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Real Time vs. Soft Time
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Sensing, Computing, Actuating
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Real-Time Programming
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Concurrency
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The Problem
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The Synchronous Model
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A Synchronous Implementation
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Embedded Programming Language: Giotto
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Sensing, Computing, Actuating
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Giotto’s Programming Abstraction
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Synchronous vs. Scheduled Computation
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Environment-triggered Programs
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A Time-Safe Implementation
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Abstraction
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Implementation
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Giotto: A Time-triggered Language for Embd. Programming
(Henzinger, Horowitz, Kirsch in the Proceedings of the IEEE, Jan 2003)

Giotto is a time-triggered programming language that
supports the development of embedded control systems

Time-safe Giotto programs are:

* predictable — deterministic real-time code

* platform-independent — runs on distributed systems
* multi-modal — supports mode switching

« composable — supports modular compilation

Giotto is available for:

e Linux, Windows, OSEKWorks, HelyOS
» Java
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Giotto on the ETH Zurich Helicopter

(Kirsch, Sanvido, Henzinger, Pree in Proc. of EMSOFT 2002)

6 degrees of freedom, 1 processor (StrongARM 200Mhz)
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Giotto on the UC Berkeley Helicopter

(Part of the SEC Project with Boeing and Honeywell
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Giotto for a Drive-By-Wire BMW Throttle

(Part of the LG22 MoBIES Project continued at Universitét Salzburg)
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Operating Systems and Compiler Design:
The Embedded Machine and E Code
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Reactor vs.
(Kirsch in the Proceedings of EMSOFT 2002)
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Time Safety or Runtime Exception
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he Embedded Machine

(Henzinger, Kirsch in the Proceedings of PLDI 2002)

The Embedded Machine is a virtual machine that
triggers the execution of software tasks wrt. events

Time-safe, environment-triggered E code is:

 portable — mobile real-time code
 predictable — deterministic real-time code
e composable — supports:

« modular/incremental compilation

» dynamic linking/patching

The Embedded Machine is available for:

* Linux, Windows, OSEKWorks, HelyOS
 Java (incl. E code debugger)
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Distributed Embedded Machines @hess
(Part of CHESS, $13m NSF Project at UC Berkeley)
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Scheduling Theory and Program Analysis:
Schedule-Carrying Code (SCQC)
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Two Tasks, Different Frequency
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Preemption
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Non-Preemptive Scheduling
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Time Safety

Checking time safety of E code

preemptive scheduler is NP-hard -

(set of periodic tasks) with a non-
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Schedule-Carrying Code

(Henzinger, Kirsch, Matic, in Proc. of EMSOFT 2003)

Checking time safety of E code
(set of periodic tasks) with a non-
preemptive scheduler is NP-hard

dispatch (f2) Checking time safety of E code dispatch (t7)
. (set of periodic tasks) + non- .
ST, 2 preemptive S code is linear sEEpRiEEh (2]
idle (5) (in E code size) idle (5)
fork (c2) fork(cl)
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Time Safety Checking for Embedded Programs:
(Henzinger, Kirsch, Majumdar, Matic in Proc. of EMSOFT 2002)
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The Scheduling Machine

The Scheduling Machine is a virtual machine that
orders the execution of software tasks

S code (+ control-flow instructions) is:

* universal — any scheduling strategy
* verifiable — fast time safety checking
* distributed — can schedule:

« computation

« communication

The Scheduling Machine is available for:

 Java (incl. S code debugger)
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The E and S Machine in Class
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