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Vision

High-performance real-time 
applications entirely written 
in Java using standard JDKs
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Challenges

1. application: flight control (inspired 
by the Starmac project at Stanford)

2. memory model: multiple heaps

3. concurrency model: exotasks

4. write-once-run-anywhere in the 
temporal domain
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Team

• Salzburg:

• 2 PhD students (Harald Roeck, Rainer Trummer), 
1 masters student (Werner Gitschthaler)

• Timisoara:

• 1 PhD student (Daniel Iercan)

• IBM T.J. Watson:

• 1 staff researcher (David Bacon), possibly more
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Platform
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It’s a ‘Bicycle Wheel’
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Engineer Rainer Trummer

Department Computer Science

Company University of Salzburg

Copyright (c) 2006 Rainer Trummer

Disclaimer All Liability Claims Excluded

License GPL Version 3, (month) 2006

Drawing Rotor Bearings DDLF-1060

Material Stainless-Steel Alloy

Project JAviator Quadrotor

Created 01/07/2006

Released mm/dd/2006

Units Scale Millimeters 1:1
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The hardware design 
including all blueprints 
will be made available at:

javiator.cs.uni-salzburg.at

Design
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Engineer Rainer Trummer

Department Computer Science

Company University of Salzburg

Copyright (c) 2006 Rainer Trummer

Disclaimer All Liability Claims Excluded

License GPL Version 3, (month) 2006

Drawing Rotor Blade CCW

Material Carbon-Fiber 1.0 mm

Project JAviator Quadrotor

Created 12/28/2005

Released mm/dd/2006

Units Scale Millimeters 1:1
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Ouch: Carbon Fiber Blades
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Engineer Rainer Trummer

Department Computer Science

Company University of Salzburg

Copyright (c) 2006 Rainer Trummer

Disclaimer All Liability Claims Excluded

License GPL Version 3, (month) 2006

Drawing Rotor Axle

Material Titan Alloy TiAl6V4

Project JAviator Quadrotor

Created 01/07/2006

Released mm/dd/2006

Units Scale Millimeters 1:1
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Weight..less
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gear transmission ratio: 6:1
max. rotor speed: 1850 rpm
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Brushless Motors
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© Modellbau-69Hase, 2006

Power: 100W
Weight: 26g
Thrust: 600g
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3 Gyros, 3 Accelerometers, 
and 3 Magnetometers
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Microstrain 3DM-GX1
Dynamic orientation: gyros
Static orientation: accs, mags
Fusion: onboard programmable filter
I/O: RS-232, RS-485, analog output
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10 Ultrasonic Sensors
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Devantech SRF10 Sonar Ranger
Frequency: 40KHz
Range: 3cm-6m
I/O: I2C Bus

...but what about lasers?
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Processor Board
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Board: Gumstix
CPU: XScale 400MHz
RAM: 64MB
Flash: 16MB
Network: Bluetooth
OS: Linux 2.6
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I/O Board
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Board: Robostix
Bus: I2C
I/O: 6 PWM,

8 A/D,
25 GPIO,
2 UART (Atmega)
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Rate Requirements
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• gyros, accs, mags: up to 350Hz

• ultrasonic sensors: ~12Hz

• motors: ~100Hz
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Current Capabilities

• IBM’s real-time GC (Metronome) has a worst-
case latency of 700us

• “eventrons” may run at up to 20KHz with a 
worst-case jitter of 5us (on 2.6 Linux kernel 
with preemption patches)

• ...but on a 2.4GHz Pentium, though with a 
100MB heap...
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Next Steps

• port Metronome to ARM (done at IBM)

• integrate GC and exotasks (IBM, Salzburg)

• enable logical execution times (Salzburg)

➡ write-once-run-anywhere in the temporal 
domain
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RT Programming Tradition
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Output

Release
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Logical Execution Time (LET)
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Programming as if there is enough CPU time

Compiler checks if there is enough CPU timeIf not, program is not time-safe:
compiler error or runtime exception
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LET Programming
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Single CPU, EDF Scheduler
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Implementation

• JVMs often map Java threads 1:1 to POSIX 
threads (IBM’s J9 does this)

• POSIX threads invoke system calls to do I/O

➡ we have implemented a POSIX-compliant 
threading library that schedules system calls 
with respect to a given queueing policy
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System Call Scheduling

• system calls are seen as ‘network packets’

• threads ‘send’ system calls

• system calls are enqueued and dequeued 
according to a given policy

• multiple queues: disk, network, cpu, memory, 
real-time I/O

➡ part of the TAP project: tap.cs.uni-salzburg.at
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Logical Execution Time Policy
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Traffic Shaping System Calls

• queueing discipline: prioritized FIFO

• thread behavior is the classification scheme:

• e.g., “short-running” threads may have higher 
“queueing priority” than “long-running” 
threads

➡ improves latency of interactive threads
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Example: Web Server Latency
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Thank you


