
TU München
June 2009

Distributed, Modular HTL

Christoph Kirsch
Universität Salzburg



htl.cs.uni-salzburg.at#

• Thomas Henzinger (IST Austria)

• Christoph Kirsch (University of Salzburg)

• Eduardo Marques (University of Porto)

• Ana Sokolova* (University of Salzburg)

#Supported by a 2007 IBM Faculty Award, the EU ArtistDesign Network of Excellence 
on Embedded Systems Design, and Austrian Science Fund Project P18913-N15.
*Supported by Austrian Science Fund Project V00125.

http://htl.cs.uni-salzburg.at/
http://htl.cs.uni-salzburg.at/


The JAviator
javiator.cs.uni-salzburg.at



© C. Kirsch 2009

Quad-Rotor Helicopter















Gyro

Propulsion



Gumstix

600MHz XScale, 128MB RAM, WLAN, Atmega uController



© C. Kirsch 2009



© C. Kirsch 2009



© C. Kirsch 2009

Indoor Flight
STARMAC Controller



© C. Kirsch 2009

Outdoor Flight
STARMAC Controller



© C. Kirsch 2009

Outdoor Flight
Salzburg Controller



© C. Kirsch 2009

What’s next?

• Autonomous single-vehicle flights

• position controller

• waypoint controller

• Autonomous multi-vehicle flights

• mission controller



© C. Kirsch 2009

Time-Portable Programming

Tiptoe
[USENIX 2008, SIES 2009]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]



©
 C

. K
ir

sc
h
 2

0
0
9

Logical Execution Time

0 1 2 3 4 5 6 7 8 9 10

Plant

Control System

Sensor
Task

Actuator

Logical Execution Time



©
 C

. K
ir

sc
h
 2

0
0
9

Actual Execution Time

0 1 2 3 4 5 6 7 8 9 10

Plant

Control System

Sensor

Deadline

Actuator
Task Task



©
 C

. K
ir

sc
h
 2

0
0
9

Time Determinism

Plant

Control System

A system’s I/O behavior is input-determined if,
for all sequences I of input values and times,

the system always produces
unique sequences f(I) of output values and times.



Time-Portable Programming
with

Exotasks
=

Java + HTL +
Real-Time Garbage Collection



Time-Portable Programming
with

Tiptoe
=

Virtual Machines +
Variable-Bandwidth Servers +

Compact-fit Memory Management



©
 C

. K
ir

sc
h
 2

0
0
9

Hierarchical Timing Language

• HTL is a real-time coordination language

• HTL essentially has four building blocks:

• task (computation, implemented in C/Java)

• mode (sequential composition)

• module (parallel composition)

• program (abstraction, refinement)

• an HTL program is a hierarchical, tree-like 
structure whose nodes are such blocks



© C. Kirsch 2009

Tasks

• tasks have input and output ports

• tasks compute outputs from inputs

! outputs are determined by the inputs

! no side effects, no synchronization

• tasks execute periodically



© C. Kirsch 2009

Communicators

• tasks with the same period may 
communicate through ports

! creates task precedences

• tasks with different periods must 
communicate through communicators

! creates logical execution time (LET)

• communicators are periodically updated, 
program-wide variables



© C. Kirsch 2009

Example



© C. Kirsch 2009

Mode



© C. Kirsch 2009

Program and Module



© C. Kirsch 2009

Compilation



© C. Kirsch 2009

Platform-Independent

• well-formedness

! syntactic constraints (periods, task 
precedences, refinement)

• race freedom

! at most one update of a given 
communicator per time instant



© C. Kirsch 2009

Platform-Dependent

• time safety (computation schedulability)

! each task invocation completes before the end 
of its logical execution time

• transmission safety (communication schedulability)

! each communicator update is transmitted within 
one instance of the communicator’s period



Well-formed, race-free, 
time-safe, and transmission-

safe HTL programs
are

time-deterministic



© C. Kirsch 2009

Modularity



© C. Kirsch 2009

Complexity

na number of communicator accesses per task nc number of communicators nM number of modules per program
nm number of modes per module np number of ports per task nT number of tasks per mode
nw number of communicator writes per task nC

m↓ total number of modes in C nP
m↓ total number of modes in P

nC
T↑ number of top-level tasks in C nP

T↑ number of top-level tasks in P ∆max maximal value of mode periods

ϕ C DAϕ (C, P ) CAϕ (C, P ) CAϕ (P )

Well-formedness any C nC
m↓ nT np nP

m↓ nT np

Race freedom top P nC
T↑ nw + nM nc nP

T↑ nw + nM nc
ref. C 1

Transmission safety any C 1 nc

Time safety top P (nm ∆max)nM

(nm ∆max)nM

ref. C 1

Code generation any C nC
m↓ (nT na + nm) nP

m↓ (nT na + nm)



© C. Kirsch 2009

Refinement



A concrete HTL program
that refines

a time-safe, abstract HTL program
is also

time-safe



© C. Kirsch 2009

Runtime Patching



© C. Kirsch 2009

Preserving Semantics



Thank you


