

The JAviator Project

Christoph Kirsch Universität Salzburg

CHESS Seminar, February 2006

Vision

High-performance real-time applications entirely written in Java using standard JDKs

Challenges

I. application: flight control (inspired by the Starmac project at Stanford) 2. memory model: multiple heaps 3. concurrency model: exotasks 4. write-once-run-anywhere in the temporal domain

Team

• Salzburg:

- 2 PhD students (Harald Roeck, Rainer Trummer), 1 masters student (Werner Gitschthaler)
- Timisoara:
 - 1 PhD student (Daniel Iercan)
- IBM T.J. Watson:
 - 1 staff researcher (David Bacon), possibly more

Platform

It's a 'Bicycle Wheel'

The hardware design including all blueprints will be made available at:

javiator.cs.uni-salzburg.at

Drawing	Rotor Bearings DDLF-1060	Engineer	Rainer Trummer
Material	Stainless-Steel Alloy	Company	University of Salzburg
Units Scale	Millimeters 1:1	Department	Computer Science
Project	JAviator Quadrotor	Copyright	(c) 2006 Rainer Trummer
Created	01/07/2006	Disclaimer	All Liability Claims Excluded
Released	mm/dd/2006	License	GPL Version 3, (month) 2006

Ouch: Carbon Fiber Blades

Weight..less

gear transmission ratio: 6:1 max. rotor speed: 1850 rpm

	Drawing Rotor Axle			1442183	Engineer	Rainer Trummer
	Material		Titan Alloy TiAl6	V4	Company	University of Salzburg
	Units	Scale	Millimeters	1:1	Department	Computer Science
	Project		JAviator Quadro	otor	Copyright	(c) 2006 Rainer Trummer
	Created		01/07/2006		Disclaimer	All Liability Claims Excluded
Released mm/dd/2006		10022046	License	GPL Version 3, (month) 2006		

Brushless Motors

© Modellbau-69Hase, 2006

Power: 100W Weight: 26g Thrust: 600g

3 Gyros, 3 Accelerometers, and 3 Magnetometers

Microstrain 3DM-GX1 Dynamic orientation: gyros Static orientation: accs, mags Fusion: onboard programmable filter I/O: RS-232, RS-485, analog output

10 Ultrasonic Sensors

Devantech SRF10 Sonar Ranger Frequency: 40KHz Range: 3cm-6m I/O: I2C Bus

...but what about lasers?

Processor Board

Board: Gumstix CPU: XScale 400MHz RAM: 64MB Flash: 16MB Network: Bluetooth OS: Linux 2.6

click to enlarge

I/O Board

Board: Robostix Bus: I2C I/O: 6 PWM, 8 A/D, 25 GPIO, 2 UART (Atmega)

Rate Requirements

- gyros, accs, mags: up to 350Hz
- ultrasonic sensors: -12Hz
- motors: -100Hz

Current Capabilities

- IBM's real-time GC (Metronome) has a worstcase latency of 700us
- "eventrons" may run at up to 20KHz with a worst-case jitter of 5us (on 2.6 Linux kernel with preemption patches)

• ...but on a 2.4GHz Pentium, though with a 100MB heap...

port Metronome to ARM (done at IBM)
integrate GC and exotasks (IBM, Salzburg)
enable logical execution times (Salzburg)
write-once-run-anywhere in the temporal domain

RT Programming Tradition

Implementation

- JVMs often map Java threads 1:1 to POSIX threads (IBM's J9 does this)
- POSIX threads invoke system calls to do I/O
 - we have implemented a POSIX-compliant threading library that schedules system calls with respect to a given queueing policy

System Call Scheduling

- system calls are seen as 'network packets'
- threads 'send' system calls
- system calls are enqueued and dequeued according to a given policy
- multiple queues: disk, network, cpu, memory, real-time I/O

→ part of the TAP project: <u>tap.cs.uni-salzburg.at</u>

Traffic Shaping System Calls

- queueing discipline: prioritized FIFO
- thread behavior is the classification scheme:
 - e.g., "short-running" threads may have higher "queueing priority" than "long-running" threads

improves latency of interactive threads

Example: Web Server Latency

