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[AIAA GNC 2008]
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2. Tiptoe OS Scheduler
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Time
• The temporal behavior of a process action is 

characterized by its execution time and its 
response time

• The execution time is the time it takes to 
execute the action in the absence of 
concurrent activities

• The response time is the time it takes to 
execute the action in the presence of 
concurrent activities
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Time-Portable Programming

• Time-portable programming specifies and 
implements upper AND lower bounds on 
response times of process actions

• A program is time-portable if the response 
times of its process actions are maintained 
across different hardware platforms and 
software workloads

• The difference ε between upper and lower 
bounds is its “degree of time portability”
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Time-Portable Programming

Tiptoe
[USENIX 2008]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]
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Response-Time Function
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fR(1 frame) = 8ms but only 125fps
...

fR(4 frames) = 20ms yields 200fps
...

fR(24 frames) = 100ms yet 240fps

Throughput & Latency
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Execution-Time Function
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∀w. fS(w) ≤ fR(w) ?
and

∀w. fR(w) - ε ≤ fS(w) ?

with ε representing the
“degree of time portability”
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Scheduling Algorithm

• maintains a queue of ready processes ordered 
by deadline and a queue of blocked processes 
ordered by release times

• ordered-insert processes into queues

• select-first processes in queues

• release processes by moving and sorting them 
from one queue to another queue
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“Compact-Fit”
[USENIX 2008]

• malloc(n) takes O(1)

• free(n) takes O(1) ( or O(n) if compacting)

• access takes one indirection

• memory fragmentation is bounded and 
predictable in constant time
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The Problem

• Fragmentation
‣ Compaction
• References
‣ Abstract

Space



Partition Memory into Pages
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Partition Pages into Blocks

Size-Class for
Objects =< 32



Size-Classes

Size-Class for
64 < Objects =< 128

Size-Class for
32 < Objects =< 64
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Current/Future Work

• Concurrent memory management

• Process management

• I/O subsystem
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