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Giotto: A Time-triggered Language for Embd. Programming
(Henzinger, Horowitz, Kirsch in the Proceedings of the IEEE, Jan 2003)

Giotto is available for:

• Linux, Windows, OSEKWorks, HelyOS
• Java

Time-safe Giotto programs are:

• predictable – deterministic real-time code
• platform-independent – runs on distributed systems
• multi-modal – supports mode switching
• composable – supports modular compilation

Giotto is a time-triggered programming language that 
supports the development of embedded control systems
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Giotto on the ETH Zürich Helicopter
(Kirsch, Sanvido, Henzinger, Pree in Proc. of EMSOFT 2002)

6 degrees of freedom, 1 processor (StrongARM 200Mhz)
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Giotto on the UC Berkeley Helicopter
(Part of the            SEC Project with Boeing and Honeywell)

6 degrees of freedom, 3 processors (Intel x86)
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Giotto for a Drive-By-Wire BMW Throttle
(Part of the            MoBIES Project continued at Universität Salzburg)

OSEKWorks RTOS, 1 processor (Motorola MPC555 40Mhz)
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Reactor vs. Scheduler vs. Processor
(Kirsch in the Proceedings of EMSOFT 2002)
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The Embedded Machine
(Henzinger, Kirsch in the Proceedings of PLDI 2002)

The Embedded Machine is a virtual machine that
triggers the execution of software tasks wrt. events

Time-safe, environment-triggered E code is:

• portable – mobile real-time code
• predictable – deterministic real-time code
• composable – supports:

• modular/incremental compilation
• dynamic linking/patching

The Embedded Machine is available for:

• Linux, Windows, OSEKWorks, HelyOS
• Java (incl. E code debugger)
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Distributed Embedded Machines
(Part of CHESS, $13m NSF Project at UC Berkeley)
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Time Safety Checking for Embedded Programs:
(Henzinger, Kirsch, Majumdar, Matic in Proc. of EMSOFT 2002)
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The Scheduling Machine

The Scheduling Machine is a virtual machine that
orders the execution of software tasks

S code (+ control-flow instructions) is:

• universal – any scheduling strategy
• verifiable – fast time safety checking
• distributed – can schedule:

• computation
• communication

The Scheduling Machine is available for:

• Java (incl. S code debugger)
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The E and S Machine in Class
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