High-Level Programming of
Real-Time and Concurrent
Software Systems

Christoph Kirsch

Universitit Salzburg

Purdue University, December 2005

Real-Time Programming

A : A

Inputg Output Inputé Output
UHHIE H .

0 1 2 3 4 5 6 / 38 9 10

© C. Kirsch 20053 2

RT Programming Tradition

Release : i Deadline

© C. Kirsch 2005 4

Logical Execution Time (LET)

. Programming as if there is enough CPU time
Input @

. Compiléf nheghsodrdmrs isamnoagh4PU time

compiler error or runtime exception

0 1 2 3 4 5 6 / 38 9 10

© C. Kirsch 20053 5

LET Programming

: A I

Output Input

© C. Kirsch 20053 6

Single CPU, EDF Scheduler

© C. Kirsch 20053 7

Two CPUs, TDMA Network

© C. Kirsch 2005 8

“From Control Models

“Giott8:Aeglihime Code”

Triggered Language
for Embedded

Runtime System.

© C. Kirsch 20053

[Proc. IEEE, 2003}

[EMSOFT, 2001}

“The Embedded Machine:

Predictable, Portable [PLDI, 2002}
Real-Time Code” Embedded Machine
POSIX Threads

Linux

© C. Kirsch 20053 10

E Code

Al :output (T1) \

A2 :output (T2)

Al :output(T1)

output (T2) T

input (T2)

input (T1)

release (T2)

outputizﬁ)

input (T1)

input(T2) T

release (T1l)

futurei(5,A2)

fut'.’t_lse(S,Al)

Output Input

3 4 5 6

re kease-f}punridteoooooooooo—xelease (T2)

/

input(I%i

release (T1)

8 futturei(5,A2)

© C. Kirsch 2005

11

Schedule-Carrying Schedule-Carrying
Code Code

E+S Machine E+S Machine

POSIX Threads RT Ethernet.

[EMSOFT, 2003} [VEE, 2005l [LCTES, 20051

© C. Kirsch 20053 12

(]
[

L !

A L

" ‘0

0. ‘0
®apast®
Ny
¢“‘
*

{ LET and *
Y Java

Next-

Greneration.
Griotto
Project.

[w/ IBM T.J. Watson}

[w/ EPF Lausanne
& UC Berkeley}

JAvzator

Azrfava

Project. Project.

© C. Kirsch 20053 tw/ UC Berkeley] 13

The JAviator Project

javiator.cs.uni-salzburg.at

e (Goal:

= enable high-performance real-time code,
e.g., flight control software, to be written
entirely in Java

e Challenge:

m cnable submillisecond, predictable real-time
behavior while maintaining as much original
Java semantics as possible

© C. Kirsch 2005 14

e the JAviator is a quadrotor UAV

e we are currently building our

own prototype w/ §00g payload

e single XScale 4ooMHz CPU w/
Bluetooth onboard running RT
Linux and IBM’s J9g JVM

e 3 gyros, I 3D compass, §
ultrasonic sensors, 4 brushless
motors, 1 LiPoly battery

© C. Kirsch 20053

15

Collaboration
see also [EMSOFT 2005]

e IBM (3 staff researchers lead by D.F. Bacon):

= design and implementation of high-
performance real-time garbage collection
(Metronome)

¢ Our team (2 PhD students):

= design and implementation of a LET-based
concurrency model that extends Java’s
notion of “write-once-run-anywhere” to the
temporal domain
© C. Kirsch 2005

16

Exotasks and Pods

® exotasks are individually garbage-collected
software tasks that communicate by message

passing through so-called pods

e exotasks may allocate memory and mutate
their pointer structures

e exotasks may neither observe global mutable
state nor their mutable state may be observed

e pods connect exotasks and “send-data-by-
garbage-collection”

© C. Kirsch 20053

o

Implementation

e each exotask has its own private heap and fully
preemptable garbage collector

e exotasks will be compiled into E code (the
timing part) and dynamically scheduled and
garbage collected (the functional part)

e exotasks with LETs may also be compiled into
G code (schedule-carrying code extended by
garbage-collecting instructions [M. Harringer,

MSc Thesis, University of Salzburg, 2005}

© C. Kirsch 20053 18

The TAP Project

tap.cs.uni-salzburg.at

e (Goal:

m enable efficient, predictable, and compositional
concurrent programming of high-performance
servers such as file and web servers

e Approach: “Threading by Appointment”

m separate I/O behavior from CPU scheduling,
and control I/O behavior explicitly

© C. Kirsch 20053

I9

Threading by Appointment

[Monterey Workshop, 20041

e TAP threads must have appozntments to
“communicate”, e.g., to invoke system calls

e Appointments determine the order and tzme
instant when to “communicate”, e.g., to execute
system calls

e Appointments are made by the TAP runtime
system transparently under a POSIX-compliant
API according to a given TAP policy

© C. Kirsch 20053 20

Example: Locking

begfins loclés R

thread _’IIIIIIII%

attempts _
to lock R unlo¢ks R

0 1 2 3 4 5 6 / 38 9 10

© C. Kirsch 20053 21

Example: TAP Locking

begfins locl%s R unlocé:ks R
_ Appomtment
bloécks blo:cks

© C. Kirsch 20053 22

Reactor vs. Scheduler

| handle

preempts

> releases

preempts dispatches

utilizes

© C. Kirsch 2005 23

Trafhic Shaping...

e ...controls volume, throughput, and latency of
network traffic, using:

e queueing disciplines such as:

o the Jeaky-bucket algorithm (creates fixed
transmission rate on varying flows)

o the token bucket algorithm (allows bursts
while limiting average transmission rates)

e classification schemes: nteractive vs. bulk traffic

© C. Kirsch 20053

24

Trafhic Shaping System Calls

e system call = network packet
e appointment policy = queueing discipline
e thread behavior = classification scheme

e e.g., “short-running” threads may have higher
“appointment priority” than “long-running”
threads

= improves latency of interactive threads

© C. Kirsch 20053

25

Latency

4 .5e+06 T T T T T T T T T
’table_inc.txt> —+—
"table_dec.txt’
4e+06 | ’table_const.txt’ —x— -
3.5e+06 3
3e+06 3
2.5e+06 3

2e+06

1.5e+06

1e+06

500000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

0

© C. Kirsch 2003

Throughput

TAP 100 threads

3PP ! ! ! ! !
3000 [+t s g S T O :
2500] (141D i i L AT I st _
2000
1500
fo e HIH e S T T :
O AR M AL AR et A Lo AR L LR R AR KRR RRR] AL 1
SODF 2 S AE 1 LERTE * ,xxxx\%x\ aé% *x*xx%X%%X%X%%%XXX%Xxxxxyxxxxxx*x%xxaw
0 & 4
0 500 1000 1500 2000 2500 3000
"req_rate_TAP" —+— "stddev_rep_rate_TAP"
"con_rate_TAP" "resp_time_TAP" e -
"min_rep_rate_ TAP" ---x--- "net_io_TAP"
"avg_rep_rate_TAP" "errors_TAP"
"max_rep_rate TAP"

© C. Kirsch 2003

3500

3000

2500

2000

1500

1000

500

Throughput: NPTL

NPTL 100 threads

~~~~~~

R e SRR LT ’ ,,,,,,,,,,,,,,,, }K%%K’%XX/%x%%XXxX%%%,X<%*%%XXx%%%x%%%\x?,K%*-)K-)K\\/}K-X—_r

%

0 500 1000 1500 2000 2500 3000

"req_rate_NPTL" —+— "stddev_rep_rate_ NPTL"

"con_rate_ NPTL" "resp_time_NPTL" e -
"min_rep_rate_ NPTL" ---x--- "net_io_NPTL"
"avg_rep_rate_ NPTL" "errors_NPTL"

"max_rep_rate NPTL"

© C. Kirsch 2003

28



Thank you



