Programmable Temporal Isolation in
Real-Time and Embedded Execution Environments:

Silviu S. Craciunas Christoph M. Kirsch Hannes Payer Harald Réck Ana Sokolova

firstname.lasthame@cs.uni-salzburg.at
Department of Computer Sciences
University of Salzburg, Austria

ABSTRACT

We begin this paper with a wish list of features that we feel
a modern real-time and embedded execution environment
should offer. We then look at some of the key weaknesses of
conventional real-time operating systems (RTOS) and limi-
tations of virtual execution environments (VEE), which typi-
cally offer some of the features but not all in one system. We
propose to remedy the problem by carefully combining, in a
single virtualized execution environment, well-known oper-
ating systems and virtualization techniques with an efficient
real-time scheduler, which we have recently developed. The
scheduler enables temporal isolation of concurrently execut-
ing processes and allows to change guaranteed process ex-
ecution speeds efficiently at any time during execution. We
also report on preliminary experiments with a prototypical
bare-metal implementation.

1. INTRODUCTION

Firstly, the ideal real-time and embedded execution envi-
ronment should provide strong temporal and spatial isola-
tion. The temporal behavior of programs running on the sys-
tem should be determined by application developers and not
by the particularities of the underlying hardware platforms
or any competing software workloads. In particular, the ex-
act speed at which programs execute should be controlled
and adjustable at any time. Programs should be protected
from each other in space, when accessing memory and I/O
devices, for security and fault isolation. Ideally, programs
should also be offered strict bandwidth guarantees (through-
put and latency of I/O and IPC) as well as direct and exclu-
sive access to special devices if needed.

*This work is supported by a 2007 IBM Faculty Award, the EU

ArtistDesign Network of Excellence on Embedded Systems De-
sign, and the Austrian Science Fund No. P18913-N15.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IIES’09 March 31st, 2009, Nuremberg, Germany.

Copyright 2009 ACM 978-1-60558-464-5/09/03 ...$5.00.

Secondly, the execution environment should support a va-
riety of program execution models ranging from operating
system processes to system virtual machines, which enable
system-level virtualization by duplicating real hardware in
software, and process virtual machines, which implement
abstract machines and memory architectures such as Java
virtual machines and their object models. A system VM al-
lows to run legacy software that has originally been devel-
oped for the hardware the VM duplicates, including whole
operating systems and their device drivers. The execution
environment itself may therefore not need to implement
drivers for all devices but instead route at least the non-real-
time I/O traffic to an instance of a system VM that duplicates
the hardware on which the execution environment runs and
for which legacy device driver software exists. XEN is a
prominent example of a virtual machine monitor or hyper-
visor, which provides the necessary software infrastructure
for running such system VMs [2]. Support of process VMs,
however, is equally important. Ideally, the execution envi-
ronment should support the implementation of process VMs
that can directly be targeted by a large range of high-level
programming models with and without real-time support.

Thirdly, the implementation of the execution environment
should be small, simple, and efficient, and thus amenable to
verification as well as exact complexity and execution time
analyses. Ideally, the time any invocation of the system may
take (system latency) should be bounded by a known con-
stant. The variance in latency (system jitter) should not only
be low but also known. The time any preemptive system
activity such as I/O transmission and memory allocation and
deallocation may take in total (system throughput) should be
at most linearly bounded in terms of the involved workload
independently from the system state. Again, the variance in
throughput should be low and known. Such an implementa-
tion may create an execution environment that can offer real
performance guarantees on all relevant aspects of the system
such as execution speed, memory allocation and dealloca-
tion rates, and I/O bandwidth.

Many RTOS (Section 2) as well as many VEE (Section 3)
provide some of the features on our wish list but typically
not all in one system. There appear to be at least two key

problems with conventional RTOS, related to lack of isola-
tion and complexity of their execution models. Temporal
behavior of programs is either underspecified through some
non-compositional form of priorities or deadlines, or else
overspecified through inflexible, static allocation techniques.
RTOS process abstractions are often low-level and non-com-
positional, and therefore highly machine-dependent and dif-
ficult to use, in particular, in complex applications. While
most VEEs offer strong spatial isolation and standardized
execution models, there is typically no strict control over
temporal isolation, or the non-compositional or inflexible
techniques from the RTOS world are reused. I/O perfor-
mance in VEEs is usually also difficult to isolate. System
complexity is another issue present in most VEE but also
many RTOS implementations, which makes their verifica-
tion and analysis difficult.

An important step in understanding how to address these
issues is to define the notion of temporal isolation. Intu-
itively, the execution of a piece of sequential program code
of a process (called action) is temporally isolated if the re-
sponse times of the code as well as the variance of the re-
sponse times (jitter) are solely determined by the code itself
and its inputs, independently of any other, concurrently exe-
cuting actions and the system on which the actions execute.
The response time of an action is the duration from the time
instant when process execution reaches the beginning of the
action (arrival) until the time instant when process execu-
tion reaches the beginning of the next action (termination).
In this model, process execution corresponds to a possibly
infinite sequence of actions. We say that temporal isolation
is programmable if response times and jitter can be modi-
fied by processes, at least within some platform-dependent
range.

We have recently designed, implemented, and analyzed
a real-time O(1)-scheduler, which uses so-called variable-
bandwidth servers (VBS) to isolate process execution tem-
porally on the level of individual process actions [9]. Upon
arrival of new processes, the scheduler checks in constant
time if there are still sufficient resources left to guarantee
temporal isolation. A VBS executes a process for a guar-
anteed number of time units (called limit) periodically at
a guaranteed rate (called period). Limit and period can be
changed within a guaranteed range from one action to the
next. For example, a latency-oriented piece of code can
be executed with a small period (and limit), followed by a
throughput-oriented piece that can be executed with a larger
period (and limit) and thus fewer interruptions. Being able to
switch guaranteed limits and periods efficiently at any time
is one of the key features of the scheduler.

The scheduler has become the center piece of our proto-
typical implementation of a small-footprint, bare-metal VEE
called Tiptoe [10]. The prototype has been written from
scratch for studying possible ways to realize our wish list of
features in a single execution environment. We discuss how
VBS may help to extend temporal isolation beyond process

execution to other system activities such as memory alloca-
tion and deallocation as well as I/O and IPC management
(Section 4). The key idea is to focus on subsystems that
guarantee at most a linear relationship between the amount
of actual work involved in their activities (e.g. object or
packet size) and the necessary CPU time to process the work.
An integration with VBS would allow us to control temporal
isolation of system activities on the level of the actual work-
loads. We have already designed and implemented an I/O-
relaying subsystem [19] and a compacting real-time memory
management system [11] with this property but have not yet
integrated them into Tiptoe.

Our Tiptoe prototype currently runs on an XScale pro-
cessor and implements a system VM that virtualizes an At-
megal28 processor and interprets arbitrary AVR code. The
prototype system schedules multiple VM instances using
VBS. We report on preliminary results in a bare-metal ex-
periment showing that Tiptoe can temporally isolate a pro-
cess executing AVR code of two different actions in the pres-
ence of an increasing number of concurrently executing pro-
cesses up to full CPU utilization (Section 5). We plan to
integrate the concepts evaluated in Tiptoe into a microkernel
that supports virtualization, e.g. OKL4 [14], but with our
VBS scheduler at its core. The goal is to run temporally iso-
lated processes as well as instances of system and process
VMs.

2. CONVENTIONAL RTOS

Most RTOS offer some form of process prioritization
or static allocation scheme to schedule process execution.
Prioritization is typically done either directly through pro-
cess priorities or indirectly through periodic rates or rela-
tive deadlines. The most popular real-time scheduling strate-
gies based on rates and deadlines are rate-monotonic (RM)
and earliest-deadline-first (EDF) scheduling, respectively.
Static allocation schemes range from low-level, time-slot-
based methods such as TTA [16] to higher-level, bandwidth-
based approaches such as resource reserves [18] or constant-
bandwidth servers [1], which are a less flexible form of VBS
restricted to fixed bandwidth configurations.

Many popular RTOSs used in industry, e.g., QNX, Vx-
Works, and ThreadX come with a priority-based sched-
uler while more academic RTOS projects, like Hartik [4],
Erika [13], and Spring [20] use EDF. This phenomenon may
be explained by several misconceptions about the differ-
ences between RM and EDF scheduling in practice. Typi-
cally, the reasons favoring RM scheduling, given by indus-
try, are that RM scheduling is easier to implement and ana-
lyze, is more predictable during transient overload scenarios,
and introduces less runtime overhead in comparison to EDF.
More recently, however, the differences have been analyzed
more carefully and shown either to be false or not to hold in
the general case [5].

Nevertheless, we argue that neither process prioritiza-
tion, including RM and EDF scheduling, nor static alloca-

tion alone can solve the challenges in designing and imple-
menting modern real-time and embedded execution environ-
ments. Process prioritization will ultimately fail because re-
alizing compositionality, i.e., programmable temporal isola-
tion, is impractical using priorities, whereas static allocation
has potential [15] but is either too inflexible or too inefficient
in most of its current implementations.

In addition to the problem of temporal isolation, many
conventional RTOS have further shortcomings. Existing im-
plementations tend to be highly specialized systems, which
require specialized programmer expertise. RTOS often
come with a non-standard API, which makes code devel-
opment and maintenance expensive. RTOS usually do not
attract much attention outside the real-time community and
have therefore failed to create a critical mass of developers.
Many RTOS are not open-source, which makes it difficult
for third parties to modify system components if needed.
Although some RTOS support standard APIs, like POSIX,
running certain application software and especially device
drivers still requires non-trivial porting efforts. Moreover,
building heterogeneous applications that involve non-real-
time and real-time processes is sometimes difficult. Fur-
thermore, there are RTOS that execute real-time processes
in kernel space, e.g., RTLinux [23], and thus have little or
no spatial protection against faulty or malicious code.

3. VIRTUALIZATION

The key benefits of system-level virtualization, not only
for embedded systems but in general, are legacy software
support, device driver support, and spatial isolation of the
system VMs. Legacy software support is provided by sys-
tem VMs that virtualize the hardware for which the legacy
software has originally been developed. Device drivers of an
existing operating system can be reused by relaying device
access to the system VM on which the operating system with
the driver is running. For instance, running Linux on an em-
bedded system VM would grant access to a large set of ap-
plications and devices for which drivers are already available
in the Linux kernel. Isolation of system VMs guarantees that
faulty or malicious code running in one VM cannot propa-
gate to other VMs.

In recent years, system-level virtualization has been a pop-
ular research topic in academia and industry. The main re-
search focus is in the field of server and personal computing
where products like XEN [2], VMware [21], and Virtual-
Box [22] have already been applied successfully.

System-level virtualization is also gaining popularity in
embedded systems circles since modern embedded hardware
is getting ever more powerful allowing to run more complex
embedded applications. There is also a growing demand for
running application software which has originally been de-
signed for general purpose operating systems, on embedded
hardware. Spatial isolation provided by system-level virtual-
ization even allows to separate critical systems code, e.g., the
communication stack on cell phones, from other non-critical

application code such as web browsers and media players.

However, Heiser [14] argues that system-level virtualiza-
tion alone is not sufficient for embedded systems. He pro-
poses instead a hybrid approach based on the microkernel
system OKL4, which allows to perform system-level virtual-
ization and to run other non-virtualized elements at the same
time. For example, OKL4 can manage standard operating
system processes as well as multiple system VMs running
standard operating systems such as Linux. A microkernel
like OKL4 also supports light-weight but strong encapsu-
lation of interacting components from which new real-time
applications could be build.

We agree with Heiser on the issue of providing a variety of
execution models ranging from operating system processes
to system- and process-level virtualization, but we also em-
phasize the importance of temporal isolation. OKL4 only
provides a simple priority scheduler and no further support
for temporally isolating memory allocation and deallocation
as well as I/O and IPC management. We argue that tem-
poral isolation throughout the system is not only important
for safety- and mission-critical applications but increasingly
also for convenience applications as software complexity
tends to increase with hardware performance and therefore
may become difficult to manage technically and econom-
ically without a compositional and flexible timing model.
Support of temporal isolation, however, may involve mod-
ifications of even the most fundamental parts of the system.

4. SYSTEM INTEGRATION

We begin by describing the current state of our system de-
sign and prototype implementation, followed by a short dis-
cussion of future plans. We then provide more details on par-
ticular system components such as the scheduler, the mem-
ory management including our explicit real-time memory
management system called Compact-fit (CF) [11], and the
channel subsystem, which handles I/O and IPC. The sched-
uler has already been integrated into the system whereas our
memory management and the channel subsystem are still ex-
perimental stand-alone components.

We have developed a small-footprint, bare-metal, real-
time VEE called Tiptoe [10], which currently runs on an
XScale 400MHz-processor with 64MB RAM. Tiptoe comes
with its own C library, device drivers for setting I/O pins, an
Ethernet driver, a serial driver, a microsecond timer frame-
work, and a 1KHz timer interrupt to keep the system syn-
chronized with real time. Furthermore, we have imple-
mented a VM that virtualizes an Atmegal28 processor with
4KB RAM and 128KB Flash storage, and interprets arbi-
trary AVR assembler code. Tiptoe can run basic real-time
processes and multiple, virtual Atmegal28 instances.

Tiptoe is meant to be a microkernel-based system that sup-
ports executing temporally isolated operating system pro-
cesses as well as system and process VMs. We are cur-
rently exploring different approaches to accomplish this like
implementing a system from scratch or reusing an existing

Processes
Process Operating
oS System
Services
System VM
Microkernel

Figure 1: Tiptoe system design

microkernel such as OKL4. The key problem is to design
all system components such that there always exists at most
a linear relationship between the amount of CPU time re-
quired by each component to process a workload and the
actual amount of the workload. In this case, the usage of
system components would be temporally isolated as well.

Figure 1 shows the Tiptoe system design. On the lowest
level, there is a microkernel, which contains the VBS sched-
uler and an IPC mechanism. On top of the microkernel, pro-
cesses using the channel subsystem, and operating system
services, e.g., device drivers, may run along with operating
system instances encapsulated in system VMs, and process
VMs, which may take advantage of CF and the channel sub-
system. Scheduling parameters for the VBS scheduler are
set via system calls.

Scheduling

Tiptoe uses a real-time O(1)-scheduler for scheduling all
system activities. The scheduler [9] is based on the pre-
viously mentioned notion of variable-bandwidth servers
(VBS). Tiptoe assigns each scheduling task, i.e., process or
VM instance, in the system to a unique VBS, which essen-
tially controls the execution speed of the assigned task and
may even change the speed at any time upon request.

A VBS is configured by a single number that determines
a utilization bound called bandwidth cap in percentage of
CPU time. Upon creating a new VBS, the system checks
if the sum of the bandwidth caps of the existing VBS and
the new VBS is still less than or equal to the system’s total
capacity. The admission test for running new processes or
VM instances is therefore also constant-time.

To configure their actual execution speed, each schedul-
ing task chooses a pair (A,) called virtual periodic resource
such that A over 7 is less than or equal to the bandwidth cap
of the VBS to which the task is assigned. The A and 7 val-
ues correspond to the previously mentioned notions of limit
and period, respectively. The VBS will then execute the as-
signed task for A units of time every T units of time. The task
can switch at any time to a different virtual periodic resource
within the range of the bandwidth cap of the VBS, marking
the beginning of a new what we previously called action.

The key property of VBS is programmable temporal isola-
tion. If the admission test succeeds for a new VBS, the sys-
tem guarantees the VBS that the assigned task, upon choos-
ing a virtual periodic resource (A,7) within the bandwidth
cap of the VBS, will be executed for A units of time every

T units of time, with at most one © delay from the point in
time when the resource is chosen. Intuitively, what happens
is that the VBS must “re-synchronize” with the new virtual
periodic resource every time the resource is changed. We
tolerate the delay of at most one period because it makes the
admission test simple and constant-time. There appears to be
a fundamental trade-off between scheduling efficiency and
admission complexity. Note that the admission test comes
at the expense of precision. Even if the test fails, there may
be system configurations in which a VBS could guarantee
temporal isolation. However, a more precise test will have
to consider the system in more detail and therefore be more
expensive.

VBS guarantees that the response times of a process or
VM instance is temporally isolated on the level of their in-
dividual actions, i.e., portions of code, from any other sys-
tem activities. Moreover, the response times may only vary
within at most one period of the chosen virtual periodic re-
sources. Therefore, the smaller the periods are the smaller
the response time jitter will be, however, at the expense
of higher administrative overhead through more frequent
scheduler invocations. Conversely, the larger the periods are
the higher the net CPU throughput will be due to fewer in-
terruptions.

The bound on response time jitter only holds under the
assumption that scheduling overhead is zero. In fact, it turns
out that in practice the jitter may be more than one period
because of the non-zero scheduling overhead, see Section 5.
The jitter is nevertheless still bounded but only according to
a more complex relationship between scheduling overhead
and the periods in the system. We are currently working on
a precise formulation.

Legacy code not using VBS and not expecting any guar-
anteed response times may run outside of the real-time
scheduling domain, i.e., during idle time. Multiple non-VBS
processes are scheduled (during the idle time of the real-time
scheduler) using another scheduling policy such as round-
robin.

Memory Management

Similar to other hypervisors and microkernels (e.g. [2, 14]),
Tiptoe divides physical memory into pages and provides an
interface for processes to request new pages, to return pages
not needed anymore, and to update a process’ page table en-
tries. A process is responsible to establish the mapping of
virtual memory addresses to physical memory addresses us-
ing the interface to the microkernel.

Moreover, process VMs that use an object-based memory
model may use our Compact-fit explicit memory manage-
ment system [11] to manage their internal heaps in real time.
CF implements real-time versions of malloc and free, and
bounds fragmentation through real-time compaction such
that the available memory for a given object size can al-
ways be determined in constant time. Memory analysis tools
like [8] may therefore effectively bound heap sizes required
to run programs, if CF is used.

CF memory allocation takes constant time. CF memory
deallocation also takes constant time unless compaction has
to be performed, which takes linear time in the size of the
deallocation request. We plan to integrate CF into Tiptoe
such that memory allocation and deallocation rates of pro-
cess VMs using CF can be effectively controlled through the
VBS scheduler. This may be possible since the size of mem-
ory objects involved in any allocation and deallocation re-
quests fully determines the maximum CPU time needed to
perform the requests, independently of the state of the sys-
tem.

Channels

Motivated by the VBS concept, we define a channel as a
communication link between two processes with a band-
width cap on the link. For each data-transfer on a channel,
a process specifies the total amount of data involved in the
transfer (workload), a chunk size (limit), and a rate (period).
The chunk size is the amount of data that is guaranteed to be
transferred in a single period at the specified rate. The re-
sulting throughput, i.e., the chunk size over the rate, must be
less than or equal to the bandwidth cap of the channel. Note
that this definition of a channel enables calculation of the re-
sponse times for a data transfer, depending on the workload,
the chunk size, and the rate.

In Tiptoe, communication of processes with device drivers
is also handled by channels since device drivers may either
run as special system service processes, just like in other
microkernels, or else run in an operating system instance
encapsulated in a system VM running on top of the micro-
kernel. As a result, channels may not only allow to control
communication between processes or VM instances but may
eventually also provide temporal isolation when performing
I/O. There is also a stand-alone I/O subsystem that we de-
veloped earlier and may use, which relays all I/O traffic to a
different device host running Linux [19]. This approach re-
quires multiplexing I/O in real time on to a communication
link to the device host but is otherwise similar to relaying
I/O traffic to drivers running in an operating system instance
encapsulated in a system VM.

For the VBS scheduler, a data-transfer on a channel is just
like any other process action, i.e., piece of sequential pro-
gram code. The action’s period T is the application-defined
rate for the data-transfer, whereas the channel has to provide
a value A for the action’s limit. In the best case, A is the ex-
act time needed to send a data chunk. Hence the best case is
when the channel can map a workload specified in bytes to
the exact amount of time needed by the channel to process
the workload. However, mapping workload to time is diffi-
cult and hardware-dependent. A limit value A that is larger
than the time needed to send the data chunk may result in
a violation of the bandwidth cap of the channel but can be
dealt with by having the scheduler delay the completion of
the data transfer artificially by blocking the invoking process
until the “undeserved” amount of time has elapsed [12]. A
problem appears when the limit value A is smaller than the

120 T T T T T 100
v‘*
ey % % % & % 3 % ¥ T4
2 0| . g
é 60 - L E
f N* =
S 4 40 ;
0
Eawols 1 1 .t 1 2 & % 1 2
20 | * oy —+— 20
Oy +—3—
¥ CPU utilization -
O 1 1 1 1 1 0
2 4 6 8 10

Number of processes

Figure 2: VM experiment

time needed to send the data chunk, since in this case the
guaranteed response time of the data transfer action may be
exceeded. Determining an adequate value for A is related to
the server design problem, c.f. [17, 3]. Worst-case execution
time analysis and performance measurements could help ap-
proximate the calculation of the limit value A.

To conclude, channels help fulfill the following Tiptoe
goal: both temporal isolation (via the use of VBS) and
application-relevant workload-determined response time
(via the use of channels) must be guaranteed for each pro-
cess.

5. EXPERIMENT

Using our current implementation, we show the temporal
isolation capabilities of Tiptoe provided by our scheduler as
well as its support for adapting the execution speed of por-
tions of code to different latency requirements. Consider a
process implementing a simple feedback controller that con-
sists of two actions. The first action (o) reads sensor val-
ues, computes a new control command, and writes the actu-
ators. In control systems, this portion of a control process
requires low input/output latency. The second action (0ly)
updates the state of the controller and has less stringent tim-
ing requirements. Latency and jitter are critical to control
systems, thus splitting a control process in two actions im-
proves controller performance [6, 7]. We specify latency re-
quirements by associating each action with a relevant virtual
periodic resource. Action @ is associated with the virtual
periodic resource Ry = (320us,3550us) while action 0 uses
the resource R, = (500us, 5340us). The process utilizes the
CPU at around 9%. In order to show temporal isolation, we
increase system utilization by starting additional processes,
each utilizing the CPU at around 10%. We chose the limits
and periods of the actions so that system utilization is maxi-
mal when running a total of 10 processes. Note that all pro-
cesses execute actual AVR code but without accessing any
real sensors and actuators.

Figure 2 shows the minimum, maximum, and average re-

sponse times of action ¢¢; and olp, respectively (left y-axis).
The response time jitter of each action varies within two pe-
riods of the virtual periodic resource used by the respective
action independently of the overall system utilization (right
y-axis). CPU utilization increases from 9% when the mea-
sured process is the only process in the system up to 92%
when 9 additional processes run concurrently with the mea-
sured process (x-axis).

The theoretical bound for jitter discussed in Section 4 is
one period assuming zero scheduler overhead. In a real
system, however, the administrative overhead causes the re-
sponse time variance of an action to exceed one period. Nev-
ertheless, this variance is still bounded and not influenced by
the system utilization. The real bound depends on the sched-
uler overhead and the periods of the actions scheduled in the
system. Giving guaranteed bounds with non-zero scheduler
overhead is a topic that we plan to pursue as future work.

6. CONCLUSIONS

We analyzed current real-time and embedded execution
environments and proposed to combine well-known op-
erating systems and virtualization techniques with a real-
time scheduler that provides programmable temporal iso-
lation. We presented details and early results of our re-
cently developed scheduler and its use of variable-bandwidth
servers (VBS) to achieve temporal isolation across varying
system and CPU load. Furthermore, we discussed how the
concepts behind VBS may be used to extend temporal iso-
lation to other system activities like memory and I/O man-
agement. Finally, we presented a bare-metal experiment that
shows the capability of programmable temporal isolation of
Tiptoe processes, independent of the CPU utilization.

7. REFERENCES

[1] L. ABENI, AND BUTTAZZO, G. Resource reservation
in dynamic real-time systems. Journal of Real-Time
Systems 27, 2 (2004), 123-167.

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND,
S., HARRIS, T., HO, A., NEUGEBAUER, R., PRATT,
I., AND WARFIELD, A. Xen and the art of
virtualization. In Proc. SOSP (2003), ACM,
pp. 164-177.

[3] BuTtTAZZO, G., AND BINI, E. Optimal dimensioning
of a constant bandwidth server. In Proc. RTSS (2006),
IEEE, pp. 169-177.

[4] BuTTAZZO, G. C. HARTIK: A real-time kernel for
robotics applications. In Proc. RTSS (1993), IEEE,
pp- 201-205.

[5] BuTTAZZO, G. C. Rate monotonic vs. EDF:
Judgment day. Real-Time Systems 29, 1 (2005), 5-26.

[6] CERVIN, A. Improved scheduling of control tasks. In
Proc. ECRTS (1999), IEEE, pp. 4-10.

[7] CERVIN, A., AND EKER, J. The Control Server: A
computational model for real-time control tasks. In
Proc. ECRTS (2003), IEEE, pp. 113-120.

[8] CHIN, W.-N., NGUYEN, H. H., POPEEA, C., AND
QIN, S. Analysing memory resource bounds for
low-level programs. In Proc. ISMM (2008), ACM,
pp- 151-160.

[9] CRACIUNAS, S., KirscH, C., ROCK, H., AND
SOKOLOVA, A. Real-time scheduling for
workload-oriented programming. Tech. Rep. 2008-02,
University of Salzburg, September 2008.

[10] CRACIUNAS, S. S., KIRSCH, C. M., PAYER, H.,
ROCK, H., SOKOLOVA, A., STADLER, H., AND
STAUDINGER, R. The Tiptoe system, 2007.
tiptoe.cs.uni-salzburg.at.

[11] CRACIUNAS, S. S., KIRSCH, C. M., PAYER, H.,
SOKOLOVA, A., STADLER, H., AND STAUDINGER,
R. A compacting real-time memory management
system. In Proc. ATC (2008), USENIX, pp. 349-362.

[12] CRACIUNAS, S. S., KIRSCH, C. M., AND ROCK, H.
I/O resource management through system call
scheduling. SIGOPS Operating System Review 42, 5
(2008), 44-54.

[13] GAL P., L1PARI, G., AND DI NATALE, M. A flexible
and configurable real-time kernel for time
predictability and minimal RAM requirements. Tech.
rep., Scuola Superiore S. Anna, 2001.

[14] HEISER, G. The role of virtualization in embedded
systems. In Proc. IIES (2008), ACM, pp. 11-16.

[15] JEFFAY, K., AND GODDARD, S. Rate-based resource
allocation models for embedded systems. In Proc.
EMSOFT (2001), Springer, pp. 204-222.

[16] KOPETZ, H. Real-Time Systems: Design Principles
for Distributed Embedded Applications. Kluwer
Academic Publishers, 1997.

[17] LipARl, G., AND BINI, E. A methodology for
designing hierarchical scheduling systems. Journal of
Embedded Computing 1, 2 (2005), 257-269.

[18] MERCER, C. W., SAVAGE, S., AND TOKUDA, H.
Processor capacity reserves for multimedia operating
systems. Tech. rep., Carnegie Mellon University, 1993.

[19] STADLER, H. A virtualized real-time I/O subsystem.
Master’s thesis, University of Salzburg, Salzburg,
Austria, 2008.

[20] STANKOVIC, J. A., AND RAMAMRITHAM, K. The
design of the Spring kernel. In Proc. RTSS (1987),
IEEE, pp. 146-157.

[21] VMWARE, INC. Virtualization overview, 2006.
www.vmware.com/pdf/virtualization.pdf.

[22] WATSON, J. Virtualbox: bits and bytes masquerading
as machines. Linux Journal 2008, 166 (2008), 1.

[23] WIND RIVER. RTLinux. www.windriver.com.

