
The JAviator Project
Christoph Kirsch

Universität Salzburg

CHESS Seminar, February 2006

© C. Kirsch 2006

Vision

High-performance real-time
applications entirely written
in Java using standard JDKs

2

© C. Kirsch 2006

Challenges

1. application: flight control (inspired
by the Starmac project at Stanford)

2. memory model: multiple heaps

3. concurrency model: exotasks

4. write-once-run-anywhere in the
temporal domain

3

© C. Kirsch 2006

Team

• Salzburg:

• 2 PhD students (Harald Roeck, Rainer Trummer),
1 masters student (Werner Gitschthaler)

• Timisoara:

• 1 PhD student (Daniel Iercan)

• IBM T.J. Watson:

• 1 staff researcher (David Bacon), possibly more

4

© C. Kirsch 2006

Platform

5

© C. Kirsch 2006

It’s a ‘Bicycle Wheel’

6

© C. Kirsch 2006

Engineer Rainer Trummer

Department Computer Science

Company University of Salzburg

Copyright (c) 2006 Rainer Trummer

Disclaimer All Liability Claims Excluded

License GPL Version 3, (month) 2006

Drawing Rotor Bearings DDLF-1060

Material Stainless-Steel Alloy

Project JAviator Quadrotor

Created 01/07/2006

Released mm/dd/2006

Units Scale Millimeters 1:1

Circlip

11.2

0
.6

3

The hardware design
including all blueprints
will be made available at:

javiator.cs.uni-salzburg.at

Design

7

© C. Kirsch 2006

Engineer Rainer Trummer

Department Computer Science

Company University of Salzburg

Copyright (c) 2006 Rainer Trummer

Disclaimer All Liability Claims Excluded

License GPL Version 3, (month) 2006

Drawing Rotor Blade CCW

Material Carbon-Fiber 1.0 mm

Project JAviator Quadrotor

Created 12/28/2005

Released mm/dd/2006

Units Scale Millimeters 1:1

200

50 150

4

1
9

3
5

5

3

5

5

1
4

1

44°

5
0

Ouch: Carbon Fiber Blades

8

© C. Kirsch 2006

Engineer Rainer Trummer

Department Computer Science

Company University of Salzburg

Copyright (c) 2006 Rainer Trummer

Disclaimer All Liability Claims Excluded

License GPL Version 3, (month) 2006

Drawing Rotor Axle

Material Titan Alloy TiAl6V4

Project JAviator Quadrotor

Created 01/07/2006

Released mm/dd/2006

Units Scale Millimeters 1:1

1
1

1
0

1
7

5

5
5

7
5

M4

5

1
0

3
1

M4

6g6

Weight..less

9

gear transmission ratio: 6:1
max. rotor speed: 1850 rpm

© C. Kirsch 2006

Brushless Motors

10

© Modellbau-69Hase, 2006

Power: 100W
Weight: 26g
Thrust: 600g

© C. Kirsch 2006

3 Gyros, 3 Accelerometers,
and 3 Magnetometers

11

Microstrain 3DM-GX1
Dynamic orientation: gyros
Static orientation: accs, mags
Fusion: onboard programmable filter
I/O: RS-232, RS-485, analog output

© C. Kirsch 2006

10 Ultrasonic Sensors

12

Devantech SRF10 Sonar Ranger
Frequency: 40KHz
Range: 3cm-6m
I/O: I2C Bus

...but what about lasers?

© C. Kirsch 2006

Processor Board

13

Board: Gumstix
CPU: XScale 400MHz
RAM: 64MB
Flash: 16MB
Network: Bluetooth
OS: Linux 2.6

© C. Kirsch 2006

I/O Board

14

Board: Robostix
Bus: I2C
I/O: 6 PWM,

8 A/D,
25 GPIO,
2 UART (Atmega)

© C. Kirsch 2006

Rate Requirements

15

• gyros, accs, mags: up to 350Hz

• ultrasonic sensors: ~12Hz

• motors: ~100Hz

© C. Kirsch 2006

Current Capabilities

• IBM’s real-time GC (Metronome) has a worst-
case latency of 700us

• “eventrons” may run at up to 20KHz with a
worst-case jitter of 5us (on 2.6 Linux kernel
with preemption patches)

• ...but on a 2.4GHz Pentium, though with a
100MB heap...

16

© C. Kirsch 2006

Next Steps

• port Metronome to ARM (done at IBM)

• integrate GC and exotasks (IBM, Salzburg)

• enable logical execution times (Salzburg)

➡ write-once-run-anywhere in the temporal
domain

17

© C. Kirsch 2006

RT Programming Tradition

0 1 2 3 4 5 6 7 8 9 10

Environment

System

Deadline

Input

18

Output

Release

© C. Kirsch 2006

Logical Execution Time (LET)

0 1 2 3 4 5 6 7 8 9 10

Environment

System

OutputInput

19

Programming as if there is enough CPU time

Compiler checks if there is enough CPU timeIf not, program is not time-safe:
compiler error or runtime exception

© C. Kirsch 2006

LET Programming

0 1 2 3 4 5 6 7 8 9 10

Environment

System
20

Input

Input
Output

Output
Input

Output

© C. Kirsch 2006

Single CPU, EDF Scheduler

0 1 2 3 4 5 6 7 8 9 10

Environment

System
21

Input

Input
Output

Output
Input

Output

© C. Kirsch 2006

Implementation

• JVMs often map Java threads 1:1 to POSIX
threads (IBM’s J9 does this)

• POSIX threads invoke system calls to do I/O

➡ we have implemented a POSIX-compliant
threading library that schedules system calls
with respect to a given queueing policy

22

© C. Kirsch 2006

System Call Scheduling

• system calls are seen as ‘network packets’

• threads ‘send’ system calls

• system calls are enqueued and dequeued
according to a given policy

• multiple queues: disk, network, cpu, memory,
real-time I/O

➡ part of the TAP project: tap.cs.uni-salzburg.at

23

© C. Kirsch 2006

Logical Execution Time Policy

0 1 2 3 4 5 6 7 8 9 10

Environment

System

OutputInput

24

© C. Kirsch 2006

Traffic Shaping System Calls

• queueing discipline: prioritized FIFO

• thread behavior is the classification scheme:

• e.g., “short-running” threads may have higher
“queueing priority” than “long-running”
threads

➡ improves latency of interactive threads

25

© C. Kirsch 2006

Example: Web Server Latency

26

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

’table_inc.txt’
’table_dec.txt’

’table_const.txt’

Thank you

