Architecture

Page 6

The
CKPMvm
Virtual Machine

Compiler Construction Course
Summer 2006
Team Members:
Salzburg, 13 July 2006

Clemens Krainer
9020112

Content
41.
Introduction

42.
Architecture

42.1
Byte Codes

42.2
Registers

52.3
Stack

62.4
Heap

73.
Byte Codes in Detail

83.1
Load and Store Instructions

83.1.1
push_b – push one byte integer constant onto the operand stack

83.1.2
push_s – push two-byte integer constant

83.1.3
push_s – push four-byte integer constant

83.1.4
push_sp – push the current stack pointer onto the stack

93.1.5
push_fp – push the current frame pointer onto the stack

93.1.6
ld_T $x – load from absolute address $x

93.1.7
st_T $x – store at address $x

93.1.8
ld_T $x,fp – load from absolute address $x + FP

93.1.9
st_T $x,fp – store at address $x + FP

103.1.10
ld_T ($x) – load indirect

103.1.11
st_T ($x) – store indirect

103.1.12
ld_T $x,sp – load from absolute address $x + SP

103.1.13
st_T $x,sp – store at address $x + SP

113.1.14
ldc_T_<i> – load constant

113.2
Arithmetic Instructions

113.2.1
add_T – add

113.2.2
sub_T – subtract

123.2.3
mul_T – multiply

123.2.4
div_T – divide

123.2.5
rem_T – remainder

123.2.6
neg_T – negate

123.2.7
shl_T – shift left

133.2.8
shr_T – shift right

133.2.9
and_T – bitwise AND

133.2.10
or_T – bitwise OR

133.2.11
xor_T – bitwise XOR

143.2.12
cmp_T – comparison

143.2.13
inc_T $x – increment at absolute address $x with type T

143.2.14
dec_fp $x – decrement frame pointer register

143.2.15
inc_sp $x – increment stack pointer register

153.2.16
dec_sp $x – decrement stack pointer register

153.3
Type Conversion Instructions

153.3.1
i2T – integer to type T

153.3.2
l2T – long to type T

163.3.3
f2T – float to type T

163.3.4
d2T – double to type T

163.4
Memory Management

163.4.1
new – allocate memory

173.4.2
del – free memory

173.5
Operand Stack Manipulation

173.5.1
pop – pop word

173.5.2
pop2 – pop double word

173.5.3
dup – duplicate word

173.5.4
dup2 – duplicate double word

183.5.5
swap – swap word

183.5.6
swap2 – swap double word

183.6
Control Transfer Instructions

183.6.1
beq – branch on equal

183.6.2
bne – branch on not equal

193.6.3
bgt – branch on greater

193.6.4
bge – branch on greater or equal

193.6.5
blt – branch on lower

193.6.6
ble – branch on lower or equal

203.6.7
jmp – jump unconditionally

203.6.8
jsr – jump to subroutine

203.6.9
ret – return from subroutine

203.6.10
ret_T – return from subroutine with value

213.6.11
halt – stop the virtual machine

213.7
Input and Output Instructions

213.7.1
fopen – file open

213.7.2
fclose – file close

223.7.3
getc – get character

223.7.4
putc – put character

223.7.5
read – read from file

223.7.6
write – write to file

234.
Object File Format

234.1
CKLF Header

244.2
Code Segment and Data Segment

244.3
Symbol Table

254.4
String Table

255.
References

1. Introduction

This paper describes the CKPMvm virtual machine which is the target of the CKPMcc C-compiler.

The rest of this work is structured as follows:

· Chapter 2 contains a short introduction to the architecture of this virtual machine, and briefly describes its byte code instruction set, registers, stack and heap.

· Chapter 3 discusses the byte code instruction set in detail.

· Chapter 4 explains the executable file format.

2. Architecture
The CKPMvm virtual machine is an abstract computing machine. Like a real computing machine, it has an instruction set and manipulates various memory areas at run time. This virtual machine knows nothing of the C programming language, only of a particular binary format, the cklf file format. A cklf file contains CKPMvm virtual machine instructions and a symbol table, as well as other supplementary information.
The CKPMvm virtual machine can be divided into four fundamental parts:
· A bytecode instruction set

· A set of registers

· A stack

· A heap

The memory area used by the CKPMvm virtual machine is not required to be at any particular place in the memory. The design of this virtual machine was essentially inspired by the design of the JavaTM virtual machine, described in [1] and [2].
2.1 Byte Codes

The CKPMvm virtual machine instruction set is optimized to be small and compact. C source code is compiled into byte codes and stored in a .cklf file. This is performed by the CKPMcc tool. A byte code instruction consists of a one-byte opcode that serves to identify the instruction involved and zero or more operands, each of which may be more than one byte long, that encode the parameters the opcode requires. When operands are more than one byte long, they are stored in big endian order, high-order byte first.
2.2 Registers

The registers in the CKPMvm virtual machine are like the registers in a real computer. The following are the CKPMvm registers:

· PC, the program counter, which indicates what byte code is being executed
· FP, the frame pointer, that references the execution environment of the current subroutine
· SP, the stack pointer. It references to the top of the operand stack, which is used to evaluate all arithmetic expressions.
The virtual machine defines these registers to be 32 bit wide.
2.3 Stack

The CKPMvm virtual machine is stack based. A CKPMvm stack frame is similar to the stack frame of other programming languages – it holds the state for a single subroutine invocation. Frames for nested method invocations are stacked on top of this frame. Each stack frame contains four (possibly empty) sets of data: the supplied parameters, the execution environment, the local variables for the subroutine invocation, and the operand stack. The execution environment helps to maintain the stack itself. It contains the return address and a pointer to the previous stack frame. The operand stack is a one-word wide last-in-first-out (LIFO) stack that is used to store the parameters and return values of most byte code instructions. Each primitive data type has unique instructions that know how to extract, operate, and push back operands of that type.
[image: image1.wmf]old stack

argument 1

argument 2

...

argument N

return address

local var. 1

operand stack

FP

SP

stack after

subroutine initialisation

old stack

return value

FP

SP

stack after

return

old FP

old FP

address of

first local

variable:

= FP+N+2

old stack

old FP

stack before

return

argument 1

argument 2

...

argument N

return address

return value

FP

SP

old FP

local var. 2

...

local var. K

old stack

argument 1

argument 2

...

argument N

return address

operand stack

FP

SP

stack at

subroutine start

old FP

old FP

Figure 2.1. Calling conventions on the CKPMvm virtual machine stack

When calling a subroutine, the calling code pushes the arguments on the stack and invokes the subroutine via the jsr instruction. This instruction pushes the return address and the current value of the FP register on the stack, as shown in Figure 2.1. At subroutine start the FP register points to the return address and the operand stack is empty. The first instructions of the subroutine code move the FP down to argument 1 and reserve space for the local variables on the stack. There is no register that contains the address of the first local variable, because the local variables have to be addressed relatively to FP. The invoked subroutine is responsible for resetting SP before return. The retx instructions reset FP to its previous value and leave only the return value on the stack. If the subroutine returns no value, the ret instruction is called.
At start time, the virtual machine pushes the number of passed arguments and a pointer to the arguments onto the stack before calling the main()subroutine of the loaded program. The virtual machine uses the return value of the main()subroutine as its exit code.
2.4 Heap

The heap is that part of memory from which chunks of memory are allocated. The heap is not garbage collected, so allocated blocks have to be freed explicitly. The virtual machine hides the implementation of the functions for memory allocation and de-allocation for two reasons. First, the performance of the code provided by the virtual machine is much higher and second, for easier debugging. Currently the virtual machine manages the heap memory with a used and a free list applying the first fit algorithm for memory allocation.
3. Byte Codes in Detail
A byte code instruction has a size of at least one byte. Depending on the instruction one or more subsequent bytes contain its parameters. Table 3.1 summarises the byte code instruction set of the CKPMvm virtual machine.
	
	0 / 8
	1 / 9
	2 / A
	3 / B
	4 / C
	5 / D
	6 / E
	7 / F

	0x00
	push_b
	push_s
	push_i
	push_sp
	push_fp
	-
	-
	-

	0x08
	ld_b $x
	ld_s $x
	ld_i $x
	ld_l $x
	-
	ld_f $x
	ld_d $x
	-

	0x10
	ld_b $x,fp
	ld_s $x,fp
	ld_i $x,fp
	ld_l $x,fp
	-
	ld_f $x,fp
	ld_d $x,fp
	-

	0x18
	ld_b ($x)
	ld_s ($x)
	ld_i ($x)
	ld_l ($x)
	-
	ld_f ($x)
	ld_d ($x)
	-

	0x20
	ld_b_sp
	ld_s_sp
	ld_i_sp
	ld_l_sp
	-
	ld_f_sp
	ld_d_sp
	-

	0x28
	st_b
	st_s
	st_i
	st_l
	-
	st_f
	st_d
	-

	0x30
	st_b $x,fp
	st_s $x,fp
	st_i $x,fp
	st_l $x,fp
	-
	st_f $x,fp
	st_d $x,fp
	-

	0x38
	st_b ($x)
	st_s ($x)
	st_i ($x)
	st_l ($x)
	-
	st_f ($x)
	st_d ($x)
	-

	0x40
	st_b_sp
	st_s_sp
	st_i_sp
	st_l_sp
	-
	st_f_sp
	st_d_sp
	-

	0x48
	ldc_i_0
	-
	add_i
	add_l
	-
	add_f
	add_d
	-

	0x50
	ldc_i_1
	-
	sub_i
	sub_l
	-
	sub_f
	sub_d
	-

	0x58
	ldc_i_-1
	-
	mul_i
	mul_l
	-
	mul_f
	mul_d
	-

	0x60
	ldc_l_0
	-
	div_i
	div_l
	-
	div_f
	div_d
	-

	0x68
	ldc_l_1
	-
	rem_i
	rem_l
	-
	rem_f
	rem_d
	-

	0x70
	ldc_l_-1
	-
	neg_i
	neg_l
	-
	neg_f
	neg_d
	-

	0x78
	ldc_f_0
	-
	shl_i
	shl_l
	-
	-
	-
	-

	0x80
	ldc_f_1
	-
	shr_i
	shr_l
	-
	-
	-
	-

	0x88
	ldc_f_-1
	-
	and_i
	and_l
	-
	-
	-
	-

	0x90
	ldc_d_0
	-
	or_i
	or_l
	-
	-
	-
	-

	0x98
	ldc_d_1
	-
	xor_i
	xor_l
	-
	-
	-
	-

	0xA0
	ldc_d_-1
	-
	cmp_i
	cmp_l
	-
	cmp_f
	cmp_d
	-

	0xA8
	i2b
	i2s
	-
	i2l
	-
	i2f
	i2d
	-

	0xB0
	-
	-
	l2i
	-
	-
	l2f
	l2d
	-

	0xB8
	-
	-
	f2i
	f2l
	-
	-
	f2d
	-

	0xC0
	-
	-
	d2i
	d2l
	-
	d2f
	-
	-

	0xC8
	-
	-
	ret_i
	ret_l
	-
	ret_f
	ret_d
	-

	0xD0
	pop
	pop2
	dup
	dup2
	-
	-
	-
	-

	0xD8
	-
	-
	swap
	swap2
	-
	-
	-
	-

	0xE0
	-
	dec_fp $x
	inc_sp,$x
	dec_sp,$x
	-
	read
	write
	-

	0xE8
	-
	-
	inc_i $x
	inc_l $x
	-
	-
	-
	-

	0xF0
	ret
	jmp
	jsr
	fopen
	fclose
	getc
	putc
	halt

	0xF8
	beq
	bne
	bge
	bgt
	ble
	blt
	new
	del

Table 3.1. Numeric Codes of the Instruction Set

In the following subchapters a specific instruction, with type information, is built by replacing the T in the instruction template by the first letter of the corresponding type.

3.1 Load and Store Instructions XE "Fault Tolerance"
The load and store instructions transfer values between the operand stack and both, local and global variables respectively. Push instructions load constant values onto the operand stack.
· Load a variable onto the operand stack: ld_b, ld_s, ld_i, ld_l, ld_f, ld_d.
· Store a value into a variable: st_b, st_s, st_i, st_l, st_f, st_d.
· Load a constant onto the operand stack: push_b, push_s, push_i, push_sp, push_fp, ldc_i_<i>, ldc_l_<i>, ldc_f_<i>, ldc_d_<i>.
3.1.1 push_b – push one byte integer constant onto the operand stack

The immediate byte is sign-extended to an int value. That value is pushed onto the operand stack.

	push_b
	byte

Format:

Operand Stack:
… (…, value

3.1.2 push_s – push two-byte integer constant

The immediate unsigned byte1 and byte2 are combined to a short value that is sign-extended to an int value. That value is pushed onto the operand stack.

	push_s
	byte1
	byte2

Format:

Operand Stack:
… (…, value

3.1.3 push_s – push four-byte integer constant

The immediate unsigned byte1, byte2, byte3 and byte4 are combined to an int value. That value is pushed onto the operand stack.

	push_i
	byte1
	byte2
	byte3
	byte4

Format:

Operand Stack:
… (…, value

3.1.4 push_sp – push the current stack pointer onto the stack

The current stack pointer is pushed onto the operand stack.

	push_sp

Format:

Operand Stack:
… (…, value

3.1.5 push_fp – push the current frame pointer onto the stack

The current frame pointer is pushed onto the operand stack.

	push_fp

Format:

Operand Stack:
… (…, value

3.1.6 ld_T $x – load from absolute address $x

The immediate unsigned byte1, byte2, byte3 and byte4 are combined to an int value that is interpreted as an address in the virtual machine memory. The value at this address is read from the memory and pushed onto the operand stack.

	ld_T $x
	byte1
	byte2
	byte3
	byte4

Format:

Operand Stack:
… (…, value

3.1.7 st_T $x – store at address $x

The immediate unsigned byte1, byte2, byte3 and byte4 are combined to an int value that is interpreted as an address in the virtual machine memory. The value is popped from the operand stack and stored at this address.

	st_T $x
	byte1
	byte2
	byte3
	byte4

Format:

Operand Stack:
…, value (…

3.1.8 ld_T $x,fp – load from absolute address $x + FP
The immediate unsigned byte1 and byte2 are combined to a short value and the content of register FP is added to that value. The result is interpreted as an address in the virtual machine memory. The value at this address is read from the memory and pushed onto the operand stack.

	ld_T $x, fp
	byte1
	byte2

Format:

Operand Stack:
… (…, value

3.1.9 st_T $x,fp – store at address $x + FP
The immediate unsigned byte1 and byte2 are combined to a short value and the content of register FP is added to that value. The result is interpreted as an address in the virtual machine memory. The value is popped from the operand stack and stored at this address.

	st_T $x, fp
	byte1
	byte2

Format:

Operand Stack:
…, value (…

3.1.10 ld_T ($x) – load indirect

The immediate unsigned byte1, byte2, byte3 and byte4 are combined to an int value that is interpreted as an address in the virtual machine memory. The value at this address is interpreted as a pointer to the memory, which value is read and pushed onto the operand stack.

	ld_T_($x)

Format:

Operand Stack:
… (…, value

3.1.11 st_T ($x) – store indirect

The immediate unsigned byte1, byte2, byte3 and byte4 are combined to an int value that is interpreted as an address in the virtual machine memory. The value at this address is interpreted as a pointer to the memory to which the value from the operand stack is stored.
	st_T_ind

Format:

Operand Stack:
…, value (…

3.1.12 ld_T $x,sp – load from absolute address $x + SP

The immediate unsigned byte1 and byte2 are combined to a short value and the content of register SP is added to that value. The result is interpreted as an address in the virtual machine memory. The value at this address is read from the memory and pushed onto the operand stack.

	ld_T $x, sp
	byte1
	byte2

Format:

Operand Stack:
… (…, value

3.1.13 st_T $x,sp – store at address $x + SP

The immediate unsigned byte1 and byte2 are combined to a short value and the content of register SP is added to that value. The result is interpreted as an address in the virtual machine memory. The value is popped from the operand stack and stored at this address.

	st_T $x, sp
	byte1
	byte2

Format:

Operand Stack:
…, value (…

3.1.14 ldc_T_<i> – load constant

This instruction pushes a constant <i> onto the operand stack. For each data type T exists such an instruction to load the values “-1”, “0”, “1”.

	ldc_T_<i>

Format:

Operand Stack:
… (…, value

3.2 Arithmetic Instructions XE "Fault Tolerance"
Arithmetic instructions compute a result that is typically a function of two values on the operand stack, pushing the result back on the operand stack.

· Add: add_i, add_l, add_f, add_d.
· Substract: sub_i, sub_l, sub_f, sub_d.
· Multiply: mul_i, mul_l, mul_f, mul_d.
· Divide: div_i, div_l, div_f, div_d.
· Remainder: rem_i, rem_l, rem_f, rem_d.
· Negate: neg_i, neg_l, neg_f, neg_d.
· Shift: shl_i, shl_l, shr_i, shr_l.
· Bitwise OR: or_i, or_l.
· Bitwise AND: and_i, and_l.
· Bitwise exclusive OR: xor_i, xor_l.
· Comparison: cmp_i, cmp_l, cmp_f, cmp_d.
· Increment: inc_i, inc_l
· Decrement: dec_fp, inc_sp, dec_sp
3.2.1 add_T – add

This instruction takes two variables from the operand stack adds them and pushes the result onto the stack.

	add_T

Format:

Operand Stack:
…, v1, v2 (…, result

3.2.2 sub_T – subtract

This instruction takes two variables from the operand stack subtracts them and pushes the result onto the stack.

	sub_T

Format:

Operand Stack:
…, v1, v2 (…, result

3.2.3 mul_T – multiply

This instruction takes two variables from the operand stack multiplies them and pushes the result onto the stack.

	mul_T

Format:

Operand Stack:
…, v1, v2 (…, result

3.2.4 div_T – divide

This instruction takes two variables from the operand stack divides them and pushes the result onto the stack.

	div_T

Format:

Operand Stack:
…, v1, v2 (…, result

3.2.5 rem_T – remainder

This instruction takes two variables from the operand stack divides them and pushes the remainder onto the stack.

	rem_T

Format:

Operand Stack:
…, v1, v2 (…, result

3.2.6 neg_T – negate

This instruction negates the value on top of the stack.

	neg_T

Format:

Operand Stack:
…, value (…, (-value)

3.2.7 shl_T – shift left

This instruction shifts an integer or a long value v1 to the left by v2 bits and pushes the result on top of the stack.

	shl_T

Format:

Operand Stack for shl_i:
…, v1, v2 (…, result

Operand Stack for shl_l:
…, v1.word1, v1.word2, v2 (…, result.word1, result.word2

3.2.8 shr_T – shift right

This instruction shifts an integer or a long value v1 to the right by v2 bits and pushes the result on top of the stack.

	shr_T

Format:

Operand Stack for shr_i:
…, v1, v2 (…, result

Operand Stack for shr_l:
…, v1.word1, v1.word2, v2 (…, result.word1, result.word2

3.2.9 and_T – bitwise AND

This instruction performs a bitwise AND for types integer and long.

	and_T

Format:

Operand Stack for and_i:
…, v1, v2 (…, result

Operand Stack for and_l:
…, v1.word1, v1.word2, v2.word1, v2.word2 (…, r.word1, r.word2

3.2.10 or_T – bitwise OR

This instruction performs a bitwise OR for types integer and long.

	or_T

Format:

Operand Stack for or_i:
…, v1, v2 (…, result

Operand Stack for or_l:
…, v1.word1, v1.word2, v2.word1, v2.word2 (…, r.word1, r.word2

3.2.11 xor_T – bitwise XOR

This instruction performs a bitwise XOR for types integer and long.

	xor_T

Format:

Operand Stack for xor_i:
…, v1, v2 (…, result

Operand Stack for xor_l:
…, v1.word1, v1.word2, v2.word1, v2.word2 (…, r.word1, r.word2

3.2.12 cmp_T – comparison

This instruction compares the two variables on top of the operand stack and pushes -1 for v1 < v2, 0 for v1 == v2 or 1 for v1 > v2 as result onto the stack.

	cmp_T

Format:

Operand Stack:
…, v1, v2 (…, result

3.2.13 inc_T $x – increment at absolute address $x with type T
The immediate unsigned byte1, byte2, byte3 and byte4 are combined to an int value that is interpreted as an address in the virtual machine memory. The value at this address is incremented by one.

	inc_T $x
	byte1
	byte2
	byte3
	byte4

Format:

Operand Stack:
… (…

3.2.14 dec_fp $x – decrement frame pointer register

The immediate unsigned byte1 and byte2 are combined to a short value that is subtracted from the FP register.

	dec_fp $x
	byte1
	byte2

Format:

Operand Stack:
… (…

3.2.15 inc_sp $x – increment stack pointer register

The immediate unsigned byte1 and byte2 are combined to a short value that is added to the SP register.

	inc_sp $x
	byte1
	byte2

Format:

Operand Stack:
… (…

3.2.16 dec_sp $x – decrement stack pointer register

The immediate unsigned byte1 and byte2 are combined to a short value that is subtracted from the SP register.

	dec_sp $x
	byte1
	byte2

Format:

Operand Stack:
… (…

3.3 Type Conversion Instructions XE "Fault Tolerance"
The type conversion instructions allow conversion between the virtual machine numeric types. The virtual machine directly supports the following narrowing and widening conversions:
· int to long, float or double: i2b, i2s, i2l, i2f, i2d.
· long to int, float or double: l2i, l2f, l2d.
· float to int, long or double: f2i, f2l, f2d.
· double to int, long or float: d2i, d2l, d2f.
3.3.1 i2T – integer to type T
This instruction converts an integer value to a value of type T.

	i2T

Format:

Operand Stack for i2b:
…, value (…, result

Operand Stack for i2s:
…, value (…, result

Operand Stack for i2l:
…, value (…, result.word1, result.word2

Operand Stack for i2f:
…, value (…, result

Operand Stack for i2d:
…, value (…, result.word1, result.word2

3.3.2 l2T – long to type T
This instruction converts a long value to a value of type T.

	l2T

Format:

Operand Stack for l2i:
…, v1.word1, v1.word2 (…, result

Operand Stack for l2f:
…, v1.word1, v1.word2 (…, result

Operand Stack for l2d:
…, v1.word1, v1.word2 (…, result.word1, result.word2

3.3.3 f2T – float to type T
This instruction converts a float value to a value of type T.

	f2T

Format:

Operand Stack for f2i:
…, value (…, result

Operand Stack for f2l:
…, value (…, result.word1, result.word2

Operand Stack for f2d:
…, value (…, result.word1, result.word2

3.3.4 d2T – double to type T
This instruction converts a float value to a value of type T.

	d2T

Format:

Operand Stack for d2i:
…, v1.word1, v1.word2 (…, result

Operand Stack for d2l:
…, v1.word1, v1.word2 (…, result.word1, result.word2

Operand Stack for d2f:
…, v1.word1, v1.word2 (…, result

3.4 Memory Management XE "Fault Tolerance"
Two instructions are responsible for allocating and freeing memory from the heap: new, del.
3.4.1 new – allocate memory

This instruction allocates memory of size value bytes on the heap of the virtual machine and pushes the first address of the allocated memory as result onto the stack.

	new

Format:

Operand Stack:
…, value (…, address

3.4.2 del – free memory

This instruction frees a previously allocated chunk of heap memory.

	del

Format:

Operand Stack:
…, address (…

3.5 Operand Stack Manipulation XE "Fault Tolerance"
A quantity of instructions is provided for direct manipulation of the operand stack: pop, pop2, dup, dup2, swap, swap2.
3.5.1 pop – pop word

This instruction pops the top word from the stack.

	pop

Format:

Operand Stack:
…, word (…

3.5.2 pop2 – pop double word

This instruction pops the top two words from the stack.

	pop2

Format:

Operand Stack:
…, word1, word2 (…

3.5.3 dup – duplicate word

This instruction duplicates the top word on the stack.

	dup

Format:

Operand Stack:
…, word (…, word, word

3.5.4 dup2 – duplicate double word

This instruction duplicates the top two words on the stack.

	dup2

Format:

Operand Stack:
…, word1, word2 (…, word1, word2, word1, word2

3.5.5 swap – swap word

This instruction swaps the two top words on the stack.

	dup

Format:

Operand Stack:
…, word1, word2 (…, word2, word1

3.5.6 swap2 – swap double word

This instruction swaps the top two double words on the stack.

	dup2

Format:

Operand Stack:
…, word1, word2, word3, word4 (…, word3, word4, word1, word2

3.6 Control Transfer Instructions XE "Fault Tolerance"
The control transfer instructions conditionally or unconditionally cause the virtual machine to continue the execution with an instruction other than the one following the control transfer instruction. They are:
· Conditional branch: beq, bne, bgt, bge, blt, ble.
· Unconditional branch: jmp, jsr, ret, ret_i, ret_l, ret_f, ret_d.
· Machine stop: halt
3.6.1 beq – branch on equal

The immediate unsigned byte1 and byte2 are combined to a sign-extended short value that is added to the program counter if the value on the stack equals to zero.

	beq
	byte1
	byte2

Format:

Operand Stack:
…, value (…

3.6.2 bne – branch on not equal

The immediate unsigned byte1 and byte2 are combined to a sign-extended short value that is added to the program counter if the value on the stack equals not to zero.

	bne
	byte1
	byte2

Format:

Operand Stack:
…, value (…

3.6.3 bgt – branch on greater

The immediate unsigned byte1 and byte2 are combined to a sign-extended short value that is added to the program counter if the value on the stack is greater than zero.

	bgt
	byte1
	byte2

Format:

Operand Stack:
…, value (…

3.6.4 bge – branch on greater or equal

The immediate unsigned byte1 and byte2 are combined to a sign-extended short value that is added to the program counter if the value on the stack is positive or equal zero.

	bge
	byte1
	byte2

Format:

Operand Stack:
…, value (…

3.6.5 blt – branch on lower

The immediate unsigned byte1 and byte2 are combined to a sign-extended short value that is added to the program counter if the value on the stack is lower than zero.

	bgt
	byte1
	byte2

Format:

Operand Stack:
…, value (…

3.6.6 ble – branch on lower or equal

The immediate unsigned byte1 and byte2 are combined to a sign-extended short value that is added to the program counter if the value on the stack is negative or equal zero.

	ble
	byte1
	byte2

Format:

Operand Stack:
…, value (…

3.6.7 jmp – jump unconditionally

The immediate unsigned byte1, byte2, byte3 and byte4 are combined to an int value that is interpreted as an address in the virtual machine memory. This instruction sets the program counter to this value.

	jmp
	byte1
	byte2
	byte3
	byte4

Format:

Operand Stack:
unchanged
3.6.8 jsr – jump to subroutine

The immediate unsigned byte1, byte2, byte3 and byte4 are combined to an int value that is interpreted as an address in the virtual machine memory. This instruction pushes the address of the succeeding instruction and the content of the register FP on the stack. Subsequently it sets the FP register to SP-2 and jumps to the subroutine by setting the program counter to the given address.

	jmp
	byte1
	byte2
	byte3
	byte4

Format:

Operand Stack:
… (…, return-address, FP

3.6.9 ret – return from subroutine

This instruction returns from a subroutine without returning a value. It sets register FP to the old value on the stack, pops the return address and sets the program counter to this address.

	ret

Format:

Operand Stack:
…, return-address, FP (…

3.6.10 ret_T – return from subroutine with value

This instruction returns from a subroutine returning a value of type T. It sets register FP to the old value on the stack, pops the return address, pushes the return value and sets the program counter to the return address.

	ret_T

Format:

Operand Stack:
…, return-address, FP (…, value

3.6.11 halt – stop the virtual machine

This instruction halts the virtual machine. The value on the stack is used as exit code for the virtual machine.
	halt

Format:

Operand Stack:
…, value (…
3.7 Input and Output Instructions XE "Fault Tolerance"
The input and output instructions allow interaction to files outside the virtual machine:

· Open a file: fopen
· Close a file: fclose
· Get one character from the file: getc
· Put one character to the file: putc
· Read from file: read
· Write to file: write
3.7.1 fopen – file open

This instruction pops the address to a zero terminated string containing file name, the access mode flags, as well as the permission modes for file creation from the stack, opens the file and pushes a file handle onto the stack. If the given file can not be opened, the value ‑1 is pushed.

	fopen

Format:

Operand Stack:
…, address, flags, mode (…, file-handle

3.7.2 fclose – file close

This instruction pops a file handle from the stack and closes the associated file. It pushes the value 0 for success and -1 if an error occurs, respectively.
	fclose

Format:

Operand Stack:
…, file-handle (…, value
3.7.3 getc – get character

This instruction reads one character from a file and pushes it onto the stack. On end of file, the value ‑1 is pushed.

	getc

Format:

Operand Stack:
…, file-handle (…, value
3.7.4 putc – put character

This instruction writes one character to a file and pushes 0 for success or -1 for failure onto the stack.

	putc

Format:

Operand Stack:
…, file-handle, character (…, result

3.7.5 read – read from file

This instruction reads a byte chunk from a file stores it at a given address and pushes the number of read bytes onto the operand stack.

	read

Format:

Operand Stack:
…, file-handle, buffer address, buffer length (…, value

3.7.6 write – write to file

This instruction writes a byte chunk from to a file and pushes the number of written bytes onto the operand stack.

	write

Format:

Operand Stack:
…, file-handle, buffer address, buffer length (…, value

4. Object File Format

This chapter describes the object file format, called CKLF (CK Linking Format). A CKLF file holds code and data suitable for linking with other object files and execution, respectively. Figure 2 shows an object file’s organisation.
[image: image2.wmf]CKLF Header

Code Segment

Data Segment

Symbol Table

String Table

Figure 2 The CKLF Object File Format

The CKLF header resides at the beginning and holds a description of the file’s organisation. The code segment holds virtual machine instructions and the data segment contains initialised variables. The symbol table holds a list of exported, imported and local symbols as well as references to the string table for the symbol’s names.
4.1 CKLF Header

The object file sections can be of variable size, because the CKLF header contains their actual position.
	#define
LD_MAX_IDENT
8

struct _cklf_hdr {

 char
ident[LD_MAX_IDENT];

 int
version;

 int
prog;

 int
data;

 int
symtab;

 int
strtab;

 int
total_sz;

};

Figure 3. The CKLF Header
ident
The initial bytes mark the file as an CKLF object file. It always contains the eight byte long identification string “\177CKLF “ (‘\0’ included).
version
This member identifies the object file version. The value 1 identifies the original file format. Extensions will create new version s with higher numbers.
prog
This member holds the code segment’s file offset in bytes.
data
This member holds the data segment’s file offset in bytes.

symtab
This member holds the symbol table’s file offset in bytes.

strtab
This member holds the string table’s file offset in bytes.

total_sz
This member holds the total size of the CKLF object file.

4.2 Code Segment and Data Segment
The code segment contains the virtual machine executable code. The virtual machine fixes the addresses to subroutines and the global data are at loading time.

4.3 Symbol Table

The symbol table section can be of variable size, suitable to the number of local and global symbols. The symbol table is an array of table entries shown in Figure 4.
	struct _cklf_symtab {

 int

name;

 int

addr;

 int

offs;

 st_type_t
type;

 st_bind_t
bind;

};

Figure 4. The symbol table entry format

name
This member specifies the name of the symbol. Its value is an index into the string table section, giving the location of a null-terminated string.

addr
This members value gives the byte offset of the symbol in the section it refers to. For external symbols it contains zero.

offs
This member refers to the first member of the fix-up chain in the code segment. The value at this address in the code segment refers to the next address to be fixed up. The last location in the fix-up chain contains the value zero. This member contains zero if the symbol is not referred to in the code segment.
type
This member categorises the symbol’s type as follows:

STT_NOTYPE
This value marks the symbol as an imported symbol.

STT_OBJECT
The symbol refers to a chunk in the data segment.

STT_FUNC
The symbol refers to a subroutine in the code segment.

bind
This member specifies the symbol’s binding scope as follows:

STB_LOCAL
The specified symbol is valid only in the local scope and can not be accessed externally.

STB_GLOBAL
The specified symbol is an exported symbol that can referred to externally.

4.4 String Table

String table sections hold null-terminated character sequences, commonly called strings. The CKLF file uses these strings to represent symbol names. One references a string as an index into the string table section. The string table’s last byte is defined to hold a null character, ensuring null termination of all strings. The following Table 4.1 and Table 4.2 show a string table with 13 bytes and the strings associated with various indexes.

	Index
	+0
	+1
	+2
	+3
	+4
	+5
	+6
	+7
	+8
	+9

	0
	m
	a
	i
	n
	\0
	f
	o
	o
	\0
	b

	10
	a
	r
	\0
	\0
	
	
	
	
	
	

Table 4.1 An example string table
	Index
	String

	0
	main

	5
	foo

	9
	bar

	13
	null string

Table 4.2 String Table Indexes

As the example shows, a string table index may refer to any byte in the section. A string may appear more than once, references to substrings may exist, and a single string may be referenced multiple times. Unreferenced strings are also allowed.

5. References

[1] Lindholm, T. and Yellin, F. (1999). The JavaTM Virtual Machine Specification, Second Edition. Addison Wesely Professional.

[2] Lamay, L. and Perkins, C. (1997). Teach yourself JavaTM 1.1 in 21 days, Second Edition. Sams.net Publishing, Indianapolis, Indiana.

