

BOS

Basic Operating System

Technical Report

Operating Systems Course

Winter 2006/2007

Team Members: Salzburg, 8 February 2007

 Bernhard Danninger 0422594
 Clemens Krainer 9020112

Abstract Page 2

Abstract

One part of the Operating Systems Course, Winter 2006/2007 of Prof. C. Kirsch (Department of
Computer Sciences, University of Salzburg) was to design and implement an operating system in a
student chosen programming language. It was required, that the operating system at least includes
some concurrency support, memory management, device abstraction, and file handling.

This paper presents the main concepts of the Basic Operating System. First, this document describes
the goals of the BOS team, followed by the characteristics of BOS and the used development
environment. Second, this document outlines memory management, as well as processes and
threads. Third, it describes the implementation of inter process communication, input and output,
and file systems. Finally, this work describes the class demonstrations, followed by instructions for
unpacking and building BOS.

Content Page 3

Content
1. Introduction..4
2. Memory Management ..5

2.1 Virtual Memory..5
2.2 Page Replacement ..6
2.3 User Heap...6
2.4 User Stack ..6

3. Processes and Threads ...6
3.1 Process Model ..6

3.1.1 Kernel Threads...7
3.1.2 User Processes..7

3.2 Process Creation...7
3.2.1 Executable and Linking Format...7
3.2.2 Starting Programs...8

3.3 Process Termination...8
3.4 Scheduler..8

3.4.1 Round Robin Scheduling ...9
3.4.2 Multi Level Feedback Scheduling ...9
3.4.3 Wait and Ready Queues...10

3.5 Semaphores ..10
4. Inter Process Communication ..10

4.1 Message Queues...10
4.2 Pipes ...11

5. Input and Output ..12
6. File Systems ...13

6.1 Virtual File System (VFS) Layer ...13
6.2 The GosFS File System ...13

7. Demonstrations ..14
7.1 File System / Pipes...14
7.2 Message Queues...15
7.3 Scheduling..15
7.4 Paging ..17

8. Unpacking and Building BOS..18
9. Conclusion ...19
Appendix A Implemented File System Functionality..20
Appendix B Distribution Package..23
Appendix C The C Application Programming Interface for User Programs.....................................24

C.1 File and File System calls ..24
C.2 Kernel related Calls..25
C.3 Heap related Calls ..25
C.4 Message Queue Calls ...26
C.5 Process related Calls ..26
C.6 Scheduling related Calls...27
C.7 Semaphore related Calls...27

References..28

Introduction Page 4

1. Introduction

Our goal was to implement a basic operating system that can boot on a real 32 Bit Intel Architecture
(IA 32) PC hardware and to meet the course rules. The operating system is required to include at
least some form of:

• Concurrency support
• Memory Management
• Device Abstraction
• File Handling

We have implemented a Basic Operating System (BOS) [1] in C for the IA 32 PC platform. It
contains:

• Round Robin and MLF Scheduler
• Virtual Memory Management using Paging and Segmentation
• I/O System for block devices (Floppy and IDE disks)
• I/O System for user interaction (Keyboard and Screen)
• Virtual File System Layer
• Inter Process Communication (Pipes and Message Queues)

The BOS development environment was:

• The educational operating system kernel GeekOS 0.3.0 as a base [2].
• Bochs 2.3 to emulate a complete IA 32 PC platform on Linux [3].
• gcc 4.0.2, nasm 0.98.38, vim 6.3.84 and Anjuta DevStudio 2.0.2
• COMPAQ DESKPRO XL 590 (90 MHz Pentium I)

The BOS software contains the implementation of all six GeekOS [2] projects including a user heap
[1].

This document describes the highlights of the implemented BOS functionalities. Chapter 2 starts
with memory management, chapter 3 continues with processes and threads, chapter 4 describes
inter process communication, chapter 5 covers input and output, and chapter 6 focuses on file
systems. Chapter 7 explains the demonstration programs; and chapter 8 affirms unpacking and
building BOS. Chapter 9 summarises this paper by depicting our experience with real hardware and
proposals for future enhancements.

Memory Management Page 5

2. Memory Management

This chapter describes how BOS implements virtual memory layout, segmentation, paging, page
replacement, user stack, and user heap.

2.1 Virtual Memory

BOS implements the virtual memory layout recommended in the GeekOS documentation [2],
including segmentation and paging. At boot time, the kernel creates a page directory and page
tables that directly map all physical memory pages to the virtual addresses of the kernel space. As
shown in Figure 1, the kernel virtual memory starts at address 0x00000000 and is 4GB large. From
user space view, the user virtual memory starts at address 0x00000000 and is 2GB large.

Physical Addresses are
directly mapped to Kernel

Virtual Addresses

Physical
Memory

Kernel

Code
Heap

Gap

Stack

first page not used
0x00000000

0x80000000

0x7FFFFFFF

0x00000000

0xFFFFFFFF

Kernel Virtual Addresses User Process Virtual Addresses

0x80001000 0x00001000

0x00001000

User Space:

the Kernel can
access all the
Memory of a
User Program

Kernel Space:

a User Program
can not directly
access Kernel
Memory

Figure 1 BOS Virtual Memory Layout

While all kernel threads share one page directory and its page tables, each user process owns a
separate page directory. At creating a user process, the kernel copies the kernel space page table
references to the user page directory and creates disjoined page tables for the user space memory.
For a user process the kernel allocates only as much memory as needed to start it. The page fault
handler adds extra pages to stack or heap when needed. Figure 1 also depicts that both the first page

Processes and Threads Page 6

of the kernel space and the first page of the user space are not mapped to physical memory. This
will help trap null pointer references in the kernel, as well as in a user program.

2.2 Page Replacement

The genuine GeekOS page replacement algorithm always evicts the oldest page-able page in
memory. The BOS page replacement algorithm is inspired by the WS-Clock algorithm [4]. Every
timer tick, the BOS page cleaner scans the memory and records the last access time of a page in its
management information. At each page fault, the page replacement algorithm starts at the last paged
out page, searches a page that has not been used longer than the WORKING_SET_TIMEOUT and
evicts it. If the algorithm cannot find such an old page, it randomly chooses one for eviction.

For simplicity reasons, BOS keeps pages either in memory or on disk. At loading a page back into
memory, the algorithm frees the allocated space in the paging file.

2.3 User Heap

BOS implements the heap of user programs as recommended in the GeekOS documentation [2].
BOS employs the BGET memory allocation package [5] for heap management. BGET is also able
to dynamically expand and diminish a heap.

By callback routines in the BOS C-library, BGET announces that it needs more memory for the
user heap. The C-library routine simply increases the program size and returns a pointer to the new
memory chunk. Actually, it is the page fault handler that finishes the memory allocation by adding
pages to the user process as it accesses the new heap memory.

2.4 User Stack

The initial user stack size is one page of memory. This is sufficient for starting a process, but as it
runs more stack memory may be required. It is the page fault handler that adds new pages to the
stack as needed.

3. Processes and Threads

This chapter explains the BOS process model, creation and termination of user processes,
scheduling and semaphores.

3.1 Process Model

BOS distinguishes between two kinds of run-able instances: (1) kernel threads and (2) user
processes. The next two subchapters describe the implementation of kernel threads and user
processes. Presently, the Global Descriptor Table limits the number of concurrently running user
processes to a maximum of fifteen.

Processes and Threads Page 7

3.1.1 Kernel Threads

Kernel threads have full access to all operating and system resources and are used to provide basic
functionality needed by the operating itself. In BOS currently the following kernel processes exist:

• Main thread
• Idle thread: process to be scheduled if nothing else has to be done
• Reaper thread: responsible for cleanup after process termination
• IO threads: a means to communicate with IO devices (Floppy and IDE discs)

3.1.2 User Processes

BOS implements user processes as kernel threads with an attached user context. User processes run
within an isolated environment and cannot directly access system resources in order to prevent the
operating system and hardware from any kind of malicious or just buggy program code. User
processes can access system resources via System Calls only and so the responsible kernel code can
execute the requested operations in a secure way.

3.2 Process Creation

Beside reliability and speed, portability and a broad set of applications are important factors for the
diffusion rate and acceptance of an operating system. BOS therefore supports the Executable and
Linking Format (ELF) [6] as a highly portable object file format. BOS supports spawning processes
only. There exists no implementation of well-known UNIX API calls like fork and exec.

3.2.1 Executable and Linking Format

ELF provides a set of standard binary interface definitions to run on 32-bit Intel Architecture based
operating systems as well as other architectures. The ELF specification distinguishes three main
ELF object file types:

• Re-locatable File: Used for linking with other object files.
• Executable File: Executable code and data
• Shared Object File: Code and data may be used in conjunction with executables by a

dynamic linker. It may as well be used with other shared objects or re-locatable files to
create another object file.

BOS is capable of parsing, loading and executing ELF formatted object files of the executable file
type. BOS neither supports loading Re-locatable Files, nor loading Shared Object Files.

Processes and Threads Page 8

3.2.2 Starting Programs

In order to run an ELF executable the kernel accomplishes the following tasks:

• Load the program into the memory
• Parse the ELF executable data
• Resolve symbolic references and create a process image containing text, data and stack
• Spawn the created process image

The beginning of every ELF file occupies the ELF header that contains structural information about
the file's layout. This header enables validation of the ELF format itself (magic, object file type,
architecture). After parsing and validating the ELF header, the kernel loads and parses the file's
program header table. This program header table contains all necessary information to load and
parse the file's text and data segments. Once the kernel has parsed all segments, it creates a process
image and spawns the process.

It is essential, that no user process page table has a reference to the first page of the user address
space. This will help to trap null pointer references in user processes. Programs for BOS should
therefore start at address 0x00001000. Higher addresses are possible, but BOS cannot use the
resulting memory gap for other purposes.

At start time both, heap and stack of a user program have a size of 4KB each. Heap and stack can
grow as needed as the process execution proceeds. The new process inherits the file descriptors of
the console input and output from its parent process. A parent process can provide arbitrary file
descriptors for a process it spawns like files, pipes, console input, and console output. When
spawning the initial process, the kernel opens the console input and output explicitly for this
process.

3.3 Process Termination

A process may exit either voluntarily by executing the Exit library call, or involuntarily because of a
protection fault. In either case, the kernel frees the allocated resources of the process. In case of a
protection fault, it is the fault handler that calls the Exit library call. The Exit kernel code moves the
deceasing process from the run queue to the graveyard queue. It is the low prioritised Reaper
Thread that periodically scans the graveyard queue for terminated processes and frees the allocated
resources like semaphores, pipes, message queues, files, as well as the allocated memory pages.

3.4 Scheduler

Usually on common operating systems, several processes run concurrently. The scheduler is
responsible to decide which processes should be assigned the CPU at which time. A so-called
Dispatcher does the actual process replacement itself. In BOS dispatching and scheduling is not

Processes and Threads Page 9

separated. A detachment of the Dispatcher would be a further improvement but is not needed at the
moment.

BOS offers two different pre-emptive scheduling algorithms, which can be changed at runtime
using the SETSCHEDULINGPOLICY system call:

• Round Robin Scheduling
• Multilevel Feedback Scheduling

Each scheduling algorithm uses a defined Quantum. This is the maximum time ticks a process may
use the CPU before the scheduler detaches it. A timer interrupt is used to determine when to
schedule a new process. If a running process blocks or voluntarily gives up the CPU a new process
is scheduled.

3.4.1 Round Robin Scheduling

Round Robin Scheduling uses one queue for all run able, i.e. not blocked, processes and simply
schedules the next process from the queue. The actual implementation uses different priorities
within this queue, but different priorities are only assigned to kernel processes. The Idle thread, for
example, has the lowest priority. All user processes share the same priority and from a user land
perspective scheduling appears to be simply Round Robin. The Round Robin Scheduler has the
following characteristics:

• New processes are put at the end of the run queue.
• User processes are served first in first out.
• The idle process is only scheduled if there is no other process to schedule.
• The scheduling overhead is a function of the number of processes, i.e. O(n)

3.4.2 Multi Level Feedback Scheduling

Unlike Round Robin Scheduling, Multilevel Feedback Scheduling (MLF) uses a couple of queues,
i.e. four in BOS, with different priorities. Processes from queues with higher priority are always
scheduled first. The characteristics of MLF in BOS are:

• Four queues with priorities from zero to three.
• Processes from queues with highest priority are always scheduled first (queue 0 has highest

priority).
• First Come First Served (FCFS) policy in all queues.
• New threads are always put on end of the queue with the highest priority.
• If a thread does not complete within its quantum, then the thread is moved to the end of the

next queue with lower priority.

Inter Process Communication Page 10

• Processes will be promoted to the next queue with higher priority if the process was blocked
before.

• The idle thread must not leave the queue with the lowest priority.
• Within one queue scheduling is done in constant time, i.e. O(1).

3.4.3 Wait and Ready Queues

Wait and ready queues are used for processes trying to access the same resource concurrently. If a
resource is in use by another process, the newly requesting process is moved to a wait queue and
put to sleep. As soon as the resource becomes available the first process from the corresponding
wait queue (FIFO) is detached from the queue, awakened and the desired resource assigned. In
order to provide fast process determination BOS uses separated wait queues for each resource
instead of using one long queue for all resources. The most important shared resources using wait
queues in BOS are:

• CPU (4 wait queues for Multilevel Feedback Scheduling)
• Mutexes and Semaphores
• Message Queues
• Pipes
• File Systems (GosFS)
• Block Devices like IDE and Floppy discs

3.5 Semaphores

BOS provides semaphores to ensure consistency for shared resources. At the current state of
development BOS can handle 20 semaphores whose names may be up to 20 characters long. Each
process holds a list of open semaphores. Additionally, each semaphore has a reference counter with
the number of registered processes for this semaphore. On process termination, all registered
semaphores for this process are released, if not already done by the process itself.

4. Inter Process Communication

BOS provides the mechanisms message queue and pipe for inter process communication (IPC). The
next two sub chapters will discuss the current implementation of these mechanisms.

4.1 Message Queues

BOS implements message queues not as recommended in the GeekOS documentation [2], rather
UNIX like. In the GeekOS documentation message queues are very similar to pipes. BOS provides
message queues for multiple readers and writes. In BOS a message is considered as a single entity,
it can be sent or received as one entity. Once a message has been sent, it cannot be modified. If a

Inter Process Communication Page 11

process provides a buffer too small for the message it receives, the message is truncated to the
provided length and the cut off part of the message is lost.

As displayed in Figure 2, a message queue in BOS is a variable length First In First Out (FIFO)
queue. When creating a message queue, the calling process can define its length. The maximum size
of one message is limited to 4KB.

M
es

sa
ge

 0

Variable Length FIFO Queue

0 1 2 3 4 5

M
es

sa
ge

 1

M
es

sa
ge

 2

M
es

sa
ge

 3

M
es

sa
ge

 4

M
es

sa
ge

 5

M
es

sa
ge

 Y

M
es

sa
ge

 X

take
Message

from
Head

add
Message

to
Tail

Read
Operation

Write
Operation

Figure 2 BOS Message Queue Implementation

After successful creation of a message queue, a process may send messages to the queue whether or
not a receiving process reads messages from the queue. When the queue reaches its maximum
length, the send call will block the emitting process until a reader takes a message from the queue.
If a receiving process wants to read a message from an empty queue, the receive call will block the
process until a message enters the queue. With multiple processes attached to a message queue, the
kernel distributes the messages round robin to receiving processes.

A message queue can live without an attached process, as long as it has messages. In such a case the
destruction of a message queue fails.

4.2 Pipes

BOS only provides anonymous and no named pipes. Pipes in BOS look like files, but act like an
extension cord between two processes. One of the processes may write only to a pipe, while the
peer process may read only from it. As shown in Figure 3, BOS pipes basically are ring buffers
together with some management data. Each process owns a File structure that references a common
Pipe structure in the kernel. This Pipe structure holds the information necessary to run the attached
ring buffer.

The sending process can write data in any granularity it likes to the pipe until the ring buffer is full.
Further writes calls will block the sending process. The kernel will transfer as much as possible of

Input and Output Page 12

the data to a receiving process as it reads. This behaviour reduces read calls on the pipe and ensures
that the data leaves the ring buffer as fast as possible.

FileUser Context
Process A (Reader)

User Context
Process B (Writer)

File

Pipe Ring
Buffer

Figure 3 BOS Pipes Implementation

When the sending process closes its side of the pipe, the receiving process still can read the
remaining data. If the pipe is empty, the receiving process gets an end of file error code from a
reading call.

5. Input and Output

BOS employs a Virtual File System (VFS) as a device abstraction layer to handle both, block
devices and character devices, as shown in Figure 4.

C-Library User Space

System Calls

Virtual File System

PFAT GosFS ConsFS PipeFS

Floppy
Drive

Hard
Drive Keyboard

VGA
Block Device Abstraction

Kernel Space

Figure 4 BOS Device Abstraction

The Console File System (ConsFS) abstraction offers the keyboard as an input device and the VGA
graphics card as a character based output device. Open calls to the ConsFS return a file descriptor
for either the keyboard, or the screen. This allows assigning the standard input and output of a
process to the console. BOS has no abstraction for character devices yet, therefore the interrupt
handler for the keyboard is part of ConsFS.

The Pipe File System (PipeFS) abstraction provides the pipe functionality by simulating file
capabilities, as described above in chapter 4.2 Pipes.

File Systems Page 13

The Pseudo File Allocation Table (PFAT) and the GeekOS File System (GosFS) abstraction interact
with block devices like floppy or IDE discs via the Block Device Abstraction Layer. This additional
layer decouples a file system implementation from hardware issues, and allows adding new file
systems as well as new hardware easily.

On boot time, the block device driver registers with the Block Device Abstraction Layer by
providing a virtual function table of the device and a name. Further calls to this layer will use the
name of the device for identification, e.g. to mount a file system. Once the driver is registered, the
kernel spawns a thread for each device type to conduct the I/O requests of the devices. Each thread
handles requests via its own queue and notifies the caller when a request completes.

6. File Systems

6.1 Virtual File System (VFS) Layer

The Virtual File System (VFS) layer abstracts file systems on a high level. Concrete implemen-
tations like PFAT and GosFS register their file system drivers at kernel boot time. Each user
process initiated file system operation, through the C library, is trapped into the kernel, where the
corresponding system call forwards the request to the VFS. The VFS then redirects the request to
the corresponding file system implementation employing a so-called virtual function table that
references to the real implementation.

BOS provides two types of disk file systems:

• PFAT: read-only file system provided by GeekOS
• GosFS: read-write file system based on inodes

As the genuine GeekOS software provides PFAT, this paper discusses the GosFS implementation
only.

6.2 The GosFS File System

The GosFS File System implementation deviates from the GeekOS recommendations and is more
inspired by UNIX like file systems that use inodes. The main reason not to follow the GeekOS way
is to have more flexibility and an even more universal abstraction to ease further enhancements like
soft- and hard-links.

GosFS is a hierarchical file system supporting the following:

• Directories containing up to 240 files or sub-directories
• Files up to 4 GB using direct, indirect and double-indirect referenced blocks
• Hard-links by design but not implemented
• Soft-links by design but not implemented

Demonstrations Page 14

• Long filename support
• Buffering using the GeekOS buffer-cache
• Concurrency support provided through a single mutex

Each directory allocates one inode, just as files do, except that the size indicated in the inode
represents the number of directory entries and not the physical size. The content of a directory is
stored in separate blocks, referenced by the inode's direct block pointers only. These blocks hold
one or more directory entries to represent the directory's content. By utilising direct block pointers
only, the number of directory entries is limited to 240. This is sufficient for this project, but should
be expanded in future releases. Appendix A shows the structure of a directory entry in detail. This
structure enables hard-links, because several different directory entries can reference to one
particular inode in a file system.

The VFS provides a common file structure to processes for file handling. Within this file structure
there is one pointer to reference to arbitrary data for a specific file system implementation. This
arbitrary data is called File Entry in GosFS and holds the necessary information for the file system
to work with a file. This abstraction makes it possible for different processes to work on the same
file without interfering each other’s file position, because each process has its own file object. The
arbitrary data structure within this file object then closes the gap to the actual physical file.

7. Demonstrations

This chapter briefly summarizes the demonstration held in class on January 25th. The main goal of
this demonstration was to show BOS running on a bare metal COMPAQ DESKPRO XL 590 (90
MHz Pentium I) machine focusing on file system, pipes, message queues, scheduling and paging.
For convenience the presented visuals below are Bochs [3] screen shots.

7.1 File System / Pipes

As already mentioned above, BOS implements the GosFS file system not as recommended in the
GeekOS documentation, but rather UNIX like maintaining higher flexibility and abstraction. For
example file or directory names are not stored within the inode itself, but in the corresponding
directory entry. With the usage of pipes it is possible within BOS to redirect the standard output of
one program to the standard input of another program; for example "ls /c | more" where ls
is the sender and more the receiver program.

Demonstrations Page 15

Figure 5 Output of the ls utility piped through the more program

As displayed in Figure 1 more shows only the top 24 lines of the ls output.

7.2 Message Queues

Message queues provide another way for inter-process communication in BOS. Here again the
implementation is more UNIX like than recommended by the GeekOS documentation. A message
queue in BOS can exist even without any program attached, as long as it holds messages.

Figure 6 Message Queues Demonstration

The demonstration program "fsend" writes five messages to the message queue and terminates, as
depicted in Figure 6. The "frecv" program receives these messages. For this demonstration the
BOS team has chosen to endow the receiving program with a buffer too small to hold a whole
message. What happens is that the receiving program fetches a message from the queue, but can
only store a part of the message. The rest of the message is simply truncated.

7.3 Scheduling

BOS provides two different scheduling algorithms, which can be changed at runtime: Round Robin
and Multilevel Feedback Scheduling. The demonstration program shows the different scheduling

Demonstrations Page 16

attitudes by spawning seven processes. Three of these processes are CPU hogs printing the green
letter C periodically and four of these processes are I/O intensive printing the red letter H. The I/O
processes all try to write-access the same file; so these processes will block each other.

The schedset command allows switching between the two scheduling algorithms. The
demonstration starts with Round Robin Scheduling. For the RR demonstration the commands are:

schedset rr 1

workload 1

workload

The first call of the workload utility loads the program to the main memory. This is necessary,
because running this test without pre-loading the program would cause false results.

Figure 7 Round Robin Scheduling Demonstration

Figure 7 shows the output after the Round Robin Scheduling Demonstration. The average results
are:

• CPU: ((2160660+2210530+2256170)/3)/212 = 10420 runs per cycle
• HDD: ((6790+6280+9200+9590)/4)/212 = 38 runs per cycle

After switching to Multilevel Feedback Scheduling, the I/O throughput increases significantly as
visualized in Figure 8. Multilevel Feedback Scheduling promotes blocking processes to a queue
with a higher priority, so the scheduler prefers the I/O processes. For the MLF demonstration the
commands are:

schedset mlf 1

workload

Demonstrations Page 17

Figure 8 Multilevel Feedback Scheduling Demonstration

The average results using Multilevel Feedback Scheduling are:

• CPU: ((1382410+1382280+1519420)/3)/209 = 6832 runs per cycle
• HDD: ((12110+13530+15960+13020)/4)/209 = 65 runs per cycle

With Multilevel Feedback Scheduling I/O throughput can be increased by 71% whereas CPU
throughput decreases by about 34% in this configuration.

7.4 Paging

Program rec recursively calls a subroutine that allocates a memory page on the call stack. Every
time the subroutine allocates a page it writes a dot (´.´) to the screen and every 50 times it writes the
decreasing counter to the screen. With 16MB main memory we start with a counter of 3750, i.e. we
issue this command: “rec 3750”. While the program executes fast at high counter values, at
about 251 the program gets significantly slow and disk I/O starts. At this time the page fault handler
writes main memory to disk to free pages for the growing program.

Figure 9 Paging Demonstration

Unpacking and Building BOS Page 18

Figure 9 shows the running program rec and an active hard drive HD:0 (green), because the page
fault handler writes to the paging file.

8. Unpacking and Building BOS

The BOS development environment consists mainly of following components:

• A Intel Pentium PC with SuSE Linux 10.0
• Bochs 2.3
• gcc 4.0.2
• nasm 0.98.38
• findutils 4.2.23
• coreutils 5.3.0
• binutils 2.16.91.0.2

After downloading the distribution package bos-1.0-src.tar.gz building the project works
as follows.

1. change in a newly created folder and place the distribution package there

2. unpack the distribution package as follows
 tar -xzvf bos-1.0-src.tar.gz

3. change to the build directory
 cd bos-1.0/build

4. build BOS with the make utility
 make depend

 make all

5. start bochs after a successful build.
 bochs –q

There might be some adjustments necessary in file .bochsrc, namely the path names of
the vgaromimage and the romimage parameters.

Conclusion Page 19

9. Conclusion

This work has presented an implementation of an operating system based on the GeekOS
framework. This chapter concludes the paper by summarising the current situation, and providing
an outlook to future enhancements.

Our goal was to implement a basic operating system that can boot on a real IA 32 PC hardware.
Finally, the operating system runs on Intel 486 and Pentium I machines, but refuses to run on newer
hardware. Real hardware as a development platform is very time consuming. Therefore the BOS
development was done with the Bochs emulator, and only stable releases have been tested on bare
metal. Real hardware showed that the initialisation of the keyboard is incomplete, because only a
part of the keyboard sends useful key codes yet.

BOS includes concurrency support including two different scheduling algorithms, memory
management with segmentation and paging, device abstraction via a virtual file system, as well as a
block device abstraction layer, the BOS variant of the GosFS file system and inter process
communication with pipes and message queues.

Future works on BOS could cover the following topics:

• Today BOS allows only one thread per user program. Future implementation should allow
multiple kernel-scheduled threads.

• BOS should provide signals, at least the signals interrupt (SIGINT), hang-up (SIGHUP),
terminate (SIGTERM) and kill (SIGKILL).

• Symbolic and hard links are not yet implemented, but should be provided by BOS.
• Serial I/O, TTY and pseudo TTY interfaces should be provided, as well as a device file

system. The device file system could act like a real file system, and abstract the available
hardware to virtual files. By opening such a virtual file, a user process could access devices
like e.g. serial lines.

• Login and password authentication should be added also.
• The paging file has always to be /c/pagefile.bin, and must be present at boot time.

Other systems allow booting the kernel without a paging file and assign the paging file via a
command line utility. For BOS this would be beneficial in future releases.

• BOS should initialise the keyboard to enable all available keys.

Appendix A Implemented File System Functionality Page 20

Appendix A Implemented File System Functionality
This chapter summarises the implemented functionality of file systems in BOS.

Block Device Functions

Supported Functions Description

Open open a device

Close close a device

GetNumBlocks get number of blocks in a given device

Virtual File System Functions

VFS Object Supported Functions Description

File System Format create super block and root-directory entry

 Mount check validity of the file system; prepare environment
for file system usage

Mount Point Open open a file for usage

 Create Directory create a new directory

 Open Directory prepare directory for usage

 Stat fetch metadata for a file or directory

 Sync write dirty date to disc

 Delete delete a file or directory

File FStat fetch metadata for given file

 Read read a file's content

 Write write to a file

 Seek change position within file

 Close close a file handle

 Clone clone a file handle

Appendix A Implemented File System Functionality Page 21

Directory FStat fetches metadata for given directory

 Seek change position within a directory

 Close close a directory file handle

 ReadEntry read a directory entry

Superblock

The super block maintains all necessary metadata to operate on the file system.

Field Length [bytes] Description

magic 4 magic number to identify the GOSFS file system

supersize 4 size of the super block in bytes

size 4 size of whole file system in blocks

inodes 112 array of inodes

bitSet[] depends on device size Set of bits to mark free and used blocks of the file
system.

Instance

On mount of the file system an instance object is created and stored within the mount point to be
able to handle all further file system requests.

Field Length [bytes] Description

lock 16 mutex to lock the file system in order to provide
concurrency

buffercache 4 pointer to a buffer to provide buffered IO requests

superblock depends on device size the file system’s super-block

Appendix A Implemented File System Functionality Page 22

Inode

Inodes are used to maintain the essential metadata for files and directories; except the name of the
file or directory.

Field Length [bytes] Description

inode 4 inode number

size 4 size of file in bytes for files or number of directory-
entries for directories

link_count 4 references to this inode (hard-links)

blocks_used 4 number of blocks allocated for file or directory

flags 4 flag used to indicate directories, files, SUID

time_access last time file was accessed (not used)

time_modified 4 last time file was modified (not used

time_inode 4 last time inode was modified (not used)

time_inode 4 last time inode was modified (not used)

blocklist 4 pointers to direct, indirect and double-indirect blocks

acl 40 access control list (not used)

Directory Entry

Field Length [bytes] Description

type 4 type of the directory entry
• THIS ".": special type referencing the directory itself
• PARENT "..": special type referencing the parent directory
• REGULAR: file or directory entry
• FREE: directory entry not used

inode 4 referenced inode number

filename 128 name of file or directory (inode) in this directory

Appendix B Distribution Package Page 23

File Entry

Field Length [bytes] Description

inode 4 pointer to the referenced inode

instance 4 pointer to the file system entry instance we are working on

references 4 number of file descriptors referencing this entry

Appendix B Distribution Package

This chapter briefly describes the directory structure of the distribution package

File / Folder Content

COPYING contains the copyright holder and rules about copying this software

LICENSE-klibc additional license information

README contains a description how to build and run BOS

build contains the Makefile to build BOS and all build results

doc contains the BOS technical report and the BOS presentation slides

include contains the include files of the kernel an the C library

scripts contains the scripts GeekOS provides

src contains the source code of the kernel, the C library, the tools and the user
programs

Appendix C The C Application Programming Interface for User Programs Page 24

Appendix C The C Application Programming Interface for User Programs

This chapter presents an overview of the major BOS system calls available to user processes.

C.1 File and File System calls

To access the following system calls, a program must include:

#include <fileio.h>

Format a given device with a specified file system. Devices can be ide0 and ide1 and file system
types can be pfat of gosfs.

int Format(const char *dev, const char *fstype);

Mount a device dev with file system fstype to a given mount point named in prefix.

int Mount(const char *dev, const char *prefix, const char *fstype);

Synchronise all file systems to disk.

int Sync(void);

Retrieve the status data of a specified or already open file.

int Stat(const char *path, struct VFS_File_Stat *stat);

int FStat(int fd, struct VFS_File_Stat *stat);

Delete a file or directory. A directory must be empty when calling this subroutine to succeed.

int Delete(const char *path);

Open a file

int Open(const char *path, int mode);

Close a file or directory

int Close(int fd);

Read from a previously opened file into a buffer with specified length.

int Read(int fd, void *buf, unsigned long len);

Appendix C The C Application Programming Interface for User Programs Page 25

Write to a previously opened file from a buffer with specified length.

int Write(int fd, const void *buf, unsigned long len);

Set read and write pointer of a file.

int Seek(int fd, int pos);

Create a directory.

int Create_Directory(const char *path);

Open a directory.

int Open_Directory(const char *path);

Read a directory entry. Subsequent calls will return all entries of a directory, one at a call.

int Read_Entry(int fd, struct VFS_Dir_Entry *dirEntry);

Create a pipe and return the reader and writer file descriptors.

int Create_Pipe(int *readfd, int *writefd);

C.2 Kernel related Calls

To access the following system calls, a program must include:

#include <kernel.h>

Select a particular paging algorithm.

int Select_Paging_Algorithm (int alg);

C.3 Heap related Calls

To access the following system calls, a program must include:

#include <malloc.h>

Allocate dynamic memory

void *Malloc(size_t size);

Appendix C The C Application Programming Interface for User Programs Page 26

Free previously allocated dynamic memory

void Free(void* buf);

C.4 Message Queue Calls

To access the following system calls, a program must include:

#include <mq.h>

Create a message queue

int Message_Queue_Create(const char *name, ulong_t queue_size);

Destroy a message queue

int Message_Queue_Destroy(int mqid);

Send a message to a previously opened message queue

int Message_Queue_Send(int mqid, void * buffer, ulong_t message_size);

Read a message from a previously opened message queue

int Message_Queue_Receive(int mqid, void * buffer, ulong_t message_size);

C.5 Process related Calls

To access the following system calls, a program must include:

#include <process.h>

Terminate the current process

int Exit(int exitCode);

Create a new process

int Spawn_Program(const char *program, const char* command, int stdinFd, int
stdoutFd);

Create a new process using a given executable search path

int Spawn_With_Path(const char *program, const char *command, int stdinFd, int
stdoutFd, const char *path);

Appendix C The C Application Programming Interface for User Programs Page 27

Wait for termination of a child process

int Wait(int pid);

Get the identification of the current process

int Get_PID(void);

C.6 Scheduling related Calls

To access the following system calls, a program must include:

#include <sched.h>

Set the scheduling policy

int Set_Scheduling_Policy(int policy, int quantum);

Get the time of day in timer ticks

int Get_Time_Of_Day(void);

C.7 Semaphore related Calls

To access the following system calls, a program must include:

#include <sema.h>

Create a semaphore

int Create_Semaphore(const char *name, int ival);

Enter a critical section

int P(int sem);

Leave a critical section

int V(int sem);

Destroy a semaphore

int Destroy_Semaphore(int sem);

References Page 28

References

[1] B. Danninger, C. Krainer (2007) Basic Operating System.
http://www.cs.uni-salzburg.at/~ck/wiki/index.php?n=OS-Winter-2006.BOS (8 February
2007)

[2] D. Hovemeyer (2006) GeekOS: a tiny operating system kernel for x86 PCs.
http://geekos.sourceforge.net/ (8 February 2007)

[3] T. R. Butler, et al. (2006) Bochs, the cross platform IA-32 emulator.
http://bochs.sourceforge.net (8 February 2007)

[4] R.W. Carr, J.L. Hennessy (1981) WSClock – A Simple and Effective Algorithm for Virtual
Memory Management. Proceedings Eight Symposium on Operating Systems Principles,
ACM, pp. 87-95.

[5] J. Walker (1996) The BGET Memory Allocator.
http://www.fourmilab.ch/bget (8 February 2007)

[6] Tools Interface Standards Committee (1995) Executable and Linkable Format (ELF)
Specification.

	Abstract
	Content
	Introduction
	Memory Management
	Virtual Memory
	Page Replacement
	User Heap
	User Stack

	Processes and Threads
	Process Model
	Kernel Threads
	User Processes

	Process Creation
	Executable and Linking Format
	Starting Programs

	Process Termination
	Scheduler
	Round Robin Scheduling
	Multi Level Feedback Scheduling
	Wait and Ready Queues

	Semaphores

	Inter Process Communication
	Message Queues
	Pipes

	Input and Output
	File Systems
	Virtual File System (VFS) Layer
	The GosFS File System

	Demonstrations
	File System / Pipes
	Message Queues
	Scheduling
	Paging

	Unpacking and Building BOS
	Conclusion
	Appendix A Implemented File System Functionality
	Appendix B Distribution Package
	Appendix C The C Application Programming Interface for User
	C.1 File and File System calls
	C.2 Kernel related Calls
	C.3 Heap related Calls
	C.4 Message Queue Calls
	C.5 Process related Calls
	C.6 Scheduling related Calls
	C.7 Semaphore related Calls

	References

