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Real-Time Programming
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Logical Execution Time (LET)
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LET Programming
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Single CPU, EDF Scheduler
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Two CPUs, TDMA Network
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“From Control Models

“Giott8:Aeglihime Code”

Triggered Language
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“The Embedded Machine:

Predictable, Portable [PLDI, 2002}
Real-Time Code” Embedded Machine
POSIX Threads

Linux
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The JAviator Project

javiator.cs.uni-salzburg.at

e (Goal:

= enable high-performance real-time code,
e.g., flight control software, to be written
entirely in Java

e Challenge:

m cnable submillisecond, predictable real-time
behavior while maintaining as much original
Java semantics as possible
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e the JAviator is a quadrotor UAV

e we are currently building our

own prototype w/ §00g payload

e single XScale 4ooMHz CPU w/
Bluetooth onboard running RT
Linux and IBM’s J9g JVM

e 3 gyros, I 3D compass, §
ultrasonic sensors, 4 brushless
motors, 1 LiPoly battery

© C. Kirsch 20053
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Collaboration
see also [EMSOFT 2005]

e IBM (3 staff researchers lead by D.F. Bacon):

= design and implementation of high-
performance real-time garbage collection
(Metronome)

¢ Our team (2 PhD students):

= design and implementation of a LET-based
concurrency model that extends Java’s
notion of “write-once-run-anywhere” to the
temporal domain
© C. Kirsch 2005
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Exotasks and Pods

® exotasks are individually garbage-collected
software tasks that communicate by message

passing through so-called pods

e exotasks may allocate memory and mutate
their pointer structures

e exotasks may neither observe global mutable
state nor their mutable state may be observed

e pods connect exotasks and “send-data-by-
garbage-collection”
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Implementation

e each exotask has its own private heap and fully
preemptable garbage collector

e exotasks will be compiled into E code (the
timing part) and dynamically scheduled and
garbage collected (the functional part)

e exotasks with LETs may also be compiled into
G code (schedule-carrying code extended by
garbage-collecting instructions [M. Harringer,

MSc Thesis, University of Salzburg, 2005}
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The TAP Project

tap.cs.uni-salzburg.at

e (Goal:

m enable efficient, predictable, and compositional
concurrent programming of high-performance
servers such as file and web servers

e Approach: “Threading by Appointment”

m separate I/O behavior from CPU scheduling,
and control I/O behavior explicitly

© C. Kirsch 20053
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Threading by Appointment

[Monterey Workshop, 20041

e TAP threads must have appozntments to
“communicate”, e.g., to invoke system calls

e Appointments determine the order and tzme
instant when to “communicate”, e.g., to execute
system calls

e Appointments are made by the TAP runtime
system transparently under a POSIX-compliant
API according to a given TAP policy
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Example: Locking
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Example: TAP Locking

begfins locl%s R unlocé:ks R
_ Appomtment
bloécks blo:cks
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Reactor vs. Scheduler
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preempts
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Trafhic Shaping...

e ...controls volume, throughput, and latency of
network traffic, using:

e queueing disciplines such as:

o the Jeaky-bucket algorithm (creates fixed
transmission rate on varying flows)

o the token bucket algorithm (allows bursts
while limiting average transmission rates)

e classification schemes: nteractive vs. bulk traffic

© C. Kirsch 20053
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Trafhic Shaping System Calls

e system call = network packet
e appointment policy = queueing discipline
e thread behavior = classification scheme

e e.g., “short-running” threads may have higher
“appointment priority” than “long-running”
threads

= improves latency of interactive threads

© C. Kirsch 20053
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Latency
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Throughput
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