
SPLASH-E 2018 @ SPLASH, Boston, Massachusetts, November 2018

Take a Selfie in Class
Christoph M. Kirsch



Teaching versus Research: 
What is more important?



Research is a side-effect of teaching



Producing just two students that 
are better than you may be enough!



How would broadly acknowledging that 
change funding and science in general?



selfie.cs.uni-salzburg.at

http://selfie.cs.uni-salzburg.at


What is the meaning 
of this sentence?

Selfie as in
self-referentiality



Teaching the Construction of
Semantics of Formalisms

Compilation

Interpretation

Virtualization

Verification



Joint Work

✤ Alireza Abyaneh

✤ Martin Aigner

✤ Sebastian Arming

✤ Christian Barthel

✤ Simon Bauer

✤ Thomas Hütter

✤ Alexander Kollert

✤ Michael Lippautz

✤ Cornelia Mayer

✤ Philipp Mayer

✤ Christian Moesl

✤ Simone Oblasser

✤ Clement Poncelet

✤ Sara Seidl

✤ Ana Sokolova

✤ Manuel Widmoser



Inspiration

✤ Armin Biere: SAT/SMT Solvers

✤ Donald Knuth: Art

✤ Jochen Liedtke: Microkernels

✤ Hennessy/Patterson: RISC

✤ Niklaus Wirth: Compilers



Selfie: Teaching Computer Science 
[selfie.cs.uni-salzburg.at]
✤ Selfie is a self-referential 10k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset of C called C Star 
(C*) to a tiny subset of RISC-V called RISC-U,

2. a self-executing emulator called mipster that executes RISC-U code including itself 
when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster and can host all of 
selfie including itself,

4. a self-executing symbolic execution engine called monster that executes RISC-U code 
symbolically when compiled with starc which includes all of selfie,

5. a tiny C* library called libcstar utilized by all of selfie, and

6. a tiny, experimental SAT solver called babysat.

http://selfie.cs.uni-salzburg.at


Selfie supports the official 64-bit RISC-V toolchain 
and runs on the spike emulator and the pk kernel



Also, there is a…

✤ linker (in-memory only)

✤ disassembler (w/ source code line numbers)

✤ debugger (tracks full machine state w/ rollback)

✤ profiler (#proc-calls, #loop-iterations, #loads, #stores)

✤ ELF boot loader (same code for mipster/hypster)



Code as Prose



Discussion of Selfie reached  
3rd place on Hacker News

news.ycombinator.com

http://news.ycombinator.com


Code

Book (draft)

Website
selfie.cs.uni-salzburg.at

leanpub.com/selfie

github.com/cksystemsteaching/selfie

Slides (400 done, ~100 todo)
selfie.cs.uni-salzburg.at/slides

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie
http://selfie.cs.uni-salzburg.at/slides


uint64_t atoi(uint64_t *s) { 
    uint64_t i; 
    uint64_t n; 
    uint64_t c; 

    i = 0; 
    n = 0; 
    c = *(s+i); 

    while (c != 0) { 
        n = n * 10 + c - '0'; 
        if (n < 0) 
            return -1; 

        i = i + 1; 
        c = *(s+i); 
    } 

    return n; 
}

5 statements:
assignment

while
if

return
procedure()

no data types other
than uint64_t and
uint64_t* and

dereferencing:
the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

library: exit, malloc, open, read, write



Minimally complex, 
maximally self-
contained system
Programming languages 
vs systems engineering?



> make 
cc -w -O3 -m64 -D'main(a,b)=main(int argc, char** argv)' \ 
-Duint64_t=‘unsigned long long' selfie.c -o selfie

bootstrapping selfie.c into x86 selfie executable  
using standard C compiler



> ./selfie 
usage: selfie 
{ -c { source } | -o binary | [ -s | -S ] assembly | -l binary | -
sat dimacs } [ ( -m | -d | -r | -n | -y | -min | -mob ) 0-64 ... ]

selfie usage



> ./selfie -c selfie.c 

selfie compiling selfie.c with starc 

289095 characters read in 10034 lines and 1335 comments 
with 170555(58.99%) characters in 43772 actual symbols 
341 global variables, 438 procedures, 411 string literals 
2517 calls, 1139 assignments, 86 while, 874 if, 391 return 
symbol table search time was 2 iterations on average and 
48795 in total 

170504 bytes generated with 39496 instructions and 12520 bytes of data 

init:    lui: 2296(5.81%), addi: 13595(34.40%) 
memory:  ld: 7106(17.98%), sd: 5884(14.89%) 
compute: add: 3422(8.65%), sub: 704(1.78%), mul: 807(2.40%), 
         divu: 78(0.19%), remu: 35(0.80%) 
control: sltu: 624(1.57%), beq: 964(2.43%), 
         jal: 3555(8.99%), jalr: 438(1.10%), ecall: 8(0.20%)

compiling selfie.c with x86 selfie executable

(takes seconds)



> ./selfie -c selfie.c -m 3 -c selfie.c 
selfie compiling selfie.c with starc 
... 
selfie executing selfie.c with 3MB physical memory on mipster 
selfie compiling selfie.c with starc 
... 
selfie.c exiting with exit code 0 and 2.11MB mallocated memory 
... 
summary: 285261695 executed instructions and 2.10MB mapped memory 
init:    lui: 836418(0.29%), addi: 120536779(42.25%) 
memory:  ld: 61562613(21.58%), sd: 39713446(13.92%) 
compute: add: 7234823(2.53%), sub: 5903746(2.60%), mul: 
6878318(2.41%), divu: 2100676(0.73%), remu: 2016943(0.70%) 
control: sltu: 4436689(1.55%), beq: 6011381(2.10%), jal: 
18600397(6.52%), jalr: 9118787(3.19%), ecall: 310679(0.10%) 
profile: total,max(ratio%)@addr(line#),2max,3max 
calls:   9118787,2492778(27.33%)@0x282C(~1671),... 
loops:   500189,164040(32.79%)@0x355C(~1859),... 
loads:   61562613,2492778(4.40%)@0x2840(~1671),... 
stores:  39713446,2492778(6.27%)@0x2830(~1671),...

compiling selfie.c with x86 selfie executable into a RISC-U executable  
and  

then running that RISC-U executable to compile selfie.c again  
(takes a minute)



> ./selfie -c selfie.c -o selfie1.m -m 3 -c selfie.c -o selfie2.m 

selfie compiling selfie.c with starc 
... 
170632 bytes with 39496 instructions and 12520 bytes of data written 
into selfie1.m 

selfie executing selfie1.m with 3MB physical memory on mipster 
selfie compiling selfie.c with starc 

... 
170632 bytes with 39496 instructions and 12520 bytes of data written 
into selfie2.m 

selfie1.m exiting with exit code 0 and 2.11MB mallocated memory 
... 
summary: 285338515 executed instructions and 2.10MB mapped memory

compiling selfie.c into a RISC-U executable selfie1.m  
and  

then running selfie1.m to compile selfie.c  
into another RISC-U executable selfie2.m  

(takes a minute)



> ./selfie -c selfie.c -m 6 -c selfie.c -m 3 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes hours)



> ./selfie -c selfie.c -m 6 -c selfie.c -y 3 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes 2 minutes)



Take a Selfie 
in Class
How can we leverage self-referentiality 
in teaching?



Self-Grading :-)



Self-Grading
(self.py)

Self-
Compilation/

Execution/
Hosting

Self-
Containment

Important for
teachers

Important for
students



<<  >> sll  srl

left_shift()
right_shift() syscalls

compiler
disassembler

emulator
hypervisor

profiler/debugger

C* RISC-U



unsigned + code

0x150(~6): ld $t0,-16($gp) 
0x154(~6): addi $t1,$zero,1 
0x158(~6): add $t0,$t0,$t1 
0x15C(~6): sd $t0,-16($gp)

64-bit RISC-V add instruction

C code for unsigned 64-bit
integer addition



unsigned + and add

64-bit RISC-V add instruction

C code for unsigned 64-bit integer addition

selfie compiler gcc/clang



Language Homework Ideas

✤ Implement bitwise operators such as bitwise shifting 
(<<, >> as well as sll, srl)

✤ Multi-dimensional arrays and recursive structs

✤ Characters, signed integers, sizeof()

✤ Lazy evaluation of Boolean operators



C* RISC-U

fork() ecall fork

compiler
disassembler

emulator
hypervisor

profiler/debugger



Synergy of 
Compiler & Emulator & Hypervisor



Self-Execution

emulator0 context0

context1

execute

emulator1

user code

execute

exception

exception



Self-Execution: Concurrency

emulator0 context0

context1 context2

user2

execute

emulator1

user1

execute

exception

exception

exception



Synergy of Emulator & Hypervisor



Virtualization: Concurrency

emulator context0

context1 context2

user2

execute

user1

hypervisor
switch

exception

exception



Runtime Homework Ideas

✤ Processes and threads

✤ Locking and scheduling

✤ Atomic instructions and lock-free data structures

✤ Multicore support

✤ Large address spaces

✤ Conservative garbage collection



Thank you!


