
Out-of-sync Schedule Robustness for Time-sensitive Networks
Silviu S. Craciunas

TTTech Computertechnik AG, Vienna, Austria
silviu.craciunas@tttech.com

Ramon Serna Oliver
TTTech Computertechnik AG, Vienna, Austria

ramon.serna.oliver@tttech.com

Abstract—Time-Sensitive Networks (TSN) enable real-time
communication guarantees over Ethernet by defining a timed-
gate mechanism (802.1Qbv), binding frame transmissions to a
global schedule, and a synchronization protocol (802.1AS), which
aligns the time of each node to a reference clock. When the
reference clock is lost, the individual clocks drift apart until
a new master clock is elected (re-synchronization interval). This
may lead to a complete loss of determinism due to an inconsistent
alignment of the transmission patterns between nodes.

In this paper, we address the problem of creating time-
triggered schedules for 802.1Qbv with an enhanced robustness
against the temporary loss of synchronization. We analyze the
protocol behavior upon a loss of synchronization and derive
new constraints for the computation of schedules able to tol-
erate the worst-case drift of individual clocks during the re-
synchronization interval. Moreover, we formulate the problem as
a design space exploration to synthesize schedules with the max-
imum tolerance towards loss-of-sync issues. We have developed a
scheduler tool based on the Z3 SMT/OMT solver and conducted
a series of experiments with a set of synthetic use-cases. Our
evaluation exposes a series of trade-offs between the robustness
of the schedule and the feasibility and computation run-time of
the scheduler as well as the end-to-end communication latency.

I. INTRODUCTION

Many new areas, e.g., industrial automation, fog comput-
ing, and distributed control applications, require real-time
communication guarantees, albeit not with the same degree
of criticality as applications in, e.g., the aerospace domain.
Time-Sensitive Networks (TSN) [1] introduce standardized
mechanisms to enhance and guarantee the timely behavior of
communication streams across Ethernet networks. Providing
hard real-time guarantees for critical traffic is possible through
the use of the time-aware gating mechanism defined in [2]
in combination with a common global time provided through
the use of a clock synchronization protocol [3]. The global
schedule for the time-aware gates, encoded in so-called Gate-
Control Lists (GCLs), specifies at which points in time frames
are transmitted and forwarded out of the egress queues of the
TSN devices in the network. This schedule is computed offline
and relies on a global and common notion of time, i.e., it
assumes that all clocks in the network are synchronized to
one another within some bounded and known precision.

Schedule synthesis algorithms for TSN networks (e.g. [4]–
[6]) take as an input the network precision and generate
schedules that determine the transmission and forwarding
times of all critical frames in the network. Since the local
clocks of the network devices drift away from each other at a

978-1-6654-2478-3/21/$31.00 ©2021 IEEE

certain rate, they need to be synchronized to one another using
a synchronization protocol (c.f. [7]). If the synchronization
of the clocks is done at regular (pre-defined) intervals, the
deterministic behavior of the communication satisfying the
end-to-end latency requirements is maintained. However, if
the synchronization fails at runtime and the local clocks start
drifting away from each other uncontrolled, the real-time
guarantees can no longer be ensured. This is particularly
problematic since, in IEEE 802.1Qbv, the static schedule
encoded in the GCL determines the timing of individual egress
queues (traffic class) at which enqueued frames are eligible for
transmission. This differs from other time-triggered protocols
(e.g., TTEthernet), in which the schedule directly relates to
the transmission of individual frames (c.f. [8]).

Synchronization loss can occur due to many reasons, either
because of a device or link failure or due to a targeted attack
on the reference node, which supplies the corrected time to the
network’s nodes (c.f. [7]). Adding fault-tolerance to the clock
synchronization alleviates the problem; however, the feature
introduced in the IEEE 802.1AS-rev [9] revision is not always
supported. Moreover, a targeted attack can invalidate the fault
assumption by (temporarily) eliminating all redundant clock
grandmasters via, e.g., a DoS attack against the grandmasters
or the synchronization protocol [7].

In this paper, we aim to create TSN schedules with en-
hanced resilience to synchronization loss. With our method,
the created schedules will still guarantee deterministic frame
behavior in the temporal domain in the case of a sporadic
synchronization loss. The duration for which the critical
frames maintain their real-time behavior (which we call the
re-synchronization interval) is sufficiently long to allow the
IEEE 802.1AS protocol to reestablish synchronization within
the network. We call the property that schedules guarantee
real-time behavior over the re-synchronization interval out-

of-sync robustness. This robustness to synchronization loss
is achieved by considering the maximum time interval that
a network can be out of sync and computing an additional
component to the nominal network precision. This extended
precision is then used to generate robust schedule tables.
Since the robustness comes at the expense of schedulability,
we also present a design-space exploration that guides the
IEEE 802.1AS parameters’ configuration space. We show the
feasibility of our approach using a set of synthetic experiments.

In Sect. II we introduce the TSN timed-gate and sync mech-
anisms, followed by our fault and network models (Sect. III),
and discuss standard-compliant mitigation strategies for sync

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record is available at https://doi.org/10.1109/WFCS46889.2021.9483602

Simplified
TSN Switch

scheduled queue

scheduled queue
...

...

non-scheduled
queues

Switching
fabric

Priority
filter

Ingress
port

Ingress
port

Egress
port

t1 ocoocooc
t2 cooccoco
t3 coccocoo

Transm
ission

selection

Figure 1. Simplified representation of an IEEE 802.1Qbv-capable switch.

loss scenarios in Sect. IV. We present our schedule synthesis
approach for out-of-sync robustness as well as the design-
space exploration problem in Sect. V. We show the feasi-
bility of our approach using several synthetic experiments in
Sect. VI, followed by a related work overview (Sect. VII), and
concluding remarks in Sect. VIII.

II. TIME-SENSITIVE NETWORKS

A. Scheduled traffic in TSN networks

The time-aware gate mechanism defined in 802.1Qbv [2]
enables or disables the transmission of frames from egress
queues according to a pre-computed and pre-configured cyclic
schedule referred to as a Gate Control List (GCL). Each egress
queue of a port in an 802.1Qbv device has an associated timed-
gate that can be either in an open (o) or closed (c) state defined
in the GCL configuration. At run-time, each gate’s state change
is triggered by the local clock of the device.

Enqueued frames are sent in FIFO order when the associated
gate opens. If multiple gates are open simultaneously, frames
are sent according to the queue priority. Fig. 1 shows a
model of an 802.1Qbv switch where frames ingress from the
right-side port and are routed to one of the left-side egress
ports via the switching fabric. A priority filter determines the
assignment of frames to one of the 8 queues (traffic classes)
based on criteria like the PCP of the 802.1Q header or the
802.1Qci filtering tables. Similar to [4], we assume that some
queues are dedicated to scheduled (critical) streams, and the
rest enqueue non-critical traffic (best-effort).

In TSN networks, time-aware nodes that participate in trans-
mitting or forwarding critical real-time frames via 802.1Qbv
must have their local clocks synchronized to a common time.
Since the synchronization is never perfect, the clocks are
synchronized so that the maximum difference between any
two clocks is at most a predefined value, called precision.
The main scheduling problem for time-aware networks is:
given the network topology, device properties, communication
requirements, and synchronization quality (precision), generate
static schedules for the transmission and forwarding of critical
frames so that the required temporal behavior is guaranteed.

In TSN, as opposed to other time-triggered networks like
TTEthernet (SAE AS6802) [10], the transmission schedule
refers to traffic classes (i.e., egress queues and their associ-
ated time-gates) instead of individual frames [8]. Hence, if

ES 1

ES 2

Switch

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di�erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � � 1µsec [15, p. 186].

�vli � VL, �[va, vx], [vx, vb] � vli :

[vx, vb].mt � f [vx,vb]
i,1 .� � [va, vx].d � � �

[va, vx].mt � (last(F [va,vx]
i).� + last(F [va,vx]

i).L).

The constraint expresses that, for a frame, the di�erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vli) and dest(vli) denote the CPU links on which

the producer task and, respectively, the consumer task of
virtual link vli are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

�vli � VL :

dest(vli).mt � (last(Fdest(vli)
i).� + last(Fdest(vli)

i).L) �

src(vli).mt � fsrc(vli)
i,1 .� + vli.max latency.

In essence, the condition states that the di�erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o�set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have

�va � V, ��va
i � �va :

�
f [va,va]

i,1 .� � �va
i .�

�
�

�
last(F [va,va]

i).� � �va
i .D � �va

i .C
�

.

3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di�erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.

�va � V, ��va
i � �va , �j �

�
1,

����F [va,va]
i

��� � 1
��

:

f [va,va]
i,j+1 .� � f [va,va]

i,j .� + f [va,va]
i,j .L.

3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task �va
i and �vb

j have precedence con-
straints (�va

i � �vb
j) then �va

i has to finish executing before
�vb

j starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows

�va
i � �vb

j � [vb, vb].mt � f [vb,vb]
j,1 .� �

[va, va].mt � (last(F [va,va]
i).� + last(F [va,va]

i).L).

Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.

�vli � VL, �[va, vx], [vx, vb] � vli :

[vx, vb].mt � f [vx,vb]
i,1 .� � [va, vx].mt � f [va,vx]

i,1 .� � [va, vx].b.

Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu�er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

ES 1 local time

ES 2 local time

Switch local time

ES 1

ES 2

Switch

ES 1 local time

ES 2 local time

Switch local time

Possible output
patterns

out of sync

max drift within

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di�erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � � 1µsec [15, p. 186].

�vli � VL, �[va, vx], [vx, vb] � vli :

[vx, vb].mt � f [vx,vb]
i,1 .� � [va, vx].d � � �

[va, vx].mt � (last(F [va,vx]
i).� + last(F [va,vx]

i).L).

The constraint expresses that, for a frame, the di�erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vli) and dest(vli) denote the CPU links on which

the producer task and, respectively, the consumer task of
virtual link vli are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

�vli � VL :

dest(vli).mt � (last(Fdest(vli)
i).� + last(Fdest(vli)

i).L) �

src(vli).mt � fsrc(vli)
i,1 .� + vli.max latency.

In essence, the condition states that the di�erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o�set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have

�va � V, ��va
i � �va :

�
f [va,va]

i,1 .� � �va
i .�

�
�

�
last(F [va,va]

i).� � �va
i .D � �va

i .C
�

.

3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di�erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.

�va � V, ��va
i � �va , �j �

�
1,

����F [va,va]
i

��� � 1
��

:

f [va,va]
i,j+1 .� � f [va,va]

i,j .� + f [va,va]
i,j .L.

3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task �va
i and �vb

j have precedence con-
straints (�va

i � �vb
j) then �va

i has to finish executing before
�vb

j starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows

�va
i � �vb

j � [vb, vb].mt � f [vb,vb]
j,1 .� �

[va, va].mt � (last(F [va,va]
i).� + last(F [va,va]

i).L).

Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.

�vli � VL, �[va, vx], [vx, vb] � vli :

[vx, vb].mt � f [vx,vb]
i,1 .� � [va, vx].mt � f [va,vx]

i,1 .� � [va, vx].b.

Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu�er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

max drift within

3.3 Virtual link constraints
We introduce virtual link constraints which describe the

sequential nature of a communication from a producer task
to a consumer task. The generic condition that applies for
network as well as for CPU links is that frames on sequen-
tial links in the communication path have to be scheduled
sequentially on the time-line. Virtual frames of producer or
consumer tasks are special cases of the above condition. All
virtual frames of a producer task must be scheduled before
the scheduled window on the first link in the communica-
tion path. Conversely, all virtual frames of the consumer
task must be scheduled after the scheduled window on the
last network link in the communication path.

End-to-end communication with low latency and bounded
jitter is only possible if all network nodes (which have in-
dependent clock sources) are synchronized with each-other
in the time domain. TTEthernet provides a fault-tolerant
clock synchronization method [31] encompassing the whole
network which ensures clock synchronization. On a real net-
work, the precision achieved by the synchronization protocol
is subject to jitter in the microsecond domain. Hence, we
also consider, similar to [35], the synchronization jitter which
is a global constant and describes the maximum di�erence
between the local clocks of any two nodes in the network.
We denote the synchronization jitter (also called network
precision) with �, where typically � � 1µsec [15, p. 186].

�vli � VL, �[va, vx], [vx, vb] � vli :

[vx, vb].mt � f [vx,vb]
i,1 .� � [va, vx].d � � �

[va, vx].mt � (last(F [va,vx]
i).� + last(F [va,vx]

i).L).

The constraint expresses that, for a frame, the di�erence
between the start of the transmission window on one link
and the end of the transmission window on the precedent
link has to be greater than the hop delay for that link plus
the precision for the entire network.

3.4 End-to-End Latency constraints
Let src(vli) and dest(vli) denote the CPU links on which

the producer task and, respectively, the consumer task of
virtual link vli are scheduled on. We introduce latency con-
straints that describe the maximum latency of a communi-
cation from a producer task to a consumer task, namely

�vli � VL :

dest(vli).mt � (last(Fdest(vli)
i).� + last(Fdest(vli)

i).L) �

src(vli).mt � fsrc(vli)
i,1 .� + vli.max latency.

In essence, the condition states that the di�erence between
the end of the last chunk of the consumer task and the start
of the first chunk of the producer task has to be smaller
than or equal to the maximum end-to-end latency allowed.
In this paper we consider the maximum end-to-end latency
to be smaller than or equal to the message period (which is
the same as the period of the associated tasks).

3.5 Task constraints
For any sequence of virtual frames scheduled on a CPU

link, the first virtual frame has to start after the o�set of the
task and the last virtual frame has to be scheduled before

the deadline of the task. Hence, we have

�va � V, ��va
i � �va :

�
f [va,va]

i,1 .� � �va
i .�

�
�

�
last(F [va,va]

i).� � �va
i .D � �va

i .C
�

.

3.6 Virtual frame sequence constraints
For a CPU link, we check in the condition in Section 3.2

that the scheduling windows of virtual frames generated by
di�erent tasks do not overlap. Additionally, we have to check
that virtual frames generated by the same task do not over-
lap in the time domain. This condition can be expressed
similar to the condition in Section 3.2, however, we express
it, without losing generality, in terms of the ordering of the
virtual frame set.

�va � V, ��va
i � �va , �j �

�
1,

����F [va,va]
i

��� � 1
��

:

f [va,va]
i,j+1 .� � f [va,va]

i,j .� + f [va,va]
i,j .L.

3.7 Task precedence constraints
Task dependencies are usually expressed as precedence

constraints [5], e.g., if task �va
i and �vb

j have precedence con-
straints (�va

i � �vb
j) then �va

i has to finish executing before
�vb

j starts. Even though these dependencies arise typically
between tasks co-existing on the same CPU, we generalize
dependencies between tasks executing on any end-system.
Task dependencies are partially expressed in [28] as frame
dependencies in the sense that one frame is scheduled before
another frame, which can be used to specify aspects of the
existing task schedule. We introduce constraints for simple
task precedences in our model as follows

�va
i � �vb

j � [vb, vb].mt � f [vb,vb]
j,1 .� �

[va, va].mt � (last(F [va,va]
i).� + last(F [va,va]

i).L).

Note that both tasks must have the same period or “rate”.
Multi-rate precedence constraints (extended precedences as
they are called in [10]) are subject for future work.

3.8 Memory constraints
The time-triggered paradigm enables us to define the

memory constraints for the switches and end-system nodes
as an upper bound on the time that a frame can reside inside
the transmitting queue of a node, i.e., the time a frame can
logically remain on a CPU or network link.

�vli � VL, �[va, vx], [vx, vb] � vli :

[vx, vb].mt � f [vx,vb]
i,1 .� � [va, vx].mt � f [va,vx]

i,1 .� � [va, vx].b.

Note that an alternative method to directly constrain the
memory utilization in terms of frame and bu�er lengths im-
plies a non-trivial extension that may require quantifiers in
the logical formulas. The added level of expressiveness, how-
ever, does not justify the inherent increase in complexity and
the required added run-time to solve the problem.

4. SMT-BASED CO-SYNTHESIS
Satisfiability Modulo Theories (SMT) checks the satisfia-

bility of logic formulas in first-order formulation with regard
to certain background theories like linear integer arithmetic
(LA(Z)) or bit-vectors (BV) [2, 27]. A first-order formula
uses variables as well as quantifiers, functional and predicate
symbols, and logical operators [21]. Scheduling problems are

max drift within

Figure 2. Non-deterministic frame transmission for out-of-sync devices.

frames are lost, payload sizes change, or the synchronization
quality degrades beyond the configured precision, the order of
enqueuing frames in the individual traffic classes may differ
from the intended state (c.f. [4]). In other words, at design-
time, the schedule is constructed to ensure that the order and
timing of ingress (i.e. enqueuing) and egress (i.e. transmission)
of frames is deterministic. However, when certain assumptions
taken at design-time, like the synchronization precision, are
not fulfilled at run-time, the temporal behavior may not be
deterministic anymore due to the variation in queue states.

In Fig. 2 we show an example of this effect. Two end-
systems (ES1 and ES2) are connected to a switch (SW). Under
the precision assumption (top timeline), the transmission of a
frame from ES1 will arrive within some bounded interval with
respect to the SW local clock. The same situation occurs for
the frames sent by ES2. Regardless of how the local clocks
of ES1, ES2, and SW drift in relation to each other, as long
as they stay within the assumed precision, the opening and
closing of gates in the switch queue (shown as green and red
arrows) lead to the same pattern of transmission, even when
both frames are stored in the same SW queue. However, when
the difference between the local clocks of ES2 and SW drift
further apart than the pre-configured precision, shown in the
bottom timeline, the time interval in which a frame from ES2
may arrive with respect to the switch’s local clock can be much
larger than planned. If the local clock of ES is faster than the
local clock of SW, the frame sent from ES2 may arrive before
the one sent from ES1. Since the opening and closing of the
queue gate in the SW does not depend on the queue state, the
frame from ES2 will be sent first. On the contrary, if the local
clock of ES2 is slower than the one of SW, the frame from ES2
may arrive after its planned time slot and hence never be sent.
These patterns may occur at run-time when the assumption
on the bounded precision does not hold, hence breaking the
determinism and real-time properties of the streams.

B. Synchronization and IEEE 802.1AS

In IEEE 802.1AS [9], the term precision refers to the
deviation of a local clock with respect to an ideal clock
reference, usually referred to as the clock grandmaster (GM).

local time

reference time

pr
ec

is
io

n
in

te
rv

al

un
sy

nc
hr

on
iz

ed
 d

rif
t

Resynchronization interval

Figure 3. Clock synchronization (inspired by [11, p.59]).

In order for the local time of each device to not drift in relation
to the reference clock further away than the desired precision,
all clocks need to be synchronized with a certain rate, also
called the synchronization interval [11, p.59], as shown in
Fig. 3. Maintaining the synchronization requires a correction
that adjusts the value of the clocks in such a way that the
worst-case drift in relation to each other over the subsequent
synchronization interval will not cause the relative offset to
exceed the desired precision [11, p.60]. A precision of < 1µs
relative to the reference clock is possible for networks with
under 5 hops and 1 Gbit/s links [12]; however, this precision is
not achievable for nodes that are more than 30 hops away from
the reference clock node [13]. In order to provide the necessary
synchronization, the IEEE 802.1AS standard mandates that at
least one node is defined as a clock grandmaster (GM). The
GM constitutes the root node of the synchronization spanning
tree, which is constructed via the Best Master Clock Algorithm
(BMCA) [14]. For each clock domain, the BMCA constructs
one spanning tree consisting of the time-aware nodes in the
respective domain and paths from the GM to these nodes [12].
Once the tree is constructed, the GM sends its time value to the
connected neighboring nodes within the spanning tree for the
given synchronization domain. Each switch then corrects the
received time by adding the propagation delay and residence
time in the switch and forwards the corrected time to the next
nodes in the spanning tree [14]. We refer the reader to [12],
[13] for a detailed description of 802.1AS.

Within the same clock domain, all nodes use the same
GM. If the GM node fails, a new GM has to be elected, and
the spanning tree has to be recreated via the BCMA. In the
reelection phase, the first step of the process is detecting the
loss of a GM via a time-out value specified by the standard
(default is 3s [9]), which, in essence, implements a watchdog
timer checking for announce messages from the GM. In a
second step, the BMCA runs, and each node sends its clock
value until the spanning tree is recomputed.

The IEEE 802.1AS-rev [9] is a revision of 802.1AS within
the TSN context, introducing fault-tolerance for clock syn-
chronization. The upgraded protocol allows multiple clock
domains to be simultaneously active and overlapping, therefore
enabling multiple GMs to be active at the same time [15].
These GMs deliver their time values to independent clock
domains, and if the domains overlap, a hot-standby GM mech-

anism is enabled. Hence, whenever a GM fails, the transition
to another GM is seamless. Additionally, the revision offers
improved accuracy of the time measurement [16]. However,
the hot-standby features are not yet supported in most currently
available TSN devices on the market or may not always be
configured for the given network.

III. FAULT AND NETWORK MODELS

We represent the TSN network as a finite, unweighted,
connected, undirected graph G = (V,E) consisting of the set
of time-aware nodes (vertices) V and the set of bi-directional,
full-duplex physical links (edges) E. If nodes are not time-
aware or are not part of the considered synchronization do-
main, they are not part of the set V , and their connected edges
(links) are not part of the set E.

When synchronization is lost, the clocks of individual
devices begin to drift apart, eventually exceeding the bounds
of the assumed precision. The synchronization loss will be
detected after the configured timeout time (see below), and the
BMCA will execute to recompute the spanning tree and select
a new GM. This re-computation takes a certain amount of
time and is proportional to the number of hops in the spanning
tree. After this, the new time will be propagated to the devices,
which will be synchronized again. In the case of a GM failure,
we assume an arbitrary runtime selection of the next GM out
of a defined set of eligible GM nodes. The resulting spanning
trees have the respective new GM node as the root.

A subgraph Tv = (V,E0 ✓ E) is a rooted spanning tree
of G, denoted with Tv

r7! G, if it is a connected, acyclic
subgraph of G where all paths to leaf nodes originate in the
root node v. We denote the set of nodes that can take the role
of grandmaster with GM(V). The longest path in terms of the
number of edges of a tree T is denoted by l(T). The number
of hops for the longest path out of all the possible spanning
trees for a given network G is denoted with

NG =max{l(Tv) | v 2 GM(V), Tv
r7! G}. (1)

We define the out-of-sync interval tresync as the time span
between the instant an out-of-sync occurs until the moment
when the affected clocks are again resynchronized. We assume
the following model for computing the out-of-sync interval of
a given network G:

tresync = �t + �hop ⇥NG, (2)

where �t is the timeout bound for out-of-sync detection, �hop
is an upper bound for the BMCA to run and propagate
information on each node, and NG is derived from Eq. 1.
Typically, a node waits for 3 announce cycles (each cycle being
by default 1s) until it assumes that sync has been lost. This
is defined in [9] as the announceReceiptTimeoutTimeInterval

which is announceReceiptTimeout ⇥ announceInterval, both
of which can be configured. The �hop duration is not defined
in the standard, but we extrapolate a safe upper bound of 1s
per hop, supported by our empirical observations and in-house
development know-how. However, please note that this value

needs to be configured as a safe upper-bound for the given
network and devices.

We cannot trust the timeliness of critical messages during
the out-of-sync interval until all nodes are re-synchronized.
However, we can compute the maximum deviation between
any two clocks at the end of the out-of-sync interval. We
introduce the out-of-sync drift, denoted by �s, to represent
the maximum drift between any two clocks at the end of
the out-of-sync interval. We bound the worst-case clock drift
rate ⇢max for all clocks which means that between any two
clocks, the drift is at most ⇢ = 2 ⇥ ⇢max [s/s] [17]. The
value for ⇢max depends on the quality of the individual
clock oscillators. Typical values of ⇢max are between 50 and
100ppm, meaning that the maximum deviation between any
two clocks is between 50 and 100µs per second. The out-of-

sync drift, �s [µs], is computed as

�s = 2⇥ ⇢max ⇥ tresync (3)

If, for e.g., we consider the worst-case configuration with
NG = 3, �t = 3s, �hop = 1s and ⇢max = 100ppm, the upper
bound on the deviation between any two clocks following a
GM failure at the point of re-synchronization is 1200µs.

IV. MECHANISMS FOR OUT-OF-SYNC MITIGATION

An approach to add robustness in cases of synchronization
loss is to mitigate non-deterministic behavior by introducing
an out-of-sync mode in case of sync loss. The out-of-sync
mode aims to contain the damage that arises from the arrival
of frames outside the expected time bounds, for example, by
triggering a priority regeneration within the affected devices
(e.g., via 802.1Qci [1]), causing a redirection of scheduled
frames to low-priority, non-scheduled queues. If a segment
of the network (e.g., being in a different time domain) is
not affected by the synchronization loss, we want to prevent
frames coming from the faulty devices (or time domain)
from interfering with the deterministic queue states of the
synchronized devices. Critical frames received by an out-of-
sync device will be re-assigned into a non-scheduled queue at
the next (potentially in-sync) node. Hence, subsequent nodes
will not have scheduled queues polluted by out-of-time frames.

Despite limiting the impact on the critical frames being
forwarded to synchronized devices, there may still be some
frames within an out-of-sync device that were enqueued before
the priority regeneration became effective or even ahead of the
sync-loss detection. Therefore, as soon as the respective timed-
gate opens, potentially at an incorrect time, the transmitted
frames may not correspond to the original schedule.

A possible strategy to prevent the propagation of these
types of incorrect frames is to use the Per-Stream Filtering
and Policing mechanism defined in IEEE 802.1Qci [1]. The
standard provides mechanisms to control the admission of
frames on ingress based on timing parameters driven by the
local clock. The mechanism allows rejecting frames if their
arrival time is not equal to the one specified in the local
schedule. Hence, nodes can filter frames from devices that
have experienced a synchronization loss and thus maintain

their queues in a deterministic state. A benefit of using time-
based policing is that it is independent of the detection of a
sync loss. If one device is out of sync on the critical stream
route, its frames will be dropped at the subsequent device since
they will inherit the wrong timing behavior. Therefore critical
frames will only be transmitted from sender to receiver(s) if
all forwarding devices are synchronized.

With the first method, a sync loss will still lead to critical
frames being received at the listener devices, albeit with the
wrong timeliness, while the filtering method will not let critical
frames arrive at the receiver.

V. SCHEDULE-BASED SYNC LOSS ROBUSTNESS

The main problem with the mitigation strategies presented
above is that until the synchronization loss is detected (e.g.,
up to 3s), the clocks’ drift can be significant and exceed
the precision specified at design-time. Hence, while we may
be able in some situations to prevent the impact of ill-
timed frames, the partial loss of synchronism will lead to
compromising a subset of the critical communication. We
propose a mitigation strategy consisting of enhancing the
synthesis of schedules to feature robustness during the re-
synchronization intervals, i.e., we create the schedules so that,
even when synchronization is lost, the state of the queues
will be deterministic until synchronization is restored. Through
this, we ensure that deterministic queue states are preserved
and that all critical frames reach their destinations within their
allowed end-to-end latency constraint.

Based on our previous work on scheduling TSN net-
works [4], we extend the scheduling constraints used to
synthesize GCL schedules.The schedule events (i.e., the frame
transmission and forwarding times) will be placed so that an
extended deviation from the nominal network precision is tol-
erated, which accounts for the worst-case drift in the network
over the re-synchronization interval. In this way, even when a
GM fails, the schedule will still be deterministic, and the real-
time properties of streams will still be fulfilled until a new
GM is elected and the synchronization is restored. The new
scheduling method entails a trade-off between a reduction of
the solution space in exchange for robust schedules tolerating
synchronization losses. In [4], we have presented the necessary
correctness constraints for generating valid TSN schedules and
formalized them based on a generic model of TSN networks.
We use a similar notation as in our previous work [4], [8]
but introduce certain simplifications without loss of generality,
e.g., the macrotick is the same for all devices, there is one
frame per stream, and the link propagation delay is 0. Please
note that the extensions presented in this paper can be readily
generalized for the more general model presented in [4], [6].

The TSN network, encoded as a graph G = (V,E),
comprises a set of time-aware nodes (vertices) V and a set
of bi-directional, full-duplex physical links (edges) E, where
a link from node va to node vb is expressed as (va, vb) 2 E.
We denote the set of critical streams with S where a stream
si 2 S is defined by the tuple hli, Ti, Dii, which contains the
frame size, the period, and the end-to-end deadline. The route

for a stream si is computed at design-time and formalized as
an ordered sequence of links, e.g., the communication route
from a sender v1 to a receiver vn is represented via the set
Ri = {(v1, v2), ..., (vn�1, vn)}. We formalize, similar to [4],
[8], the frame of a stream si on a link (va, vb) as f (va,vb)

i with
�(va,vb)
i and l(va,vb)

i representing the transmission time from
node va through link (va, vb) and the duration of the frame on
the respective link, respectively. The set of all frames which
are sent on a link (va, vb) is denoted by F (va,vb).

For the sake of brevity, we will not repeat all of the
constraints and refer the reader to [4], [8] for the complete
formalism. We only adapt the constraints in which the preci-
sion of the network is included and extend them to account
for the out-of-sync drift �s over the out-of-sync interval.

Flow Transmission Constraint. The constraint ensures that
a frame can only be forwarded from a device once it has been
received on that device. Since the reception of a frame on a
device is defined by the sending time on the previous hop,
the constraint relates the transmission times in two different
devices and hence needs to take into account the network
precision, denoted with �. We extend this constraint from [4]
to include not only the precision but also the out-of-sync drift

�s over the out-of-sync interval:

8si 2 S, 8(va, vx), (vx, vb) 2 Ri :

�(vx,vb)
i � (�(va,vx)

i + l(va,vx)
i) � � +�s.

By including the maximum drift �s, we ensure that the
sending time of the frame instance of a stream from node
vx is placed at a safe distance from the sending time of the
predecessor frame instance in node va. By safe, we mean that
if there is a loss of sync and the two involved clocks drift
further apart from the network’s precision, the frame will still
be forwarded by node vx only after it has been received. The
upper bound on the out-of-sync drift ensures that the interval
is safe since by the time the drift reaches �+�s, the network
will be re-synchronized with a precision below �.

End-to-End Latency. The deadline of a stream, denoted by
si.D, captures the requirement that the time from the sending
of a stream at the sender until the stream’s reception at the
receiver is less than or equal to the desired bound. We use
src(si) 2 Ri and dest(si) 2 Ri to represent the sender link
and the last link before the receiving node, respectively. The
maximum end-to-end latency constraint (extended from [4]) is

8si 2 S : �dest(si)
i + ldest(si)

i � �src(si)
i Di � (� +�s).

Here we have to consider that the clocks of the sender and
receiver nodes can drift beyond the precision of the network in
case of a loss of synchronization. Again, the condition is safe
since in the worst case, by the time the drift exceeds � +�s,
the network will be re-synchronized. This constraint clearly
shows that the solution space is constrained by the additional
term subtracted from the deadline in order to achieve a safe
bound in case of synchronization loss.

802.1Qbv Flow/Frame Isolation. The frame/flow isolation
constraint imposes a deterministic state of the queues. We refer

the reader to [4] for an in-depth explanation of the queue
determinism problem and the complete formalization. Let
f (va,vb)
i and f (va,vb)

j be the frame instances of streams si 2 S
and sj 2 S on link (va, vb), respectively. The frames are
both sent on link (va, vb) of device va. Stream si arrives from
device vx connected to va via link (vx, va) 2 Ri and stream
fj arrives from device vy connected to va via (vy, va) 2 Rj .
For any link (va, vb) and any such frame pair f (va,vb)

i and
f (va,vb)
j , we extend the stream isolation constraint from [4] to

include the out-of-sync drift �s as follows:

8↵ 2
h
0, hpji/Ti

⌘
, 8� 2

h
0, hpji/Tj

⌘
:

(�
(vy,va)
j + � ⇥ Tj � �(va,vb)

i � ↵⇥ Ti � � +�s)_

(�(vx,va)
i + ↵⇥ Ti � �(va,vb)

j � � ⇥ Tj � � +�s).

The hyperperiod of the two streams is hpji = lcm(Ti, Tj) and
↵,� 2 N are index to the period instances. The constraint
ensures that once a device receives a stream, no other stream
sharing the same queue can enter the device until the first
stream has been transmitted and the queue is empty. Since
this constraint also relates the sending times of frames on
different devices, we have to consider both the precision and
the maximum drift in order to make the resulting schedule
robust during the re-synchronization interval.

A. Design space exploration

When generating the schedule with the out-of-sync drift �s,
the solution space is reduced, and previously feasible use-cases
may become unschedulable. For example, it may occur that the
utilization on some links or the end-to-end deadline constraints
of some streams is too tight to accommodate the maximum
drift. In such cases, we cannot guarantee that the schedule is
robust during the out-of-sync interval.

We can transform the problem into a design space explo-
ration by configuring the maximum drift to be a variable that
is computed by the scheduler rather than a fixed constant
input. Thus, the scheduling problem becomes an optimization
problem, with the optimization objective being to maximize the
out-of-sync drift �s subject to the constraints defined above
and in [4]. We can use the resulting maximized value of the
out-of-sync drift �s to select the best configuration parameters
in terms of �t1, which is the timeout bound for out-of-sync
detection, the maximum number of hops NG, and the worst-
case clock drift rate ⇢max. Selecting a value for one parameter
will constrain the possible values for the other dimensions in
the configuration space. The easiest parameter to change is
�t since the devices’ clocks cannot be easily changed, and the
topology is often fixed. However, it may be necessary in some
cases to select devices with better clocks or reconfigure the
network such that the maximum number of hops is reduced.

We show the configuration space for different example
networks where the maximized �s is 100, 500, 1000, 1500µs
in Fig. 4. Please note that configuration spaces with smaller

1�t is configured via the announceReceiptTimeout and the announceInterval

values in the IEEE 802.1AS configuration.

(a) ⇢max vs. �t when NG = 5. (b) ⇢max vs. NG when �t = 3s. (c) NG vs. �t when ⇢max = 30ppm.

Figure 4. Different configuration space dependencies for example networks where �s 2 {100, 500, 1000, 1500}µs.

areas are plotted over the ones with larger areas where they
overlap. In Fig. 4(a) we show the configuration space for ⇢max

and �t when NG = 5. We can see that, for high values of
�s, the timeout bound for out-of-sync detection �t can be as
high as 5s (for typical values of ⇢max between 50ppm and
100ppm), whereas for low values of �s, we either have to
reduce �t or select devices with very accurate clocks (under
10ppm). In Fig. 4(b) we show the dependency between ⇢max

and NG when �s = {100, 500, 1000, 1500}µs and �t is set
to the default value of 3s. We can see that the quality of the
clocks needs to be improved significantly if we have networks
where the maximum number of hops in the spanning tree goes
beyond 5. In Fig. 4(a) we plot the configuration space of �t
as a function of NG for networks with the same �s as above
and with with ⇢max = 30ppm clocks. We can see that if
the resulting out-of-sync drift �s is very low, we can only
guarantee out-of-sync robustness for very small networks with
under 5 hops, while as the out-of-sync drift gets larger, we
can support networks with up to 25 hops depending on the
configured value of the out-of-sync detection interval �t.

Based on our fault model, we can generate robust schedules
against failures of the GM and can tolerate the network being
out of sync for the duration of the out-of-sync interval. After
the out-of-sync interval, the network devices are again syn-
chronized to below the originally configured precision. Hence,
the schedule is again robust to a new loss of synchronization.
However, if a device fails while the corrected time is being
propagated through the spanning tree, i.e., if a failure occurs
while the devices’ clocks are not within the precision envelope,
the robustness property does not hold anymore. In the case
of such cascading failures, the out-of-sync interval may be
longer than the one computed at design time (see Sect. III).
Such types of failures are not fully tolerated by our method.
However, in the design space exploration, we can maximize
the out-of-sync interval by maximizing �s and hence mitigate,
to some degree, the impact of cascading failures. Furthermore,
with the enhancements in IEEE 802.1AS-rev [3] introducing
hot-standby grandmasters, it will be possible to tolerate the
loss of all GMs before entering the re-synchronization phase.

VI. EXPERIMENTS

We have developed a customized scheduler tool computing
optimized GCLs with a configurable precision parameter. The
tool is based on the frame-based scheduler in [4] using the
Z3 [18] SMT/OMT solver v.4.8.10 running on a 64bit Cygwin

SW1

SW6 SW7

SW3

ES6A
ES6B

ES6D
ES6C

ES7A
ES7B

ES7D
ES7C

SW4 SW5

SW2

ES4A
ES4B

ES4D
ES4C

ES5A
ES5B

ES5D
ES5C

Figure 5. Test Topology.

environment within Windows 10. Unless otherwise stated, all
experiments assume up to 2 dedicated queues for 802.1Qbv
unicast scheduled traffic with the scheduler macrotick fixed at
1µs, a constant link latency of 1µs, and homogeneous link
speeds of 1Gbps. The hardware platform is an Intel i7-8650U
CPU @1.90GHz notebook with 16GB of main memory.

A. Schedulability

We assess the impact of our approach on the network
schedulability by running a set of experiments on a synthetic
scenario with the tree topology depicted in Fig. 5. The test
network consists of 7 switches (SW1 to SW7), of which SW4
to SW7 connect 4 end nodes each, named ESiA, ESiB, ESiC,
and ESiD, where i refers to the SW index (4 i 7).
Each end node from SW4, SW5, and SW6 transmits full-
sized Ethernet messages (i.e., a payload of 1500 byte) with
a periodic data stream to each end node of SW7. Each node
of SW7 transmits a response 100-byte payload message in
opposite streams to all other nodes in SW4, SW5, and SW6.
We adjust the period of communication between 10 ms and
500µs to increase the link utilization, with the stream deadline
being equal to the period. Table I summarizes the configuration
settings for the experiments and the schedulability results
for different configurations. The permutation of these values
result in �s = {1200, 800, 600, 400, 60, 40}. The results show
how the choice of parameters affecting the schedule robust-
ness impacts the schedulability when the utilization increases,
particularly in the bottleneck link (SW3!SW7), where the
utilization increased from 5.76% to 57.6%.

B. End-To-End Latency

We evaluate the impact of adding out-of-sync robustness
on the achievable end-to-end latency of streams. We have
instrumented our scheduler to minimize the end-to-end latency
of each stream, combining the individual objectives as Pareto

Table I
SCHEDULABILITY RESULTS FOR DIFFERENT �s CONFIGURATIONS.

⇢max [ppm] 100 100 50 50 5 5 100 100 50 50 5 5 100 100 50 50 5 5
�t[s] 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1
�s[µs] 1200 800 600 400 60 40 1200 800 600 400 60 40 1200 800 600 400 60 40
Max util. [%] 57.6 57.6 57.6 57.6 57.6 57.6 11.52 11.52 11.52 11.52 11.52 11.52 5.76 5.76 5.76 5.76 5.76 5.76
Runtime [ms] 218 249 203 234 343 390 219 312 391 407 406 422 437 359 343 390 389 422

Schedulability false false false false true true false false true true true true true true true true true true

e2e
(left y-axis)

e2e min
(left y-axis)

runtime
(right y-axis)

runtime min
(right y-axis)

P = 1ms

P = 5ms

P = 10ms

P1 e2e (left y-axis)P1 e2e min (left y-axis)

P3 e2e min (left y-axis)

Figure 6. End-to-end latency with and without minimization objectives.

fronts (c.f. [18]). Fig. 6 depicts the accrued end-to-end latency
of all streams, with and without out-of-sync robustness, for the
set of scenarios evaluated in Sect. VI-A. We depict the accrued
end-to-end latency (left y-axis) when we add the minimization
objective (e2e min) as well as without optimization (e2e) for
streams featuring the 3 periods from before and for �s =
{0, 40, 60, 400, 600, 1200}µs (x-axis). Both the non-optimized
and the optimized e2e latencies increase when the out-of-sync
drift increases. For certain period and �s values, the use-
cases were not schedulable (bars are missing in the plot). We
also plot the runtime to schedule each use-case (logarithmic
right y-axis) using circles and squares for the non-optimized
(runtime) and optimized (runtime min) variants, respectively.
As expected, the scheduler runtime increases when adding
optimization objectives and rises from 1min when �s = 0
to 28min for �s = 600µs (16min for �s = 1200µs). For
the non-schedulable cases, the scheduler returns an infeasible
result in under 1s.

C. Schedule Synthesis Time

Maximizing the precision as part of a design space ex-
ploration allows finding a schedule with the highest pos-
sible robustness against out-of-sync intervals. In Fig. 7 we
compare the scheduler run-time of computing a schedule for
3 different period configurations, namely P1 = {10, 20},
P2 = {50, 75, 150}, and P3 = {10, 25, 50, 100} [ms], when
maximizing the precision in contrast to that of finding a
schedule with a constant precision of 1µs. For each run, we
generate a set of 50 streams with randomly chosen end nodes
as sender and receiver, a payload size randomly selected from
the set {500, 1000, 1000} [byte], as well as period, with an
equivalent deadline, randomly selected from the respective set.
Note that the scheduler tool used for these experiments attempt

500 ms

5 sec

1 min

5 min

P1={10, 20}ms P2={50, 75, 150}ms P3={10, 25, 50, 100}ms

∆s = 1.42ms

∆s = 7.13ms

∆s = 1.98ms

ru
n
ti

m
e

(l
o
g

)

δ = 1 µs
maximize ∆s

Figure 7. Scheduler runtime with and without �s maximization objective.

to schedule all streams at once and does not take advan-
tage of incremental methods described in previous literature
(c.f. [4]). Incremental scheduling algorithms with backtracking
steps significantly improve the schedulability of SMT-based
schedulers (c.f. [4], [19]–[21]. However, we remark that this is
not relevant for comparing the relative difference between the
two evaluated scheduling synthesis objectives (i.e., with vs.
without maximized robustness). The figure shows a penalty
due to the maximization objective. Moreover, we observe that
the increase in run-time due to the precision maximization is
significantly smaller than that of minimizing the end-to-end
latency. We relate this to the complexity of the minimization
objective itself, since in the former case, it relates to a single
variable, the precision, while in the latter, there is a relation
between the offset of two frames for each stream (i.e., the first
sent and the last received). Additionally, each stream adds its
own minimization objective resulting in a multi-optimization
problem. Please note that once the maximized value of �s

has been computed for a scenario, it can be used as a constant
value in certain re-scheduling iterations.

VII. RELATED WORK

Offline scheduling for TSN (or other deterministic net-
works) uses design-time upper bounds on the network’s pre-
cision. Such methods (e.g., [4]–[6], [19], [21], [22]) have
relied on the network never losing synchronization or there
being a fault-tolerant clock synchronization algorithm in order
to guarantee real-time behavior for critical communication.
For TTEthernet networks [10], the upper bound on the syn-
chronization precision has been proven using SMT-based
model checking [23]. No such proof currently exists for IEEE
802.1AS. However, the work in [13] shows via simulations that
a 1µs precision, as requested by the IEEE 802.1AS standard,
is realistic for networks with a maximum spanning tree hop
count of under 30 (NG 30), while in a NG = 100 network
the resulting precision is 2µs. Another simulation result for

measuring the IEEE 802.1AS precision as a function of the
network load in automotive networks is presented in [24].

Naturally, there has been a large body of work introducing
fault-tolerance in the clock synchronization domain in order
to prevent a loss of synchronization in the first place and guar-
antee the real-time behavior of the network (e.g., [17], [25]–
[27]). However, if the fault assumption is not fulfilled, i.e.,
a scenario outside the failure model occurs, the deterministic
behavior cannot be guaranteed.

Several papers propose extensions to IEEE 802.1AS that
improve the synchronization accuracy (e.g., [28], [29]). Better
accuracy of the synchronization at runtime increases the proba-
bility that TSN schedules that have been created under a worst-
case assumption of the synchronization quality are robust in
case of synchronization loss. However, unlike our approach,
these methods do not provide a design-time guarantee that the
communication behavior will remain deterministic and adhere
to the real-time deadlines in case of synchronization loss.

Resilient time synchronization is complementary to our
work and focuses on preventing synchronization loss or allevi-
ating its effects at runtime. The work in [30] statistically evalu-
ates the synchronization uncertainty and offers a prediction on
the clock quality that may be used to maintain synchronization
(at least to some degree) in case of synchronization loss. Other
works focus on either making the synchronization protocol
resilient towards external attacks [31] or on detecting attacks
and reducing the consequences thereof within the synchro-
nization protocol [32]. Similar to the previously mentioned
approaches, these mechanisms cannot guarantee continued
real-time behavior in case of synchronization loss.

VIII. CONCLUSION

An intermittent hardware failure or intentional sabotage of
the 802.1AS grandmaster, among other possible issues, may
trigger a reelection mechanism causing a critical disruption in
the synchronization service. In this paper, we have analyzed
the effect and worst-case duration of the resynchronization
interval in 802.1AS and derived additional constraints for the
synthesis of 802.1Qbv schedules with out-of-sync robustness.
We have also shown how the schedule computation can be
transformed into a design space exploration problem maximiz-
ing the communication scheme’s resilience towards time syn-
chronization anomalies. We have implemented a scheduling
tool based on the Z3 OMT/SMT solver and conducted a series
of experiments on a set of synthetic benchmarks. Our analysis
shows the impact on schedulability, computation runtime, as
well as the trade-off between robustness and the achievable
end-to-end latency of the communication streams.

ACKNOWLEDGMENTS

We want to thank Timo Koskiahde and Jürgen Wohlmuth for
their invaluable assistance in understanding IEEE 802.1AS(-
rev) and their helpful comments on the approach in this paper.
The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation
programme under the Grant Agreement No 952702 (BIECO).

REFERENCES
[1] IEEE, “Time-Sensitive Networking Task Group,” http://www.ieee802.

org/1/pages/tsn.html, 2016, retrieved 29.01.2021.
[2] IEEE, “802.1Qbv - Enhancements for Scheduled Traffic,” https://

standards.ieee.org/standard/802 1Qbv-2015.html, retrieved 29.01.2021.
[3] IEEE, “802.1AS-Rev,” https://1.ieee802.org/tsn/802-1as-rev/, 2020.
[4] S. S. Craciunas, R. Serna Oliver, M. Chmelik, and W. Steiner, “Schedul-

ing real-time communication in IEEE 802.1Qbv Time Sensitive Net-
works,” in Proc. RTNS. ACM, 2016.

[5] M. Pahlevan and R. Obermaisser, “Genetic algorithm for scheduling
time-triggered traffic in time-sensitive networks,” in Proc. ETFA, 2018.

[6] R. Serna Oliver, S. S. Craciunas, and W. Steiner, “IEEE 802.1Qbv Gate
Control List Synthesis using Array Theory Encoding,” in Proc. RTAS.
IEEE, 2018.

[7] M. Lévesque and D. Tipper, “A survey of clock synchronization over
packet-switched networks,” IEEE Commun. Surv. Tutor., vol. 18, 2016.

[8] S. S. Craciunas and R. Serna Oliver, “An overview of scheduling
mechanisms for time-sensitive networks,” Tech. rep. ETR, 2017.

[9] IEEE, “IEEE Std 802.1AS-2020,” https://standards.ieee.org/standard/
802 1AS-2020.html, 2020, retrieved 29.01.2021.

[10] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch, “TTEthernet: Time-
Triggered Ethernet,” in Time-Triggered Comm. CRC Press, 2011.

[11] H. Kopetz, Real-Time Systems - Design Principles for Distributed

Embedded Applications, ser. Real-Time Systems Series. Springer, 2011.
[12] M. D. Johas Teener and G. M. Garner, “Overview and timing perfor-

mance of ieee 802.1as,” in Proc. ISPCS. IEEE, 2008.
[13] M. Gutiérrez, W. Steiner, R. Dobrin, and S. Punnekkat, “Synchronization

quality of IEEE 802.1AS in large-scale industrial automation networks,”
in Proc. RTAS. IEEE, 2017.

[14] H.-T. Lim, D. Herrscher, M. J. Waltl, and F. Chaari, “Performance
Analysis of the IEEE 802.1 Ethernet Audio/Video Bridging Standard,”
in Proc. SIMUTOOLS, 2012.

[15] IEEE, “P802.1ASdm – Hot Standby,” https://1.ieee802.org/tsn/
802-1asdm/, retrieved 01.02.2021.

[16] A. Nasrallah et al., “Ultra-low latency (ULL) networks: The IEEE TSN
and IETF DetNet standards and related 5G Ull research,” IEEE Commun.

Surv. Tutor., vol. 21, no. 1, 2019.
[17] H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed

real-time systems,” IEEE Trans Comput, vol. C-36, no. 8, 1987.
[18] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “⌫z - an optimizing SMT

solver,” in Proc. TACAS. Springer, 2015.
[19] W. Steiner, “An evaluation of SMT-based schedule synthesis for time-

triggered multi-hop networks,” in Proc. RTSS. IEEE, 2010.
[20] S. S. Craciunas and R. Serna Oliver, “SMT-based task- and network-

level static schedule generation for time-triggered networked systems,”
in Proc. RTNS. ACM, 2014.

[21] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software-defined networks,” IEEE Trans

Industr Inform, vol. 14, no. 5, 2018.
[22] S. S. Craciunas and R. Serna Oliver, “Combined task- and network-level

scheduling for distributed time-triggered systems,” Real-Time Systems,
vol. 52, no. 2, pp. 161–200, 2016.

[23] W. Steiner and B. Dutertre, “Automated formal verification of the
TTEthernet synchronization quality,” in Proc. NFM. Springer, 2011.

[24] H. Lim, D. Herrscher, L. Völker, and M. J. Waltl, “IEEE 802.1AS time
synchronization in a switched Ethernet based in-car network,” in Proc

VNC. IEEE, 2011.
[25] L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the

presence of faults,” J. ACM, vol. 32, no. 1, p. 52–78, 1985.
[26] D. Dolev, J. Halpern, B. Simons, and H. Strong, “Dynamic fault-tolerant

clock synchronization.” J. ACM, vol. 42, pp. 143–185, 1995.
[27] M. Paulitsch and W. Steiner, “Fault-tolerant clock synchronization for

embedded distributed multi-cluster systems,” in Proc. ECRTS, 2003.
[28] H. Baniabdelghany, R. Obermaisser, and A. Khalifeh, “Extended syn-

chronization protocol based on IEEE802.1AS for improved precision in
dynamic and asymmetric TSN hybrid networks,” in Proc. MECO, 2020.

[29] H. Zhu et al., “Measures to improve the accuracy and reliability of clock
synchronization in time-sensitive networking,” IEEE Access, 2020.

[30] A. Bondavalli et al., “Resilient estimation of synchronisation uncertainty
through software clocks,” IJCCBS, vol. 4, no. 4, p. 301–322, 2013.

[31] K. Sun, P. Ning, and C. Wang, “TinySeRSync: secure and resilient time
synchronization in wireless sensor networks,” in Proc. CCS, 2006.

[32] E. Lisova et al., “Protecting clock synchronization : Adversary detection
through network monitoring,” J. Electr. Comput. Eng., 2016.

