
Optimal static scheduling of real-time tasks on
distributed time-triggered networked systems∗

Silviu S. Craciunas Ramon Serna Oliver Valentin Ecker
TTTech Computertechnik AG, Vienna, Austria

{scr,rse,vec}@tttech.com

Abstract—Mixed-criticality and high availability distributed
systems, like those on large industrial deployments, strongly rely
on deterministic communication in order to guarantee the real-
time behavior. The time-triggered paradigm –as in TTEthernet–
guarantees the deterministic delivery of messages with fixed
latency and limited jitter. We look closely at industrial deploy-
ments in which production as well as consumption of messages
is carried out within software tasks running on distributed
embedded nodes (i.e. end-systems). We present an approach to
minimize the end-to-end latency of such tasks, respecting their
precedence constraints as well as the scheduled communication
in an underlying switched TTEthernet network. The approach is
based on and validated by a large industrial use-case for which
we analyze a test bed implementing our solution.

I. INTRODUCTION

Industrial applications are becoming increasingly dis-
tributed among numerous sub-systems with mixed critical-
ity requirements. Ensuring deterministic communication be-
tween often co-existing applications is essential to guarantee
safe and high-available deployments demanding tight latency,
minimum jitter, and bandwidth guarantees. Time-Triggered
Ethernet (TTEthernet [1], SAE AS6802 [2]) incorporates a
time-triggered paradigm to the IEEE 802.3 standard enabling
deterministic time-critical communication over standard Eth-
ernet. TTEthernet enables the timely transmission of periodic
messages (TT-messages) at predefined instants of time. This is
achieved by means of a global communication schedule where
time windows for each transmission are planned ahead on a
hop-by-hop basis.

Despite the deterministic end-to-end guarantees of TTEth-
ernet, scheduled messages often carry software-computed pay-
load which is to be generated –or respectively consumed–
within the end-system software as close as possible to the
message transmission –respectively reception– instant. Failing
to do so introduces latency at the software layers and po-
tentially adds jitter between the communicating applications
hindering the strong determinism of TTEthernet. Extending the
network end-to-end guarantees towards the application layers
reduces to scheduling the tasks responsible for the production
and consumption of payloads right at the instants when the
data is to be transmitted or received, respectively.

In this paper we consider optimality with respect to min-
imizing the effective end-to-end latencies of communicating
end-to-end tasks. To this extend, we present a generalized
method constructing optimal static task schedules for the ap-
plications running on the end-systems of a multi-hop switched

∗The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007- 2013) under
grant agreement no 610640 (DREAMS).

network for which a TTEthernet schedule already exists. Our
experience with industrial applications shows that the network
schedule is often built and optimized with custom constraints
during deployment –generally on-site by the customer– and
shall not be modified due to certification processes. Hence,
we aim at integrating the end-to-end software services and
applications without affecting the overall network schedule.

We show that inter-task as well as network dependencies
can be expressed in the form of a constrained optimization
problem aiming at minimizing the overall end-to-end latency.
Moreover, we show how to generate static schedules using
mechanisms from dynamic priority scheduling derived from
classical scheduling theory. Our approach is centered on task
set transformations to a dynamic task model for which there
exist necessary and sufficient feasibility tests that can be
incorporated in the optimization criteria. Rather than searching
for a final optimal schedule among all possible, we define
the optimization problem to find feasible task sets for which
the offline execution of the dynamic algorithm constructs an
optimal schedule table.

Section II details the overall process highlighting the main
contributions of this paper. In Section III we introduce the
network and task models along with the real-time run-time
system implementing our software-platform. We then discuss
the task set transformation and detail the optimization problem
generating static schedules (Section IV). Section V presents
the application of this approach into a real-world industrial
test-bed and summarizes the main results. Finally, Section VI
overviews related work and Section VII concludes the paper.

II. GENERAL PROCESS

We illustrate the general process building our approach in
Figure 1. The depicted workflow specifies the steps for the
generation of an optimal task schedule beginning with the user-
defined task set (section III-C) for a given end-system.

The task set is first transformed to the EDF task model
(p1) following the steps in Section IV-A. The dependencies
with TT-messages for those tasks involved in the production
or consumption of payload data are considered during the
specification of task parameters. The transformation yields a
large number of task sets due to the combinations of possible
values for the new task model, out of which we aim at
obtaining the optimal task schedule. However, thanks to the
EDF basis we can apply a feasibility test (p2) reducing the
search space to those task sets which are feasible under EDF
(s1). Note that, as a property of EDF, if a task set does not
satisfy its feasibility test no other algorithm would produce a
valid schedule. To further reduce the amount of task sets, we

Task UtilityTask Utility
EDF Schedulability Test

Task Transformation

TT-Task Set

Schedulable Task Sets

Precedence
Test

Optimality Criteria

Compliant Task Sets

Optimal Task Set

Task Utility

Dependence
Constraints

(p1)

(p2)

(p3)

(p4)(s1)

(s2)

Figure 1: Task set transformation and scheduling process.

apply a precedence test (p3) (Section IV-C) based on the task
precedence constraints specified by the user. This produces a
subset of compliant task sets (s2) with parameters satisfying
the inter-task dependencies.

Next, we apply the optimality criteria (p4) formulated as
an optimization problem over the set of compliant task sets,
for which each task is assigned a time utility function (TUF)
specifying its tolerance towards latency (Section IV-D). As
a result, the feasible task set with the greatest TUF accrual
(optimal task set) is found (s3). This task set –if exists– is
then sent to an offline EDF simulator (p5) which generates the
optimal schedule based on the EDF algorithm (Section IV-E).
The output is then processed into a static schedule table that
can be used at run-time by our time-triggered run-time system
(Section III-B).

This process differs from directly deriving the optimal
schedule by means of an optimization search of the complete
domain space. Instead, we significantly reduce the work for the
optimizer to determining the set of parameters for a feasible
EDF task set accounting for the maximum TUF accrual.
We then allow an offline EDF scheduler to decide the final
placement of task, including their preemptions (i.e. the offline
schedule). Moreover, the search space for the optimization
problem is further reduced following (p2) and (p3).

III. SYSTEM MODEL

A. Network model

A key concept of TTEthernet [3] is the time-triggered
paradigm enabling real-time and non-real time communi-
cation over standard IEEE 802.3 Ethernet. Time-triggered
messages (TT-messages) are scheduled periodically at each
network device (i.e. switches and end-systems) and transmit-
ted within predefined periodic transmission-windows. Analo-
gously, the reception of TT-messages is only accepted within
their reception-windows, which guarantees conflict-free and
minimum jitter communication. Best-effort messages (BE-
messages) are transmitted as regular Ethernet messages in the
time intervals where communication channels are idle and
thus do not interfere with scheduled critical traffic. To achieve
this, TTEthernet specifies a network-wide fault-tolerant clock
synchronization algorithm [4] that guarantees the time syn-
chronization of each participating node.

B. Run-time system

Real-Time Operating Systems (RTOS) provide the basis
for the deterministic execution of tasks with real-time re-
quirements. Typical task constraints include periodic execution
and deadlines. Additional constraints appear when distributed

TTc TTp

TTc TTp

Non-synchronized clocks

Synchronized clocks

RTS time

TTE time

RTS schedule

TTEthernet schedule

RTS schedule

TTEthernet schedule

min

min

mout

mout

Figure 2: Time-interdependence of TT-RTS and network schedules.

applications communicate over deterministic network archi-
tectures like TTEthernet. In this particular case, constraints
are also related to the network schedule of incoming and
outgoing messages. In such scenarios, the end-to-end latency is
composed by the inherent delay due to communication as well
as that introduced in the execution of tasks. Minimal end-to-
end latency is only ensured if the tasks in the end-systems are
scheduled with a tight dependency to the incoming or outgoing
messages consumed or, respectively, produced.

TT-RTS is an embedded real-time run-time system designed
and implemented by TTTech currently undergoing certification
(SIL-2) and deployment activities in the scope of multiple
cross-industry projects. Within TT-RTS we differentiate two
classes of tasks, TT-tasks (time-triggered tasks) and BE-tasks
(best-effort tasks). This matches the main message types found
in TTEthernet. We consider a discrete time-line based on
macroticks, which is the granularity at which the TT-RTS
operates. Moreover, we define the schedule based on time
slots, where a time slot consists of one or more contiguous
macroticks. TT-tasks have a fixed activation time and a dead-
line, and are scheduled offline with fixed guaranteed time slots.
Within their time slots they cannot be preempted by any other
task. However, a TT-task may be scheduled on several discon-
tinuous slots if required (i.e allowing preemption). BE-tasks are
preemptive tasks with a fixed time budget. They are treated as
background tasks [5, p. 110] without a fixed activation time
or deadline, i.e., they run whenever TT-tasks are not executed.
Since TT-RTS guarantees temporal isolation between TT- and
BE-tasks, we will disregard BE-tasks in the discussion from
now on and concentrate on TT-task scheduling.

The schedule for a task set in TT-RTS is specified through
a static offline-computed schedule table consisting of a set of
time slots, which are either assigned a TT-Task or marked for
the execution of BE-Tasks. Since such tables are potentially
infinite we incorporate the concept of schedule cycle, which
represents the shortest time interval after which the sequence
of time slots repeats (i.e. hyperperiod).

C. Task model

A TT-task TTi is defined by a tuple (CTTi , TTTi), where
CTTi is the worst-case computation time (WCET) and TTTi
is the period. In Figure 2 we show the dependency of TT-
tasks with respect to the timing of scheduled TT-messages.
Note that the TT-RTS and the network operate on different
time-domains. In the upper part of the figure, a scheduled
incoming TT-message min needs to be consumed by task TTc
while task TTp must produce the payload for an outgoing TT-
message by its scheduled window –shown as mout. However,
the task and network schedules run in non-synchronized time-
domains, which causes TTc to start execution before min has

arrived, and TTp to produce the message after it is expected
for transmission. In both cases, the effective consumption
and production of the messages may only happen in the
following task activation, hence increasing the effective end-
to-end latency by one task period. The lower part of the figure
depicts the same scenario under synchronized time domains
and a task schedule enforcing minimum latency with respect
to the TT-messages. In this case, both messages are consumed
and respectively produced by the expected time. Note that, we
consider a model in which the TT-tasks have the same periods
as the TT-messages they depend on.

We observe the following fundamental classification of TT-
tasks with respect to their network dependencies:

• Producer TT-tasks generate TT-messages that must be
available by the instant the associated transmission-
window in the network schedule starts. We define the pro-
ducer latency as the time between the TT-task completion
and the beginning of the reserved network.

• Consumer TT-tasks must consume an incoming TT-
message and therefore only start after the associated
reception-window. We define the consumer latency as
the time from the end of the time-window until the
completion of the respective task.

• Consumer then Producer TT-tasks have dependencies
upon two TT-message time-windows and are a combina-
tion of the aforementioned types. This class usually maps
to tasks running control loops which consume sensor
measurements and produce actuator values.

• Free TT-tasks are independent of the TTE-network.

Note that we do not consider the case of producer then
consumer as it introduces a fundamental contradiction, i.e.,
in order to produce the payload for the first message with
minimum latency, the task must execute before the transmis-
sion of the first message is due. However, the consumption
of the second message with minimal latency requires the task
to execute after the reception of the later arriving message.
Therefore, the order of the messages conflict with respect to the
chances of obtaining minimum latency for the task. To solve
this, we propose that in these scenarios, the system designer
shall decide between either option and effectively define the
task as producer or consumer. Thus, the problem is reduced
to minimizing the latency for either the consumption or the
production of one single message, but not both.

IV. OFFLINE SCHEDULING

In this section we start from a generic model without
explicit constraints on tasks and define a general task set
transformation (Section IV-A) allowing us to construct an
optimization approach which generates feasible task sets under
EDF (Section IV-B). We then extend the optimization problem
to include task interdependence (Section IV-C) and show how
dependencies to the network schedule can be solved in a
flexible manner in Section IV-D.

A. Task set transformation

We first refer to the periodic task model from [6]. Consider
a set of n periodic tasks, Γ = {τi | 1 ≤ i ≤ n}. A task
τi is defined by the tuple (φi, Ci, Ti, Di) with Ci denoting
the computation time, Ti the period, φi the offset, and Di

the relative deadline of the task. The total utilization of Γ is
U =

∑n
i=1 Ui, where Ui = Ci

Ti
is the utilization of task τi.

We want to transform a task TTi defined through the
tuple (CTTi , TTTi) into a task τi defined by the tuple (φi,
Ci, Ti, Di). The idea behind this transformation is developed
in Section IV-D, for now, we formulate it as follows. The
computation times and periods of TT-tasks can be readily
transformed, namely, Ci = CTTi and Ti = TTTi . Furthermore,
we have to assign values for the offsets and deadlines of
tasks, where these parameters depend on the specific task
properties and requirements. For example, if the TT-task set
is independent of network constraints, the offset for each task
would be 0 and the deadline would be set equal to its period.

In its most generic formulation, the offset and deadline of
a task can take any value that may result in a valid schedule,
i.e., φi ∈ [0, Ti−Ci] and Di ∈ [Ci, Ti]. In order to choose the
optimal combination of task offsets and deadlines we introduce
the term of task utility that expresses specific task constraints
and requirements. We model the task utility using the concept
of time utility functions (TUF) [7].

We define two TUF functions, one for the offset and one
for the deadline of a task. A TUF for the offset of a task
τi is a function defined over the domain [0, Ti − Ci], while
the TUF for the deadline is defined over the domain [Ci, Ti].
The TUFs take values in the normalized co-domain [0, 1]. A
value of 1 represents maximum utility, whereas 0 denotes an
invalid value for the respective parameter, i.e., the resulting
schedule is regarded as invalid. Note that TUF functions may
constrain the output of the task-set transformation to a sub-
domain of the input domain, hence potentially discarding
feasible schedules if, e.g. the TUFs for one or more tasks take
0 for any point within their defined domain. In such cases, we
claim that the optimality of the transformation still holds, since
the TUF introduces additional constraints to the validity of a
transformed task set. Note also that TUFs with values greater
than 0 do not introduce such constraints. In Section IV-D we
elaborate on the mapping of TUFs to specific task constraints
and requirements. For now, we regard any function as valid.

B. Optimization problem

We formulate the problem of finding a feasible task-set
(i.e. combination of task offsets and deadlines) that result in
the largest possible accrued value of TUFs.

The first set of constraints on the offsets and deadlines
come from the feasibility test of EDF [6]. EDF is a dynamic
scheduling algorithm which prioritizes task instances based
on their absolute deadlines, i.e., at each time instant, the
task with the most immediate absolute deadline is scheduled.
For task sets scheduled with EDF, a necessary and sufficient
schedulability condition has been given in [6], namely, the task
set Γ is schedulable such that no absolute deadline is missed iff
U ≤ 1. The schedulability test, however, is based on deadlines
being equal to periods and offsets being 0. For our purposes,
we have to look at a task model in which the arrival times
have an offset φi > 0 and a deadline Di ≤ Ti [5, p. 79]. We
therefore apply the necessary and sufficient feasibility test for
asynchronous tasks with deadlines less than or equal to periods
from [8], [9]. In essence, we define the optimization problem
to explore each combination of task parameters, skipping those
that result in non-feasible task sets.

The second set of constraints come through the previously
defined property of TUFs where a value of 0 results in an
invalid parameter. Thus, we define the maximization function
as the sum of TUFs of all tasks, and the constraints as
the aforementioned schedulability conditions for asynchronous
tasks with deadlines less than or equal to periods with addi-
tional user constraints on non-valid task sets.

Each task τi ∈ Γ is defined, as presented earlier, by
the tuple (φi, Ci, Di, Ti). We denote the time utility func-
tions of a task τi with TUFφi : [0, Ti − Ci] → [0, 1],
and TUFDi : [Ci, Ti] → [0, 1], for offset and deadline,
respectively. We use the definitions from [9], namely, H

def
=

lcm{T1, . . . , Tn},Φ
def
= max{φ1, . . . , φn} and define E =

Φ + 2 ·H . For each generated task set, the schedulability con-
dition is checked using the necessary and sufficient feasibility
test for asynchronous tasks from [8], [9]. We thus define the
optimization problem as:

Maximize
φi,Di

TUFΓ =

n∑
i=1

(
TUFφi (φi) + TUFDi (Di)

)
,

subject to

•
∑n
k=1

Ck
Tk
≤ 1,

• ∀k ∈ [1, n], TUFφk (φk) > 0 ∧ TUFDk (Dk) > 0,
• ∀t1 ∈ Λ,∀t2 ∈ ∆, t1 < t2∑n

k=1 Ck

(⌊
t2 − φk −Dk

Tk

⌋
−
⌈
t1 − φk
Tk

⌉
+ 1

)
0

≤ t2 − t1,

where

Λ
def
= {ai,j = φi + jTi|i = 1, . . . , n; j ≥ 0; ai,j ≤ E},

∆
def
= {di,j = ai,j +Di|i = 1, . . . , n; j ≥ 0; di,j ≤ E}.

For each possible solution of a given task set these conditions
are derived from the task parameters themselves. The sets Λ
and ∆ contain the arrivals and absolute deadlines, respectively,
of all jobs until the time instant E. These two sets create
intervals that, according to [8], [9], need to fulfil the condition
that the processor demand is less than the processor capacity,
i.e., the amount of work done by the jobs in an interval is less
than or equal to the length of the interval.

C. Task interdependencies

In real applications task dependencies are found not only
with respect to network messages but also with respect to
other tasks. Task interdependencies are usually expressed as
precedence constraints [10], e.g., task τi must execute and
finish before task τj starts. Note that we consider only simple
precedences, as they are called in [11], namely precedence
constraints only between purely periodic TT tasks that have the
same “rate”. Multi-rate communication among tasks (extended
precedences [11]) is left for future work.

In EDF, the precedence constraints between two tasks
are guaranteed if the release times and deadlines are set
accordingly, i.e., if task τi has to run before task τj , then the
release time and deadline of task τj have to be after the release
time and deadline of task τi, respectively. It can be easily
proven (cf. [5, p. 71]) that if the original task set is modified
to include precedence constraints in the form of altering release
times and deadlines then the algorithm is still optimal. For the

particular case of two or several tasks having the same deadline
at a given time instant of time, EDF does not define an explicit
criteria to choose among them. Nevertheless, the algorithm can
be extended to include priorities for tie-breakers between tasks
without altering the scheduling optimality [6]. Therefore, we
adopt the following criteria to define task priorities: If task τi
with priority Pi and τj with priority Pj with Pi > Pj have
the same deadline at time t, task τi will be executed first.

We model task interdependence as additional constraints
in the optimization problem formulation from Section IV-A,
which guarantee that applying the EDF scheduling algorithm
will result in a static schedule that satisfies these dependencies.
If task τi has to run before task τj the additional constraint
can be formulated as φi ≤ φj , Di ≤ Dj , Pi > Pj .

The schedulability proof is trivial (see for example the
proof for the simple case in [5, p. 71]) since all modified
parameters are either greater or equal (in case of offsets) or
smaller or equal (in the case of deadlines) than their original
counterparts. From [5, p. 71] we know that if the modified task
set is schedulable, then also the original one is schedulable and
the tasks respect their initial deadlines, but, in addition, they
also adhere to the precedence relations.

D. Network schedule dependencies

In Section III-C we identified four types of tasks, namely
producer, consumer, consumer then producer, and free TT-
tasks in terms of their network dependencies. Our goal is
to minimize the producer and consumer latencies by finding
values for task offsets and deadlines accounting for the network
dependencies. Free tasks can be scheduled anywhere since they
do not have dependencies to the network schedule while the
other type of tasks need to be scheduled such that the latency
between the consumption or production and the moment of
sending or receiving of the TT-message is minimized.

We start from a restrictive transformation with minimal
producer and consumer latencies by adapting the task model
transformation described in Section III-C as follows:
1. Set deadlines and computation times, Ci = CTTi , Ti = TTTi .
2. The type of TT-Task determines which parameters are
constrained by the network schedule: For producer TT-tasks
the computation must be completed before the dependent TT-
message transmission is due. Therefore, its deadline is fixed
at the beginning of the transmission-window. Analogously, for
consumer TT-tasks, the arrival time is fixed at the end of the
reception-window. For consumer then producer TT-tasks both
arrival and deadlines are fixed by the end of the reception-
window of the consumed TT-message and respectively at the
beginning of the transmission-window of the produced TT-
message. For free tasks, the offset is equal to 0 and the deadline
is set to be equal to its period.
3. To complete the transformation with minimal producer and
consumer latencies we fix the remaining parameters as follows.
The offset of a producer TT-task TTi is φi = Di−Ci and the
deadline of a consumer TT-task TTj is set to Dj = φj + Cj .

With this transformation we obtain a single solution that is
also optimal if the task set is feasible through EDF. Hence,
the optimization problem is reduced to a simple schedula-
bility check. This method guarantees minimal producer and
consumer latencies at the expense of introducing strict task

constraints. That is, with exception of the free task all other TT-
tasks are in effect non-preemptable (i.e. the time left between
their release and deadline equals their computation time).

If we allow for less restrictive input domains, we can map
the rigidity of a task in terms of increasing its latency to TUF
functions, i.e., we may find a feasible schedule by increasing
the schedulability time-window (i.e. the time interval in which
a task may be scheduled) for selected tasks. For example, for
a consumer task the requirement might be that it only has
to run after the message is received but there is a certain
flexibility with respect to delaying its execution (e.g. the
utility decreases linearly as the latency increases). In order
to define the input domains matching the task dependencies to
the network schedule, we introduce additional constraints for
offsets and deadlines in the optimization problem. Note that,
restricting the input domain of a TUF function is equivalent to
adding constraints on the specific variable for the optimization
problem and vice-versa.

We define the critical time instant tpi for a producer task
τi as the transmission time of the associated TT-message.
Analogously, tci denotes the end of the reception-window for
the TT-message associated with a consumer task τi.

For a producer TT-task τi the deadline of the task can be
no later than its critical instant, hence, we add a constraint
for the optimization problem that guarantees that the task will
not exceed its critical instant, namely Ci ≤ Di ≤ tpi . For
the offset we also introduce an additional constraint, namely
0 ≤ φi ≤ Di − Ci. This is equivalent to restricting the
input domain of the task deadline TUF is reduced to [Ci, t

p
i]

and the offset TUF domain to [0, tpi − Ci]. If the task has
no dependencies to other tasks, the input domain for the
deadline TUF can be further restricted to just {tpi }, thus
allowing maximum flexibility for EDF by extending the task’s
schedulability region to its maximum. Clearly, in this case,
having a deadline that is smaller than the critical instant would
not result in a better schedule.

Analogously, for a consumer TT-task τi, an additional
constraint on the offset is tci ≤ φi ≤ Ti − Ci and φi + Ci ≤
Di ≤ Ti on the deadline. This is equivalent to restricting the
input domain of the offset TUF to φi ∈ [tci , Ti − Ci] while
the deadline TUF domain becomes [tci + Ci, Ti]. Similar to
producer tasks, if there are no other dependencies we can
reduce the input domain of the offset TUF to {tci}.

For consumer then producer TT-Tasks we consider three
possible cases, although we acknowledge that other cases may
exist depending on the system particularities.

i) The task must consume the TT-message with minimum
latency (e.g. command: switch to safe-mode) and then
produce a non-critical acknowledgment.

ii) The task receives a command to process data and transmit
it with minimum latency (e.g. most recent sensor value).

iii) Both consumption and production of the TT-messages
require minimum latency (e.g. data acquisition and feed-
back for a control loop).

We decide the input domains for the TUF of each case as
follows: in case i) the task is treated as a consumer since the
production is not critical. Inversely, ii) is treated as a producer,
given that the consumption is not critical. Case iii), on the other

hand, has conflicting requirements that cannot be completely
satisfied. Therefore, we define the input domains as [tci , t

p
i−Ci]

and [tci + Ci, t
p
i], respectively.

A free TT-task implies no additional constraints on the
optimization problem. Therefore, a free task that is also
independent of other tasks can have a fixed offset of 0 and
a deadline equal to Ti. It is still possible, however, to define
through the input domains and TUFs that a free task has
other types of dependencies (e.g. a specific offset in the
schedule cycle) and therefore the input domains (or additional
optimization constraints) can be chosen accordingly.

If we consider network dependencies as well as inter-task
dependencies, we need to add both the additional constraints
presented in section IV-C and the aforementioned constraints
on network dependent tasks. Through this we obtain input
domains for the TUFs of tasks that will only allow values
for offsets and deadlines resulting in compliant task sets that
respect both inter-task and network dependencies.

As can be seen, the TUF input domains are reduced (in
some cases even to single points), which decreases the size
of the solution space. The choice of TUFs depends on the
individual TT-task requirements. A system designer can thus
specify for example that the utility of a certain task decreases
when its latency increases or has maximum utility only in
a sub-domain of the input domain. We expect the TUFs to
be monotonic although they need not be. Hence, the TUF
allows each task to have a very flexible definition of latency
requirements and can map to any scenario found in industry.
We intentionally leave aside the discussion regarding TUFs
for particular systems for now, arguing that our approach
is independent of this aspect. In Section V-A we will give
examples of input domains and TUFs for tasks running in a
real-world industrial application.

E. Schedule generation

If a task set is found by solving the optimization problem,
the static schedule is generated by running an offline simula-
tion of the EDF algorithm on that task set. The properties
of EDF [5, p. 57] allow us to claim that the generated
schedule is optimal with respect to minimizing maximum
latency. On the other hand, if no schedule is found using
EDF then no other algorithm can find a feasible schedule.
The TUF paradigm quantifies the utility of each task, hence,
the resulting static schedule is optimal with respect to the
accrued utility of all tasks. Moreover, the resulting schedule
is guaranteed to also respect the network dependencies as
well as task inter-dependencies as defined in Section IV-D
and IV-C, respectively. By using EDF to generate the static
schedules we effectively reduce the search space since we do
not consider all task inter-leavings, i.e., all possible placements
and preemptions for the task set, but limit the search to
combinations of feasible task offsets and deadlines and let
EDF generate the final schedule. Moreover, the restricted input
domains for offsets and deadlines further reduce the required
search space in the optimization problem.

V. INDUSTRIAL CASE EXPERIENCE

A. Project description

We take as a reference project TTE-IND, which triggered
the development of TT-RTS for a large industrial development

TT-VLID
CA

TT-VLID
AC

TT-VLID
CB

TT-VLID
BC

TT-VLID
CA0

TT-VLID
AC0

Monitoring PC

TTE B

TTE CTTE A

TTE-Switch
Serial

interface
(RS232)

Figure 3: Test-bed setup with a TTE switch and 3 end-systems.
Task WCET Period Description Type VLID

TT-MAIN 100µs 10ms Main safety application F –
TT-CP1 50µs 1ms Control task 1 C&P BC,CB
TT-CP2 50µs 1ms Control task 2 C&P AC,CA
TT-PD 300µs 10ms Periodic diagnostics F –
TT-RX 1000µs 10ms Message reception C AC0
TT-TX 1000µs 10ms Message transmission P CA0
TT-SAFE 3000µs 10ms Safety management F –
TT-USER 50µs 10ms User-defined F –
TT-IO1 2000µs 10ms IO handling (1) F –
TT-IO2 500µs 10ms IO handling (2) F –
TT-BIST 50µs 10ms Built-in self-tests F –

Table I: Task set for end-system TTE-C.

of ACME Corp.1 The project is currently in an advanced
phase of development and has successfully fulfilled several
intermediate test and integration phases.

The network topology of the industrial application consists
of 4 pairs of TTE-switches (in total 8 switches) and up to
80 TTEthernet end-systems (nodes) connected to the switches
(70 end-systems with communication speed of 100Mbit/s and
4 with 1Gbit/s). The communication speed between switches is
1Gbit/s. The 100Mbit/s end-systems communicate with 1Gbit/s
nodes and vice-versa via time-critical TT-messages that contain
safety-critical payload. Diagnostic messages sent between end-
systems and switches are sent through best-effort or rate-
constrained messages. Each TTEthernet end-system has at
its core a TMS570 MCU (certified up to IEC61508/SIL3)
from Texas Instruments equipped with an ARM Cortex-R4F
processor (and an additional processor in lock-step with error
detecting logic) running at 180 MHz.

B. Test setup

For testing purposes we have an internal test setup where
we conduct our performance and integration tests. The test-
bed (seen in Figure 3) consists of 1 TTE-switch connected
with 3 TTEthernet end-systems (TTE-A, TTE-B, TTE-C), as
described above, running TT-RTS. Additionally, there is 1 PC
which monitors network communication through the switch
monitoring port and also provides a serial connection to one
of the end-system for console output. On each of the 3 end-
systems there are 11 TT tasks, as listed in Table I. Out of
them, 7 are free (F) tasks and 4 have dependencies to TT-
messages (VLID). On end-system TTE-C, which we use as a
reference for our experiments, task TT-RX is a consumer task
(C) with dependency to TT-message with VLID AC0 while
task TT-TX is a producer task (P) with dependency to VLID
CA0. Tasks TT-CP1 and TT-CP2 are consumer then producer
tasks (C&P) with dependencies to VLID pairs (BC,CB) and
(AC,CA), respectively. As these are the main control tasks,

1Project and company names are fictitious due to privacy. However, we
provide an accurate description without revealing any sensitive information or
intellectual property of the involved parties.

mi TTEthernet
Schedule

1

T

0
ϕi Tiϕi + Ci

TUFi
TUFi

TUFi
D,H

D,M

D,L

Figure 5: Deadline TUFs for consumer task TTi consuming TT-
message mi vs rigidity.

defined by a tight period of 1ms, they consume sensor data and
produce actuator values. The system also contains BE tasks
(not shown) performing network functions like SNMP and
ICMP servers as well as logging among others. Equivalent TT-
tasks running on different end-systems need to have minimal
end-to-end latency and low jitter while the BE-tasks do not
have any timing requirements.

We introduce three types of rigidity for TT-tasks, namely
High-, Medium-, and Low-rigidity. These rigidity classes map
to the different task latency requirements identified for the
presented industrial application. In this test-bed we do not have
inter-task dependencies. Therefore, we take the input domains
for the TUFs of tasks that have been defined in Section IV-D.
For the offset TUF, the input domain remains {tci}, where tci
is the critical time instant for the consumer task. Moreover,
TUFφi (tci) = 1. We define our set of deadline TUFs for
consumer tasks as shown in Figure 5, that is:
- For high rigidity tasks, the deadline TUFD,Hi input domain
is {φi+Ci} and TUFD,Hi (φi+Ci) = 1. Hence, high rigidity
tasks can only be scheduled with minimal latency.
- For medium rigidity tasks, the deadline TUFD,Mi value
decreases linearly between the critical time instant and the end
of the period, hence the input domain is [φi + Ci, Ti].
- For low rigidity tasks, the deadline TUFD,Li input domain is
{Ti} and TUFD,Li (Ti) = 1. Hence, for low rigidity TT-tasks
we give the maximum flexibility for EDF to schedule the task.
The analogous case can be made symmetrically for the TUFs
of a producer task, in which the critical time instant is set as
the deadline of the task –fixed by the beginning of the TT-
message transmission window– minus its WCET.
C. Schedule generation

We have designed and implemented a tool for the gen-
eration of static schedules based on the approach discussed
in this paper. The tool takes as inputs the TTEthernet net-
work schedule together with user-defined TT-tasks as well as
their dependencies to TT-messages and performs the task set
transformation as defined in Section IV-A. The offsets and
deadlines of the resulting EDF task set are expressed in form of
input domains as discussed in Section IV-D. These intervals are
used to generate the constrained optimization problem. When
the optimal combination of task properties is found, the tool
simulates the resulting EDF schedule until the hyperperiod and
outputs the result in form of a TT-RTS schedule configuration.

For the system described in Section V-B we obtain a
CPU utilization of 90% for TT-tasks while the rest of the
CPU is used for BE-tasks. The tight real-time requirements
of the tasks combined with high system utilization result
in a difficult scheduling problem. Moreover, if one would

Figure 4: Output window displaying the generated TT-RTS schedule and dependent TT-messages.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 25 50 100 250 1000

u
ti

li
za

ti
o

n
 [

%
]

macrotick [µs]

non-optimized TT-RTS
optimized TT-RTS

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 50 100 250 1000

Figure 6: TT-RTS overhead as percentage of the total run-time in
function of the macrotick length on the TMS570 platform.

enumerate all possible schedules and choose the ones that
satisfy the constraints (similar to classical approaches), the
solution space would be very large. The solution space for
one end-system using our method contains 9690 possible task
sets (i.e. combinations of task properties) mainly due to the
medium rigidity tasks TT-TX and TT-RX. Using our tool, the
generation of the static schedule takes 1920 ms. Figure 4
shows the generated schedule for end-system TTE-C. The
macrotick length is 50 µs and the schedule cycle length is
200 macroticks. Tasks TT-TX, TT-RX, TT-CP1, and TT-CP2
which have dependencies to the TT-messages with VLIDs
CA0, AC0, BC and CB, AC and CA, respectively, are
scheduled such that the latency is minimized while the other
TT-tasks are scheduled such that their deadlines are met.

D. Implementation remarks

During the development and deployment of TT-RTS we
identified several issues, of which some are worth additional
remarks. On one hand, the overhead of TT-RTS has a direct
impact on the optimality at run-time of the generated schedule
(Section V-D1). On the other hand, since task dispatching and
network communication occur in different time-domains, it is
necessary to guarantee precise time synchronization between
the run-time system and the TTEthernet network. To this ex-
tend, we take into account inaccuracies of the synchronization
and try to minimize their impact (Section V-D2) with regard
to the end-to-end properties.

1) Scheduler overhead: The overhead that a TT-task ex-
periences at run-time comes from the overhead of saving
and restoring the context of a task, servicing the periodic
timer interrupt for the logical macrotick, and handling the
internal data structures of the offline schedule. We denote the
worst case overhead experienced by a task on each macrotick
by δ. Given the computation time CTTi of TTi and the
macrotick length mT , we incorporate the scheduler overhead
(similar to [12]) by computing the WCET of the corresponding
transformed task as Ci = CTTi +

⌈
CTT

i

mT−δ

⌉
δ.

 0

 50

 100

 150

 200

 250

 300

-800 -480 -160 160 480 800

1 sync interval

 0
 50

 100
 150
 200
 250
 300

-800 -480 -160 160 480 800

delta time [ns]

2 sync intervals

Figure 7: Difference between TT-RTS and network cycle time [ns].

Our implementation of the TT-RTS scheduling algorithm
is O(1) with respect to the number of TT- and BE-tasks,
however our experience has shown a variation of the schedul-
ing overhead between 400 ns and 4 µs, depending on the
scheduling decision and the internal state of the system.
Figure 6 depicts the average global TT-RTS overhead as a
percentage of the total CPU bandwidth2 with respect to the
macrotick length. The numbers were obtained measuring the
time spent in the TT-RTS routines on one end-system executing
the schedule described above with task WCETs scaled based
on the macrotick length.

2) Synchronization of TT-RTS to TTEthernet time: We syn-
chronize the TT-RTS schedule cycle to the TTEthernet cycle
(TTE-cycle) using rate correction. Specifically, the duration of
the macrotick can be modified for a specified interval (called
synchronization interval) in order to align the TT-RTS cycle to
the TTE-cycle. Within the synchronization interval only BE-
tasks are allowed to run since, otherwise, any variation in the
length of a macrotick may lead to deadline misses of TT-tasks.

In Figure 7 we present an experiment conducted with the
above setup where we measured the difference between the
TT-RTS and the TTEthernet network time over 10000 cycles.
In the upper part of the figure we have 1 and in the lower
part 2 synchronization intervals, each of length 2 macroticks.
The maximum observed error in the first run was 776ns while
the synchronization jitter was around 248ns on average. In the
second run with two synchronization intervals, the maximum
observed error was 604ns and the average error was 188ns.

We accommodate for this jitter by introducing a fixed
parameter to the offset of consumer tasks and to the deadline
of producer tasks. Let γ be the synchronization jitter, tpi and
tcj are the beginning of a produced and the end of a consumed
TT-message, respectively, and tasks τi and τj are the two
associated TT-tasks. We can thus write that Di = tpi − γ

2For completeness, we show a non-optimized and an optimized implementa-
tion, where the latter uses hardware specifics, like banked registers, to decrease
overhead.

Figure 8: Oscilloscope measurement of maximum jitter between any
two end-systems in Test-Bed (Figure 3).

and φj = tcj + γ. For consumer then producer tasks we
increase the required interval between the two messages by
the synchronization jitter.

E. System tests

Using the test setup described in Section V-B we have con-
ducted an end-to-end precision experiment where we measured
the maximal cumulated error of the synchronization. We have
instrumented each end-system to trigger an I/O pin when the
task TT-USER is executed and measured the trigger using an
oscilloscope. We performed an overlay of the measurements
on top of each-other using the oscilloscope for each end-
system with TTE-A as a reference trigger (Figure 8). The
maximum difference between any two triggers on any two
end-systems was 4.22µs over a measuring period of 30 min.
Note that the presented upper bound is computed between
any two measurements due to the limitations of the measuring
instrumentation. The actual upper bound on the precision may
be significantly lower if we consider the difference between
any two end-systems for the same measurement.

VI. RELATED WORK

The scheduling of task sets with dependencies has been
studied for many years by different authors. Task inter-
dependencies are solved in [10] by modifying the offsets
and deadlines of tasks and then using EDF to schedule the
new task set [5, p. 71]. In [13] the notion of absolute and
relative timing constraints are introduced which are similar to
our producer and consumer requirements. In [14] the iterative
deepening method, enhanced with a heuristic function that
reduces runtime at the expense of optimality, is used for
scheduling periodic tasks that communicate through protocols
with bounded transmission times. Follow-up work [15] com-
bines the offline method with a runtime dynamic mechanism
to schedule aperiodic tasks. For fixed-priority systems, the
work in [16] presents an analysis of the schedulability of
tasks that communicate using the TDMA protocol. Several
scheduling approaches for communicating tasks have been
presented in [17] and [18] that are based on optimization
problems. These approaches deal with precedence relations
among tasks (regardless if they arise from communication
or not) whereas we look at explicit task dependencies to a
predefined network schedule.

VII. CONCLUSION

We have presented a generalized method extending the
deterministic paradigm of TTEthernet towards the software
layers, allowing the execution of real-time distributed appli-
cations with end-to-end guarantees. Our work is aimed at
generating optimal static time-triggered schedules for user-
defined task sets with guaranteed minimal end-to-end latency.
We have provided means to express task dependencies to
an existing TTEthernet communication schedule as well as
inter-task dependencies as a constrained optimization problem
minimizing the end-to-end responsiveness towards scheduled
messages. Our approach uses mechanisms from dynamic
priority scheduling to effectively reduce the solution space
without loss of optimality. The presented process and tools
are currently on deployment in large industrial applications as
the one we have introduced in this paper.

REFERENCES

[1] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch, “TTEthernet: Time-
Triggered Ethernet,” in Time-Triggered Communication, R. Ober-
maisser, Ed. CRC Press, Aug 2011.

[2] Issuing Committee: As-2d2 Deterministic Ethernet And Unified
Networking, “SAE AS6802 time-triggered ethernet,” 2011. [Online].
Available: http://standards.sae.org/as6802/

[3] W. Steiner, “TTEthernet specification,” TTA Group, 2008. [Online].
Available: http://www.ttagroup.org

[4] W. Steiner and B. Dutertre, “Automated formal verification of the
TTEthernet synchronization quality,” in NASA Formal Methods, ser.
Lecture Notes in Computer Science. Springer, 2011, vol. 6617.

[5] G. C. Buttazzo, Hard Real-time Computing Systems: Predictable
Scheduling Algorithms And Applications (Real-Time Systems Series).
Springer-Verlag, 2004.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
pp. 46–61, 1973.

[7] P. Li and B. Ravindran, “Adaptive time-critical resource management
using time/utility functions: Past, present, and future,” in Proc. COMP-
SAC. IEEE Computer Society, 2004.

[8] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and
complexity concerning the preemptive scheduling of periodic, real-time
tasks on one processor,” Real-Time Syst., vol. 2, no. 4, 1990.

[9] R. Pellizzoni and G. Lipari, “Feasibility analysis of real-time periodic
tasks with offsets,” Real-Time Syst., vol. 30, no. 1-2, pp. 105–128, 2005.

[10] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of real-
time tasks under precedence constraints,” Real-Time Syst., vol. 2, no. 3,
pp. 181–194, 1990.

[11] J. Forget, E. Grolleau, C. Pagetti, and P. Richard, “Dynamic priority
scheduling of periodic tasks with extended precedences,” in Proc. ETFA.
IEEE Computer Society, 2011.

[12] S. S. Craciunas, C. M. Kirsch, and A. Sokolova, “Response time versus
utilization in scheduler overhead accounting,” in Proc. RTAS, 2010.

[13] S. Choi and A. K. Agrawala, “Scheduling of real-time tasks with com-
plex constraints,” in Performance Evaluation: Origins and Directions.
Springer-Verlag, 2000.

[14] G. Fohler, “Flexibility in statically scheduled real-time systems,” Ph.D.
dissertation, TNF, April 1994.

[15] D. Isović and G. Fohler, “Handling mixed sets of tasks in combined of-
fline and online scheduled real-time systems,” Real-Time Syst., vol. 43,
no. 3, pp. 296–325, 2009.

[16] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed
hard real-time systems,” Microprocess. Microprogram., vol. 40, 1994.

[17] T. F. Abdelzaher and K. G. Shin, “Combined task and message schedul-
ing in distributed real-time systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 10, no. 11, pp. 1179–1191, 1999.

[18] D.-T. Peng, K. Shin, and T. Abdelzaher, “Assignment and scheduling
communicating periodic tasks in distributed real-time systems,” IEEE
Trans. Softw. Eng., vol. 23, no. 12, pp. 745–758, 1997.

http://standards.sae.org/as6802/
http://www.ttagroup.org

