
UC Riverside
October 2008

Time-Portable Programming
the JAviator in Tiptoe OS

Christoph Kirsch
Universität Salzburg

The JAviator
javiator.cs.uni-salzburg.at

javiator.cs.uni-salzburg.at#

• Silviu Craciunas* (Control Systems)

• Harald Röck (Operating Systems)

• Rainer Trummer (Frame, Electronics)

#Supported by a 2007 IBM Faculty Award and the EU ArtistDesign Network of Excellence on Embedded Systems Design
*Supported by Austrian Science Fund Project P18913-N15

http://javiator.cs.uni-salzburg.at/
http://javiator.cs.uni-salzburg.at/

© C. Kirsch 2008

Quad-Rotor Helicopter

Gyro

Propulsion

Gumstix

600MHz XScale, 128MB RAM, WLAN, Atmega uController

© C. Kirsch 2008

© C. Kirsch 2008

© C. Kirsch 2008

Oops

© C. Kirsch 2008

Flight Control

© C. Kirsch 2008

[AIAA GNC 2008]

Outline

1. Time-Portable Programming

2. Tiptoe OS Scheduler

3. Tiptoe OS Memory Management

© C. Kirsch 2008

Process Action

time

action

arrives completes

execution
time

© C. Kirsch 2008

Concurrency

time

action

arrives
completes

concurrent action

resumed
response time

completes
arrives

preempted

© C. Kirsch 2008

Time
• The temporal behavior of a process action is

characterized by its execution time and its
response time

• The execution time is the time it takes to
execute the action in the absence of
concurrent activities

• The response time is the time it takes to
execute the action in the presence of
concurrent activities

© C. Kirsch 2008

Time-Portable Programming

• Time-portable programming specifies and
implements upper AND lower bounds on
response times of process actions

• A program is time-portable if the response
times of its process actions are maintained
across different hardware platforms and
software workloads

• The difference ε between upper and lower
bounds is its “degree of time portability”

© C. Kirsch 2008

Time-Portable Programming

Tiptoe
[USENIX 2008]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]

Outline

1. Time-Portable Programming

2. Tiptoe OS Scheduler

3. Tiptoe OS Memory Management

tiptoe.cs.uni-salzburg.at#

• Silviu Craciunas* (Programming Model)

• Hannes Payer* (Memory Management)

• Harald Röck (VM, Scheduling)

• Ana Sokolova* (Theoretical Foundation)

• Horst Stadler (I/O Subsystem)

#Supported by a 2007 IBM Faculty Award and the EU ArtistDesign Network of Excellence on Embedded Systems Design
*Supported by Austrian Science Fund Project P18913-N15

http://tiptoe.cs.uni-salzburg.at/
http://tiptoe.cs.uni-salzburg.at/

© C. Kirsch 2008

Response-Time Function

0

20

40

60

80

100

0 4 8 12 16 20 24

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

desired memory allocation performance

Bad

Good

fR(w)

© C. Kirsch 2008

fR(1 frame) = 8ms but only 125fps
...

fR(4 frames) = 20ms yields 200fps
...

fR(24 frames) = 100ms yet 240fps

Throughput & Latency

© C. Kirsch 2008

Execution-Time Function

Bad

fE(w)

0

20

40

60

80

100

0 4 8 12 16 20 24

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

desired concurrent performance actual isolated performance

fR(w)

© C. Kirsch 2008

0

20

40

60

80

100

0 4 8 12 16 20 24

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

Scheduled Response Time

Bad

fS(4)

fR(w)-ε

fE(w)

desired concurrent performance actual isolated performance

© C. Kirsch 2008

∀w. fS(w) ≤ fR(w) ?
and

∀w. fR(w) - ε ≤ fS(w) ?

with ε representing the
“degree of time portability”

© C. Kirsch 2008

Scheduling Algorithm

• maintains a queue of ready processes ordered
by deadline and a queue of blocked processes
ordered by release times

• ordered-insert processes into queues

• select-first processes in queues

• release processes by moving and sorting them
from one queue to another queue

© C. Kirsch 2008

50 150 250 350 450 550 650

0.5

1

1.5

2

2.5

3

3.5

4

4.5
bitmap_array_avg
list_avg
matrix_avg

50 150 250 350 450 550 650

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300 bitmap_array_max

list_max
matrix_max

50 150 250 350 450 550 650

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

bitmap_array_stddev
list_stddev
matrix_stddev

Max

Scheduler Overhead

Average Jitter

© C. Kirsch 2008

0 33 65 98 131 180 229 278 327

5

20

100

500

2000

10000

50000

200000

1000000

0 33 65 98 130 179 228 276 325

5

20

100

500

2000

10000

50000

200000

1000000

0 33 67 100 150 200 250 300 349

5

20

100

500

2000

10000

50000

200000

List Array Matrix

Execution Time Histograms

©
 C

. K
ir

sc
h

20
08

Memory Overhead

2
0

2
5

2
10

2
15

2
20

matrix

tree

array

list
2

5 2
8 2

11 2
14

5KB

100KB

5MB

100MB

1GB

memory usage

KB

time instants (t)

memory usage 750 processes

Outline

1. Time-Portable Programming

2. Tiptoe OS Scheduler

3. Tiptoe OS Memory Management

© C. Kirsch 2008

“Compact-Fit”
[USENIX 2008]

• malloc(n) takes O(1)

• free(n) takes O(1) (or O(n) if compacting)

• access takes one indirection

• memory fragmentation is bounded and
predictable in constant time

© C. Kirsch 2008

The Problem

• Fragmentation
‣ Compaction
• References
‣ Abstract

Space

Partition Memory into Pages

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

Partition Pages into Blocks

Size-Class for
Objects =< 32

Size-Classes

Size-Class for
64 < Objects =< 128

Size-Class for
32 < Objects =< 64

©
 C

. K
ir

sc
h

20
08

Objects =< 32 Objects =< 128Objects =< 64

2

1

0

1

0

3

2

1

0

Invariant: Size-Class Compact

©
 C

. K
ir

sc
h

20
08

just move ‘last’ object

2

1

0

3

2

1

0

“Compact-Fit”
(Bounded Compaction)

Objects =< 32 Objects =< 128Objects =< 64

1

0

©
 C

. K
ir

sc
h

20
08

2

1

0

3

2

1

0

Partial Compaction

Objects =< 32 Objects =< 128Objects =< 64

1

0

Current/Future Work

• Concurrent memory management

• Process management

• I/O subsystem

Thank you

