�)
Delay4: 8 t : d(t)  h(↵,�)
Output arrival curve5: ↵⇤(t) = (↵↵ �) (t)

Theorem 2 (Concatenation-Pay Bursts Only Once): [17]
Assume a flow crossing two servers with respective service
curves �1 and �2. The system composed of the concatenation
of the two servers offers a service curve �1 ⌦ �2.

Theorem 3 (Left-over service curve - Non Preemptive Static
Priority (NP-SP) Multiplexing): [18] Consider a system with
the strict service curve � and m flows crossing it, f1,f2,..,fm.
The maximum packet length of fi is li,max and fi is ↵i-
constrained. The flows are scheduled by the NP-SP policy,
where priority of fi > priority of fj , i < j. For each
i 2 {1, ..,m}, the strict service curve of fi is given by6:

(� �
X

j<i

↵j �max
k�i

lk,max)"

The traffic contracts are generally enforced using a leaky-
bucket shaper, i.e., the traffic flow is (r, b)-constrained where
r and b are the maximum rate and burst, and the arrival curve
is ↵(t) = r · t+ b. A common model of the minimum service
curve is the rate-latency curve �R,T , defined as �R,T (t) =
R · (t� T )+, where R is the output transmission capacity, T
is the system latency, and (x)+ denotes the maximum between
x and 0. The resulting output arrival curve is then: ↵⇤(t) =
r · (t+ T ) + b

An improvement of the leaky bucket shaper is to take into
account the link capacity of the input ports in order to obtain
a more accurate input arrival curve of the flows [19]. For
example, a flow arriving with a maximum burst b and rate
r, from a link with a capacity Cin, has an input arrival curve
↵(t) = min(Cin · t, r · t+ b).

Extensions for the RC traffic class analysis for TTEthernet
that consider the impact by the TT traffic class schedule have
been introduced in [20], [21], [22].

III. FEEDBACK LOOP

An optimal solution would be to integrate the Network
Calculus framework within the SMT solver to directly consider
the constraints of the RC traffic. However, this is not possible
due to the non-linearity of Network Calculus. In particular, the

2]s, t] is called backlogged period if A(⌧)�A⇤(⌧) > 0, 8⌧ 2]s, t]
3v: maximal vertical distance
4h: maximal horizontal distance
5f ↵ g(t) = sups�0{f(t+ s)� g(s)}
6g"(t) = max{0, sup0st g(s)}

computation of the arrival curve of TT frames as described in
[20] make use of several minimizations, maximizations and
upper-bound values to compute the overall arrival curve of
TT flows.

The current state-of-the-art SMT-based schedulers do not
consider RC flows. However, the placement of the TT frames
on the timeline may have a major impact on the delays
experienced by RC flows since TT traffic has a higher priority.
The main idea of our proposal (described in more detail below)
is to use a feedback loop that uses the RC network calculus
analysis to check the TT schedule and, if necessary, reschedule
problematic flows.

First all the TT flows are scheduled using the optimization
function of the SMT-solver to spread the TT frames. Our
observation is that evenly spacing out TT frame placement
leads to a lower impact on RC flows. Hence, we build an
optimization metric that tries to evenly space out TT frames
on the timeline and use optimization objectives to drive the
scheduling and rescheduling of TT flows via the SMT solver.

Secondly, the RC analysis is called to determine if RC
traffic fulfills the deadline requirements. If this is the case, the
algorithm stops. If this is not the case, the algorithm identify
the flow most likely to be causing delays and attempt to find a
better offset, i.e., reschedules, using the optimization function
of SMT.

This second step is repeated until an appropriate schedule
is found or a stopping condition is reached.

The additional advantage of such a solution is that it is com-
plementary to the existing implementation and can be readily
integrated into existing tools. It does not require modification
of the existing constraints, just the addition of optimization
objectives and the implementation of the feedback loop.

A. General algorithm
The general algorithm is detailed in Alg. 1. To modify

the values of the offsets, we propose to add an optimization
constraint to the SMT scheduler, implemented in the function
smtComputeOffset(flow) in Section III-C. In particular, we
propose two methods for the computation of the optimization
function. They are detailed in Sections III-D and III-E.

First, in Alg. 1, we set an initial offset for each flow
(ranked from smallest to largest period) using smtCompute-
Offset(flow), from Line 1 to Line 3. Then, we check whether
the RC deadlines are fulfilled in Line 4. If it is not the case, we
attempt to modify the offset of a flow selected by the function
findBestFlow() (describe in Section III-B), in Lines 8 and 9.

If the new set of offsets has already been explored (Line 10),
we use a while loop to explore possible offsets until all the
flows have been tested or a new set has been found (Line 11).
While no acceptable solution is found in Line 11, we add the
flow to the diversification list, look for a new flow that is not in
the diversification list, and compute the new offsets as before
(Lines 12 to 15). If the new set of offsets has not already been
explored, then the diversification list is reset (Lines 16 to 18).
Finally, we check if the RC deadlines are now fulfilled and
update the list of explored offsets (Lines 19 and 20).



Algorithm 1: General algorithm
Require: flowsTT ,flowsRC

1: for flow in flowsTT do
2: smtComputeOffset(flow)
3: end for
4: rcDeadlinesFulfilled=computeRCDelays(flowsRC)
5: listExploredOffset=[]
6: diversification=[]
7: while rcDeadlinesFulfilled==False and

diversification.size < flowsTT .size do
8: flow = findBestFlow()
9: smtComputeOffset(flow)

10: if getCurrentOffsets() in listExploredOffset then
11: while getCurrentOffsets() in listExploredOffset and

diversification.size < flowsTT .size do
12: diversification.add(flow)
13: flow = findBestFlow(diversification)
14: smtComputeOffset(flow)
15: end while
16: else
17: diversification==[]
18: end if
19: rcDeadlinesFulfilled=computeRCDelays(flowsRC)
20: listExploredOffset.add(getCurrentOffsets())
21: end while

B. findBestFlow()

The impact of TT flows is represented by the arrival curve of
the TT traffic, which is computed using the formulas detailed
in [20]. The main idea is to compute the impact of TT flows
in all the possible situations and keep the maximum values, as
illustrated in Fig. 2. The dotted lines are the different situations
and the plain line staircase is the maximum of the dotted
lines, representing the final TT flows maximum arrival curve,
denoted ↵k

TT (t).
From this staircase arrival curve, we are able to approximate

a linear arrival curve. The rate of the linear curve is the same
as the rate of the staircase curve over a period. Concerning
the initial burst of the linear curve, it is computed such as
the linear curve is always superior or equal to the staircase
curve, with at least one intersection, as illustrated in Fig. 2.
As a result, by modifying the value of the offset associated
to the staircase intersection point, we may be able to reduce
the value of the burst of the linear curve, and consequently,
reduce the impact of TT traffic on RC flows. The intersection
points are computed within the findIntersections() function.

To select the flow most likely to have the best impact (the
algorithm is detailed in Algo. 2), we compute the number of
times a flow is an intersection (from Line 5 to 14) and we
select the flow with the most occurrences that is not in the
diversification list, in Line 17. Finally, if no flow has been
found, we select the first flow in the list of TT flows that is
not in the diversification list, in Lines 19 to 21.

Algorithm 2: findBestFlow()
Require: flowsTT ,flowsRC , Datapaths,diversification
Ensure: bestFlow

1: listCard={}
2: for flowTT in flowsTT do
3: listCard[flowTT]=0
4: end for
5: for flowRC in flowsRC do
6: for path in flowRC paths do
7: for port in path do
8: flowsTTInter=findIntersections()
9: for flowTT in flowsTTInter do

10: listCard[flowTT]+=1
11: end for
12: end for
13: end for
14: end for
15: bestFlow=NULL
16: if not isEmpty(listCard) then
17: bestFlow=findMaxCardinal(listCard,diversification)
18: end if
19: while bestFlow==NULL or bestFlow in diversification

do
20: bestFlow = flowsTT .getNext()
21: end while

arrival curve

time

data (bits) Intersection

Fig. 2. Computing TT flows arrival curve ↵k
TT (t)

C. smtComputeOffset()

We consider a set of TT flows with a hyper-period HP
(computed as the least common multiple of all flow periods).
Our goal is to define the offset x of flow i with maximum
frame sizes MFSi and period Ti. All the preexisting con-
straints from [9] are enforced. In this section, we only present
the constraints added for the optimization of the offsets.
Additionally, if the flow has already been scheduled, we also
add the constraint that x must differ from the current offset.

We denote Cout the capacity of the output port. For each TT
frame k already scheduled, we define tstartk and tendk the start
and the end of the transmission. We have mk =

tend
k +tstart

k+1

2 .
The function newSymbolicInt() creates a symbolic variable
that will be used as an unknown by the SMT solver.
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In Alg. 3, for each port in each path of the TT flow i, we
compute the constraints defining the gains, then they are added
to the existing SMT constraints in Line 6. Finally offsets are
computed by the SMT solver in Line 7. The computation of the
new constraints in a port (i.e. Line 4) is described in Algo. 4.

Algorithm 3: Constraint computation for a path of TT
flow i

Require: TT flow i, path
Ensure: Offsetsi

1: sumGain=newSymbolicInt()
2: constraints=preexisting constraints from [9]
3: for port in path do
4: (constraints, sumGain)=computeConstraintInPort

(TTflow i, constraints, sumGain, Dataport)
5: end for
6: constraints.add(maximize(sumGain))
7: Offsetsi=smtSolve(constraints)

D. computeConstraintsInPort(): variant 1

To compute the offset leading to the minimum impact of TT
flows on RC flows, we must spread the frames over the hyper-
period in order to reduce the initial burst of the aggregated TT
flows.

To achieve this goal, in each output port with TT flows,
we define gain functions between the already scheduled TT
frames, as illustrated in Fig. 3, with Ti = 10 and an Hyper-
period HP = 40. We denote tendk the end of a frame
transmission and tstartk+1 the start of the next transmission. For
each TT frame k 6= i already scheduled, the gain functions
are determined by:
8tendk  t <

tend
k +tstart

k+1

2 , gain(t) = t� tendk

8tstartk+1 � t � tend
k +tstart

k+1

2 , gain(t) = tstartk+1 � t
Alg. 4 describes the definition of the gain function illus-

trated in Fig. 3. In particular, Line 7 defines the outer bounds
of a triangle, Line 8 (resp. Line 9) defines the right (resp. left)
side of the triangle.

However, this method requires a large number of assertions
since SMT optimization constraints can only be defined as
linear curves in LA(Z). Hence, in between two frames, 6
assertions are necessary to define the two linear parts of the
gain, i.e., to define the upper and lower bounds of x and the
value associated to the gain. When the number of TT flows

Algorithm 4: Constraint computation in a port p:
computeConstraintsInPort()
Require: TT flow i, constraints, sumGain, Datap
Ensure: constraints, sumGain

1: x= newSymbolicInt()
2: J = HP

Ti

3: for j in range(0,J) do
4: gainj= newSymbolicInt()
5: for frame k in TT flows do
6: if tendk >= j · Ti and tstartk+1 <= (j + 1) · Ti then
7: A = And(x+ j · Ti +

MFSi
Cout

<= tendk , tstartk+1 <=
x+ j · Ti)

8: B = And(x+ j · Ti >= mk , gainj =
tstartk+1 � x� j · Ti)

9: C = And(x+ j · Ti <= mk , gainj =
x+ j · Ti � tendk )

10: constraints.add(And(A,Or(B,C)))
11: sumGain+ = gainj

12: end if
13: end for
14: end for
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Fig. 4. Method 2: gain computation

increases, so does the number of assertions needed, resulting
in an increased runtime of the scheduler [10].

Consequently, we propose a second variant of the algorithm
to reduce the number of assertions through preprocessing and
hence improve the runtime of our approach.

E. computeConstraintsInPort(): variant 2

The main idea of the improvement is to consider only the
period Ti of the flow i and compute the values excluded
by the currently scheduled frames, i.e., if a frame is being
transmitted, or if the inter-frame gap is too small to transmit
the frame of flow i. Then, the gains (only on the acceptable
times) are summed up, as illustrated in Fig. 4. Finally, to
further reduce the number of linear parts of the gain function
(which means reducing the number of assertions and hence



the computation time), we approximate the remaining gain
functions to keep only a maximum of two linear functions per
interval, as illustrated in Fig. 4, with Ti = 10 and HP = 40.

In the example described in Fig. 3 and Fig. 4, the number
of assertions has been reduced from 24 to 6, which should
improve the timing performances. In the next section, we will
present experimental results to validate these concepts and
assess the gain in performance between the two variants.

IV. PERFORMANCE ANALYSIS

In this section, we do a performance analysis based on a
real-world use-case in order to compare the two selected vari-
ants of our solution. First, we present preliminary assumptions,
e.g., the model of the flow, the TTEthernet switch and end-
systems, and delay computations. Then, after presenting our
case study, we do a comparison of the two methods for a
TTEthernet network.

A. Preliminaries and assumptions

Switch and End-System model: we consider the TTEther-
net switch architecture described in Fig. 1. The input port delay
is the amount of time necessary for a frame i to arrive at a rate
Cin: MFSi

Cin
. We consider the delay in the switch starts after

the frame has been fully received. The forwarding process is
defined by a minimum (best-case) and maximum (worst-case)
delay, denoted WCDn

fwd and BCDn
fwd, in a switch or end-

system n 2 {sw, es}. All the flows are using the shuffling
integration policy in the switches and end-systems, i.e, the TT
frames can be delayed by lower priority frames.

TTEthernet output ports: the impact of the TT traffic on
RC traffic is computed using the input arrival curves proposed
in [20]. Then, the service curves are computed using Th. 3.

Traffic model: to compute the delay bounds within each
node (output port, switch sw or end-system es), we use Th. 1
under the following assumptions: (i) staircase arrival curves
for the traffic flows at the input of node n. For a flow i, we
define the Maximum Frame Size MFSi and the Bandwidth
Allocation Gap BAGi (the period and generally also the
deadline). The initial arrival curve sent by the traffic source is
↵I(t) =

P
i2I MFSi·d t+Ji

BAGi
e. For each class I , the aggregate

traffic has an input arrival curve in the node n 2 {es, sw}:
↵n
I (t) = min{Cn

I,in · t,
P

i2I,i2n ↵
n
i (t)}, where the maximum

input rate Cn
I,in is the sum of the capacities Cin of the input

links of node n crossed by traffic of class I , and ↵n
i (t) is the

input arrival curve of flow i in node n. ↵n
i (t) is a staircase

curve as illustrated in Fig. 5, with WCDprec the delays in the
previous nodes. We considered that in the generating node n,
Cn

I,in = +1; (ii) the offered service curve by node n to the
traffic class I is a staircase curve as illustrated in Fig. 5. This
results from using Th. 3 with staircase arrival curves.

Delay bound computation: with this method, we can use
BCDn

fwd to obtain a tighter input arrival curve in the output
port. The input arrival curve of an aggregate flow I in the
output port port in a node n 2 {es, sw} is:

↵port
I (t) = min{Cn

I,in · (t+ �nfwd),↵
n
I (t+ �nfwd)}

input arrival curvebits

t

MFS

Jitter + WCD
pred

minimum service curve

BAG

Fig. 5. Traffic model

with �nfwd = WCDn
fwd�BCDn

fwd. Then, according to Th. 1,
we can compute the worst-case delay bound as the maximum
horizontal distance between ↵port

I (t) and �port
I (t) = Rport

I ·
(t � T port

I )+. The delay in the switch (or end-system) n is
then: WCDn

I = WCDport
I +WCDn

fwd and the output arrival
curve is ↵n,⇤

I (t) = ↵n
I (t+ �nfwd +WCDport

I ).
End to end delay bounds: finally, the end-to-end delay of

a flow is obtained by summing the delays along the path in
the end-systems, input ports, switches and links along the path
of the flow.

B. Case Study
We consider a real-world project AERO1 7 depicted in

Fig. 6, with 3 end-systems, i.e., PG1, PG2 and PX2, and 3
switches, i.e., SW0, SW1, SW2. The forwarding delays are
described in Table I, and the link capacity is 100 Mbps.

Node n WCDn
fwd (s) BCDn

fwd (s)
End System 2.43 · 10�6 2.18 · 10�6

Switch 2.50 · 10�6 2.41 · 10�6

TABLE I
FORWARDING DELAYS

We consider 12 flows for TT (resp. RC) traffic, with a
redundancy level 3, i.e. 36 VLs, with identical period (resp.
BAG) of 4 ms and MFS=1518 bytes. The RC traffic has a
default maximum initial jitter of 100 µs. Six VLs are generated
in PG1 with PG2 and PX2 as destinations. The other six are
generated in PG2 with PG1 and PX2 as destinations. The
default deadline of a flow is equal to the period.

In order to assess both methods, we explore different
scenarios by varying two parameters, i.e., the TT deadline and
RC jitter, as illustrated in Table II. As highlighted in the traffic
model, increasing the initial jitter increases the input arrival
curve of the generated traffic, resulting in the increase of the
RC end-to-end delays for identical TT offsets. Consequently,
increasing the RC jitter also increases the constraints on the
RC deadline and delay. We choose to vary the jitter because

7Please note that the realistic test cases have been anonymized due to
contractual obligations



it is a minor parameter compared to MFS and BAG, allowing
us to remain close to the default scenario.

The results of various scenarios will highlight the advan-
tages and drawbacks of each method.

We focus on the maximum number of iterations nmax,
on the maximum time of execution tmax, on the iteration
where the best result is found nbest, on the time necessary
to find the best result tbest, and on the schedulability sched.
We define the schedulability as the percentage of schedulable
flows. Additionally, to ensure the algorithm ends within an
acceptable time frame, we have added a constraint in Line 7
of Algo. 1 to limit the number of iterations to 2 000.

Fig. 6. AERO1 use-case

scenario TT deadline (s) RC Jitter (s)
default 0.004 100·10�6

1.1 0.004 800·10�6

1.2 0.004 900·10�6

1.3 0.004 1000·10�6

1.4 0.004 1100·10�6

1.5 0.004 1200·10�6

2.1 0.002 100·10�6

2.2 0.002 300·10�6

2.3 0.002 400·10�6

TABLE II
SCENARIOS DESCRIPTION

C. Results

First, we compute the results of all 9 scenarios without
the optimization methods, i.e., with the current implemen-
tation. Results show that the computation is done in about
tmax=1.80 s and that 18 out of 36 RC VLs are not schedulable,
i.e., their delay is greater than their deadline. Hence, the
schedulability of RC flows is 50% without the optimization
methods for all 9 scenarios.

In Table III, we present the results of the scenarios finding
an acceptable solution, i.e., all the RC flows are schedulable.

In Table IV, we present the results of scenarios not finding
an acceptable solution, i.e., not all the RC flows are schedu-
lable.

First, concerning the default scenario, we can see from Ta-
ble III that both methods find solutions after the first iteration
(nmax = 1). Hence, the schedulability is increased from 50%

scenario method nmax tmax (s)
default 1 1 101
default 2 1 2.5

1.1 1 1 95
1.1 2 3 3
1.2 1 4 174
1.2 2 691 256
1.3 1 4 170
1.3 2 1110 508
2.1 1 8 46
2.1 2 1 2.3
2.2 1 1841 3934
2.2 2 123 76

TABLE III
RESULTS WITH A SCHEDULABILITY OF 100% FOR BOTH METHODS

scenario method nmax tmax (s) nbest tbest (s) sched
1.4 1 55 604 55 604 100%
1.4 2 2000 1190 1053 616 83%
1.5 1 2000 8621 1 115 50%
1.5 2 2000 1180 1535 882 66%
2.3 1 2000 3968 255 891 83%
2.3 2 2000 1023 660 350 83%

TABLE IV
RESULTS WITHOUT A SCHEDULABILITY OF 100% FOR BOTH METHODS

to 100%. Additionally, tmax shows that, as expected, method 2
is faster than method 1 (up to 51 times faster in scenario
2.2), and slightly slower than the current method without the
optimization.

When studying all 9 scenarios, we notice that method 1
tends to find the best solutions in less iterations (i.e. nmax

and nbest in scenarios 1.1, 1.2, 1.3, 1.4, and 2.3), but not
always (i.e. scenarios 2.1 and 2.2). This is most likely due to
the approximations done on the gain functions in method 2.

However, less iterations does not necessary result in better
timing performances (i.e. tmax and tbest in scenarios 1.1 and
2.3) because, as expected, an iteration with method 2 is faster
than with method 1, e.g. about 4 times faster in scenario 2.3
and up to 40 times faster in the default scenario.

When the schedulability is not 100% with both methods (see
Table IV), we can see that the best method, i.e. with the best
schedulability, depends on the scenario: method 1 for scenario
1.4 and method 2 for scenario 1.5. This again highlights that
either method can find the best offsets.

Also, it is interesting to compare the maximum time to
explore all 2 000 options: in scenario 1.5, it takes tmax =
8621s for the first method to finish, and only 1180s for
method 2 to assess that no solution gives 100% schedulability.
Additionally, the schedulability with method 1, i.e., the longest
to finish, is lower than with method 2, i.e., the fastest method.

Finally, we can conclude that while method 1 is less
complex to implement and generally finds results in less
iterations, method 2 is the best method to find solutions in an
acceptable time frame. Additionally, we see that our feedback-
based method is able to generate schedules for TT flows such
that the schedulability of RC traffic is increased for all 9
scenarios (even up to 100%).



V. RELATED WORK

The synthesis of time-triggered schedules has been initially
introduced for the static cyclic task scheduling problem in [23].
Creating time-triggered schedules for TTEthernet networks
by using SMT solvers was first proposed by Steiner in [9]
and extended in [24], [10] to also generate the related cyclic
schedule tables for tasks on end-system nodes. We use the
constraints defined in [9] for our SMT-based scheduler im-
plementation. An MiP-based approach is presented in [25]
which generates task and messages schedules in switched
time-triggered networks with multi-objective optimization.

Employing the network calculus framework for checking
the worst-case latency of RC(AFDX) flows in TTEthernet
networks has been addressed in [2], [20]. Specifically, we use
the results in [20] for the analysis step of our feedback loop.

The work of Steiner [26] attempts to minimize the impact of
TT frames on RC traffic via the concept of schedule porosity
which leaves gaps in the TT schedule in order to minimize the
starvation impact on RC frames. This method, as opposed to
ours, does not make use of the network calculus framework to
derive upper bounds on the worst-case latency of RC flows.
The same RC analysis method as in [26] is used in [8] to
drive a Tabu Search-based heuristic towards finding a schedule
for TT frames while minimizing the end-to-end delay of rate-
constrained frames. This method does not have the optimality
criteria of SMT-based approaches since it relies on heuristics
and, furthermore, does not use network calculus for the worst-
case RC delay analysis.

In terms of analyzing the impact of time-triggered messages
on RC traffic, several methods have been proposed. Including
the TT traffic schedule in the RC service curve definitions of
the network calculus framework has been presented in [20].
Boyer et al. [22] present an evaluation study of different
traffic integration policies and the resulting TT impact on
RC communication. Abuteir and Obermaisser [27] present
a heuristic approach for allocating and scheduling mixed-
criticality communication as well as a simulation and ver-
ification framework for TTEthernet networks. In [28], the
authors evaluate the impact of different placement strategies
for TT windows on the end-to-end delay and jitter of RC
messages on the same path segment and validate the claims
using simulations.

VI. CONCLUSION

We have presented a novel method for including RC analysis
in state-of-the-art SMT-based TTEthernet scheduling algo-
rithms that enforces RC traffic deadlines while maintaining the
optimality properties of SMT-based approaches. Our method
aims to drive the placement of the TT frames via optimization
criteria given to the SMT solver in such a way that the impact
of TT frames on RC traffic is reduced and hence, RC deadlines
can be fulfilled. We evaluated our approach using variants
derived from a realistic use-case and presented methods to
further improve the efficiency of our feedback-based approach.
In particular, results show that the schedulability of the RC
traffic can be doubled, from 50% to 100%.
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