Real-Time Programming Based on
Schedule-Carrying Code

Christoph M. Kirsch
UC Berkeley

www.eecs.berkeley.edu/~cm

Outline

Validation

Simulation

Debugging

Scheduling

Model

Program

Operating
System

Machine

Programming

Compilation

Execution

uonejuawa|duw|

© 2003 C. Kirsch -2-

Research Areas

Model
Validation

System
Validation

Scheduling Theory
Program Analysis

Model

Simulation Programming

Program

Debugging Compilation

Operating
System

Scheduling Execution

Machine

Programming
Languages

Compiler Design

Operating Systems
Distributed Systems

© 2003 C. Kirsch -3-

Real Time vs. Soft Time

e N NN

Real Time

Environment Processes

Software Processes
Soft Time

© 2003 C. Kirsch -4-

Sensing, Computing, Actuating

Real Time

Event Reaction
Soft Time
Sensing >_ Actuating

3 C. Kirsch -5-

Real-Time Programming

y ¥ y ¥y ' 1 1 >
| Real Time
|

Event © Task e — = - I Deadline
— |
Response Times I
|
'.

Soft Time

Soft-Time < Real-Time

© 2003 C. Kirsch -6-

Concurrency

e N NN

I ! I ' 1 1 >

l Task A] | Real Time
- ! Reaction A I
: |

Event | Deadline

1 Task B J _ I
Reaction B |
|

Soft Time

Soft-Time < Real-Time

© 2003 C. Kirsch -7-

The Problem

: A A 1 1 >
l Task A Real Time
Event » Reaction A
Deadline
4 Task B _
» Reaction B

Soft Time

Schedulable but not Compositional

© 2003 C. Kirsch -8-

The Synchronous Model

\ Real Time

Reaction Event Reaction

Event

Soft Time

A 4 Y
1 I

Soft-Time =0

© 2003 C. Kirsch -9-

A Synchronous Implementation

e N NN

yy %

l Real Time

Event ¥——l- — — 4 Event Y———

Response Times

Soft Time

Synchronous but not Compositional

© 2003 C. Kirsch -10-

Embedded Programming Language: Giotto

Model
Validation

System
Validation

Scheduling Theory
Program Analysis

Model

Simulation Programming

Program

Debugging Compilation

Operating
System

Scheduling Execution

Machine

Programming
Languages

Compiler Design

Operating Systems
Distributed Systems

© 2003 C. Kirsch -11-

Sensing, Computing, Actuating

Real Time

Input Output

Soft Tlme

Sensor Driver ’—»_—’ Actuator Driver

© 2003 C. Kirsch -12-

Giotto’s Programming Abstraction

e N NN

‘I 1 1 >
Real Time
{ Task
Input — —» Qutput
10ms

Soft Time

Soft-Time = Real-Time

© 2003 C. Kirsch -13-

Synchronous vs. Scheduled Computation

e N NN

Scheduled Task

l
A

Input

/ Synchronous Drlvers

Real Time
Output

Soft Tlme

Sensor @ ‘/ _—\‘—‘ Actuator

© 2003 C. Kirsch -14-

Environment-triggered Programs

Event |-

Task

>_—_-

Real Time
Reaction

Soft Tlme

Sensor Driver ’—»_—’ Actuator Driver

© 2003 C. Kirsch -15-

A Time-Safe Implementation

e N NN

]
A4

Real Time

Y Task e — —Jd o
Input \ ;) Output

Wait Times

Soft Time

Time Safety Implies Time Determinism

© 2003 C. Kirsch -16-

Abstraction

e N NN

l Task A] Real Time

Reaction A

Event 1

Task B J _
Reaction B

Soft Time

Soft-Time = Real-Time

© 2003 C. Kirsch -17-

Implementation

e N NN

'y ' —
l sk A I Real Time
e 4 Reaction A
Event
Task B .
| ST —p Ragction B

Soft Time

Compositional wrt. Time Determinism

© 2003 C. Kirsch -18-

Giotto: A Time-triggered Language for Embd. Programming
(Henzinger, Horowitz, Kirsch in the Proceedings of the IEEE, Jan 2003)

Giotto is a time-triggered programming language that
supports the development of embedded control systems

Time-safe Giotto programs are:

* predictable — deterministic real-time code

* platform-independent — runs on distributed systems
* multi-modal — supports mode switching

« composable — supports modular compilation

Giotto is available for:

e Linux, Windows, OSEKWorks, HelyOS
» Java

© 2003 C. Kirsch -19-

Giotto on the ETH Zurich Helicopter

(Kirsch, Sanvido, Henzinger, Pree in Proc. of EMSOFT 2002)

6 degrees of freedom, 1 processor (StrongARM 200Mhz)

© 2003 C. Kirsch -20-

Giotto on the UC Berkeley Helicopter

(Part of the SEC Project with Boeing and Honeywell

e e

6 degrees of freedom, 3 processors (Intel x86)

© 2003 C. Kirsch -21-

Giotto for a Drive-By-Wire BMW Throttle

(Part of the LG22 MoBIES Project continued at Universitét Salzburg)

—
=
e

L
bt
—
L
- .
[

OSEKWorks RTOS, 1 processor (Motorola MPC555 40Mhz)

© 2003 C. Kirsch -22-

Operating Systems and Compiler Design:
The Embedded Machine and E Code

Model
Validation

System
Validation

Scheduling Theory
Program Analysis

Model

Simulation Programming

Program

Debugging Compilation

Operating
System

Scheduling Execution

Machine

Programming
Languages

Compiler Design

Operating Systems
Distributed Systems

© 2003 C. Kirsch -23-

Triggering & & Computing

% — Application
Input Output
\ 4 v
lotto Task Giotto
Program
f)
Task RTOS
Prunnnn
Driver Driver
— i i — — Machine
hd
Timer

© 2003 C. Kirsch -24-

Reactor vs.
(Kirsch in the Proceedings of EMSOFT 2002)

vS. Processor

Events

Reactor

Strategy «—

Scheduler

Enabled
Code

Tasks

Processor

© 2003 C. Kirsch -25-

Sensing, Computing, Actuating

Real Time
S t a
— P
——

10ms Soft Time

© 2003 C. Kirsch -26-

E Code

Real Time

© 2003 C. Kirsch -27-

E Code

Real Time

© 2003 C. Kirsch -28-

E Code

Real Time

© 2003 C. Kirsch -29-

E Code

Real Time

© 2003 C. Kirsch -30-

Time Safety or Runtime Exception

Real Time

© 2003 C. Kirsch -31-

he Embedded Machine

(Henzinger, Kirsch in the Proceedings of PLDI 2002)

The Embedded Machine is a virtual machine that
triggers the execution of software tasks wrt. events

Time-safe, environment-triggered E code is:

 portable — mobile real-time code
 predictable — deterministic real-time code
e composable — supports:

« modular/incremental compilation

» dynamic linking/patching

The Embedded Machine is available for:

* Linux, Windows, OSEKWorks, HelyOS
 Java (incl. E code debugger)

© 2003 C. Kirsch -32-

Distributed Embedded Machines @hess
(Part of CHESS, $13m NSF Project at UC Berkeley)

—
AT A,,— S
o R L5 -

4 ———

© 2003 C. Kirsch -33-

Scheduling Theory and Program Analysis:
Schedule-Carrying Code (SCQC)

Model
MOdeI Simulation Programming Programming
Validation Languages
Program
System | N . .
Validation Debugging Compilat Compiler Design
Operating
System
Scheduling Theory seneduing e Operating Systems
Program Analysis Distributed Systems

Machine

© 2003 C. Kirsch -34-

Triggering &

& Computing

E Code

S Code

E Machine

—]

S Machine

Enabled
Code

Tasks

Processor

© 2003 C. Kirsch -35-

Two Tasks, Different Frequency

© 2003 C. Kirsch -36-

cl: dispatch (f2) t1
e STITTY
dispatch (t7)
idle (5) t2 i
>
fork (c2)

© 2003 C. Kirsch -37-

cl: dispatch ({2) {1 c2:|dispatch ({2)
e STITTY
dispatch (t7) : idle (5)
idle (5) 2 i {2 fork (cl)
> — s s s R AR R EEE

fork (c2)

© 2003 C. Kirsch -38-

Preemption

cl:| dispatch (t2) {1 c2:|dispatch (t2)
. s CLELED
dispatch (t7, 5) dispatch (t7)
idle (5) t2 t2 idle (5)
> 2
fork (c2) fork(cl)

© 2003 C. Kirsch -39-

Non-Preemptive Scheduling

cl:| dispatch (t2) {1 c2:|dispatch (t7)
: %
dispatch (t7, 5) : dispatch (f2)
idle (5) 2 L 1o idle (5)
> e ——
fork (c2) fork(cl)

© 2003 C. Kirsch -40-

Time Safety

Checking time safety of E code

preemptive scheduler is NP-hard -

(set of periodic tasks) with a non-

© 2003 C. Kirsch -41-

Schedule-Carrying Code

(Henzinger, Kirsch, Matic, in Proc. of EMSOFT 2003)

Checking time safety of E code
(set of periodic tasks) with a non-
preemptive scheduler is NP-hard

dispatch (f2) Checking time safety of E code dispatch (t7)
. (set of periodic tasks) + non- .
ST, 2 preemptive S code is linear sEEpRiEEh (2]
idle (5) (in E code size) idle (5)
fork (c2) fork(cl)

© 2003 C. Kirsch -42-

Time Safety Checking for Embedded Programs:
(Henzinger, Kirsch, Majumdar, Matic in Proc. of EMSOFT 2002)

NP-
EXPTIME-
Multiprocessor | Complete NP-Hard NP-Hard
[Hardness: GJ79] Complete
NP-
EXPTIME-
Non-Preemptive | Complete NP-Hard NP-Hard
[Hardness: JSSM91] Complete
Linear Linear
: : o) EXPTIME-
Preemptive In In ¢ Complete
E Code E Code
Periodic Tasks Giotto ? Arbitrary Trigg:ering

Complexity

© 2003 C. Kirsch -43-

The Scheduling Machine

The Scheduling Machine is a virtual machine that
orders the execution of software tasks

S code (+ control-flow instructions) is:

* universal — any scheduling strategy
* verifiable — fast time safety checking
* distributed — can schedule:

« computation

« communication

The Scheduling Machine is available for:

 Java (incl. S code debugger)

© 2003 C. Kirsch -44-

The E and S Machine in Class

& Embedded Software Lab 0.2 -10] x|
Tl | IZII EIIZIIZIEI 4 Real Time
Cl
cl Hn
[y
TT T T
Complete Zamplete Soft Time
Step 0: schedule(Contral) 0: dispatchiMavigation) Step
fyer | 1: scheduleMavigation) 1: dispatchiControl Cvar
2 future(Timer 4, 2000} 2 idlef2000)
32 returni) 3 dizpatch{Mavigation)
4 schedule(tavigation 4 idled4000)
a: future(Timer,0,2000% a: fork()
G returng G returni
|2 Tasks =5 pe-1 a]
Mo Logaing | Mavigation started.
MHavigation completed.
S R000ms: 4 idledd000)
| j S pe-1
Send E Code
Discanmect z
< M

© 2003 C. Kirsch

45-

Summary

Validation

Simulation

Debugging

Scheduling

Model

Program

Operating
System

Machine

Programming

Compilation

Execution

uonejuawa|duw|

© 2003 C. Kirsch -49-

