
Real-Time Programming Based on
Schedule-Carrying Code

www.eecs.berkeley.edu/~cm

Christoph M. Kirsch

UC Berkeley

© 2003 C. Kirsch -2-

Outline

Model

Program

Operating
System

Machine

Programming

Compilation

Scheduling Execution

Debugging

SimulationV
al

id
at

io
n

Im
plem

entation

© 2003 C. Kirsch -3-

Research Areas

Model

Program

Operating
System

Machine

Programming
Languages

Compiler Design

Scheduling Theory
Program Analysis

ProgrammingSimulation

Compilation

ExecutionScheduling

Debugging

Operating Systems
Distributed Systems

Model
Validation

System
Validation

© 2003 C. Kirsch -4-

Environment

Software

Real Time

Soft Time

Real Time vs. Soft Time

Software Processes

Environment Processes

© 2003 C. Kirsch -5-

Environment

Software

Sensing, Computing, Actuating

Event Reaction

Real Time

Soft Time

TaskSensing Actuating

© 2003 C. Kirsch -6-

Environment

Software

Real-Time Programming

Deadline

Real Time

Soft Time

Soft-Time ≤ Real-Time

Task

Response Times
Event

© 2003 C. Kirsch -7-

Environment

Software

Concurrency

Real Time

Soft Time

Soft-Time ≤ Real-Time

Task A

Task B
DeadlineEvent

Reaction A

Reaction B

© 2003 C. Kirsch -8-

Environment

Software

The Problem

Event
Real Time

Soft Time

Schedulable but not Compositional

Task A

Task B

Reaction A

Reaction B

Deadline

© 2003 C. Kirsch -9-

Environment

Software

The Synchronous Model

Event Event

Real Time

Soft Time

Soft-Time = 0

ReactionReaction

© 2003 C. Kirsch -10-

Environment

Software

A Synchronous Implementation

Event Event

Real Time

Soft Time
Response Times

Synchronous but not Compositional

© 2003 C. Kirsch -11-

Embedded Programming Language: Giotto

Model

Program

Operating
System

Machine

Programming
Languages

Compiler Design

Scheduling Theory
Program Analysis

ProgrammingSimulation

Compilation

ExecutionScheduling

Debugging

Operating Systems
Distributed Systems

Model
Validation

System
Validation

© 2003 C. Kirsch -12-

Environment

Software

Sensing, Computing, Actuating

Real Time

Soft Time

TaskSensor Driver Actuator DriverS A

Input Output

© 2003 C. Kirsch -13-

Environment

Software

Giotto’s Programming Abstraction

Input

Real Time

Soft Time

Soft-Time = Real-Time

Task
Output

10ms

© 2003 C. Kirsch -14-

Environment

Software

Synchronous vs. Scheduled Computation

Input Output

Real Time

Soft TimeSynchronous Drivers

TaskSensor S A Actuator

Scheduled Task

© 2003 C. Kirsch -15-

Environment

Software

Environment-triggered Programs

Event Reaction

Real Time

Soft Time

TaskSensor Driver Actuator DriverS A

Task

© 2003 C. Kirsch -16-

Environment

Software

A Time-Safe Implementation

Input

Real Time

Soft Time
Wait Times

Task
Output

Time Safety Implies Time Determinism

© 2003 C. Kirsch -17-

Environment

Software

Abstraction

Real Time

Soft Time

Soft-Time = Real-Time

Task A

Task B
Event

Reaction A

Reaction B

© 2003 C. Kirsch -18-

Environment

Software

Implementation

Real Time

Soft Time

Compositional wrt. Time Determinism

Task A

Task B
Event

Reaction A

Reaction B

© 2003 C. Kirsch -19-

Giotto: A Time-triggered Language for Embd. Programming
(Henzinger, Horowitz, Kirsch in the Proceedings of the IEEE, Jan 2003)

Giotto is available for:

• Linux, Windows, OSEKWorks, HelyOS
• Java

Time-safe Giotto programs are:

• predictable – deterministic real-time code
• platform-independent – runs on distributed systems
• multi-modal – supports mode switching
• composable – supports modular compilation

Giotto is a time-triggered programming language that
supports the development of embedded control systems

© 2003 C. Kirsch -20-

Giotto on the ETH Zürich Helicopter
(Kirsch, Sanvido, Henzinger, Pree in Proc. of EMSOFT 2002)

6 degrees of freedom, 1 processor (StrongARM 200Mhz)

© 2003 C. Kirsch -21-

Giotto on the UC Berkeley Helicopter
(Part of the SEC Project with Boeing and Honeywell)

6 degrees of freedom, 3 processors (Intel x86)

© 2003 C. Kirsch -22-

Giotto for a Drive-By-Wire BMW Throttle
(Part of the MoBIES Project continued at Universität Salzburg)

OSEKWorks RTOS, 1 processor (Motorola MPC555 40Mhz)

© 2003 C. Kirsch -23-

Operating Systems and Compiler Design:
The Embedded Machine and E Code

Model

Program

Operating
System

Machine

Programming
Languages

Compiler Design

Scheduling Theory
Program Analysis

ProgrammingSimulation

Compilation

ExecutionScheduling

Debugging

Operating Systems
Distributed Systems

Model
Validation

System
Validation

© 2003 C. Kirsch -24-

Triggering & Scheduling & Computing

Input

Task

Giotto Task

Output

Driver Driver

Timer

Application

Giotto
Program

RTOS ?

Machine

© 2003 C. Kirsch -25-

Reactor vs. Scheduler vs. Processor
(Kirsch in the Proceedings of EMSOFT 2002)

Tasks

Processor

SchedulerStrategy

ReactorEvents

Disabled
Code

Enabled
Code

Running
Code

© 2003 C. Kirsch -26-

Environment

Software

Real Time

Sensing, Computing, Actuating

s t a

Soft Time10ms

© 2003 C. Kirsch -27-

Environment

Software

Real Time

E Code

call(s) s

© 2003 C. Kirsch -28-

Environment

Software

Real Time

E Code

call(s)
schedule(t)

s t

© 2003 C. Kirsch -29-

Environment

Software

Real Time

E Code

call(s)
schedule(t)

s t

future(10,b)

© 2003 C. Kirsch -30-

Environment

Software

Real Time

E Code

call(s)
schedule(t)
future(10,b)

call(a)b:
s t a

© 2003 C. Kirsch -31-

Environment

Software

Real Time

Time Safety or Runtime Exception

call(s)
schedule(t,e)
future(10,b)

call(a)b:
s t a’

call(a’)e:

© 2003 C. Kirsch -32-

The Embedded Machine
(Henzinger, Kirsch in the Proceedings of PLDI 2002)

The Embedded Machine is a virtual machine that
triggers the execution of software tasks wrt. events

Time-safe, environment-triggered E code is:

• portable – mobile real-time code
• predictable – deterministic real-time code
• composable – supports:

• modular/incremental compilation
• dynamic linking/patching

The Embedded Machine is available for:

• Linux, Windows, OSEKWorks, HelyOS
• Java (incl. E code debugger)

© 2003 C. Kirsch -33-

Distributed Embedded Machines
(Part of CHESS, $13m NSF Project at UC Berkeley)

© 2003 C. Kirsch -34-

Scheduling Theory and Program Analysis:
Schedule-Carrying Code (SCC)

Model

Program

Operating
System

Machine

Programming
Languages

Compiler Design

Scheduling Theory
Program Analysis

ProgrammingSimulation

Compilation

ExecutionScheduling

Debugging

Operating Systems
Distributed Systems

Model
Validation

System
Validation

© 2003 C. Kirsch -35-

Triggering & Scheduling & Computing

Tasks

Processor

S MachineS Code

E MachineE Code

Disabled
Code

Enabled
Code

Running
Code

© 2003 C. Kirsch -36-

Environment

Software

Two Tasks, Different Frequency

schedule(t2)
future(5,b1)

b2:

t1

t2 t2

schedule(t2)
future(5,b2)

schedule(t1)b1:

5ms 5ms

© 2003 C. Kirsch -37-

Environment

Software

S Code

schedule(t2)
future(5,b1)

b2:

t1

t2

schedule(t2)
future(5,b2)

schedule(t1)

dispatch(t2)
dispatch(t1)

fork(c2)
idle(5)

b1:

c1:

© 2003 C. Kirsch -38-

Environment

Software

S Code

schedule(t2)
future(5,b1)

b2:

dispatch(t2)

fork(c1)
idle(5)

c2:t1

t2 t2

schedule(t2)
future(5,b2)

schedule(t1)

dispatch(t2)
dispatch(t1)

fork(c2)
idle(5)

b1:

c1:

© 2003 C. Kirsch -39-

Environment

Software

Preemption

schedule(t2)
schedule(t2)

future(5,b2)

schedule(t1)b1:
future(5,b1)

b2:

dispatch(t2)
dispatch(t1,5)

fork(c2)

c1: t1

t2 t2

dispatch(t2)
dispatch(t1)

fork(c1)
idle(5)

c2:

idle(5)

© 2003 C. Kirsch -40-

Environment

Software

Non-Preemptive Scheduling

schedule(t2)
schedule(t2)

future(5,b2)

schedule(t1)b1:
future(5,b1)

b2:

dispatch(t2)
dispatch(t1,5)

c1: t1

t2 t2

dispatch(t1)
dispatch(t2)

fork(c1)
idle(5)

c2:

fork(c2)
idle(5)

© 2003 C. Kirsch -41-

Environment

Software

Time Safety

schedule(t2)
schedule(t2)

future(5,b2)

schedule(t1)
future(5,b1)

Checking time safety of E code
(set of periodic tasks) with a non-
preemptive scheduler is NP-hard

© 2003 C. Kirsch -42-

Environment

Software

Schedule-Carrying Code
(Henzinger, Kirsch, Matic, in Proc. of EMSOFT 2003)

schedule(t2)
future(5,b2)

schedule(t1)

dispatch(t2)
dispatch(t1,5)

dispatch(t1)
dispatch(t2)

fork(c1)
idle(5)

Checking time safety of E code
(set of periodic tasks) + non-
preemptive S code is linear

(in E code size)

schedule(t2)
future(5,b1)

Checking time safety of E code
(set of periodic tasks) with a non-
preemptive scheduler is NP-hard

fork(c2)
idle(5)

© 2003 C. Kirsch -43-

Time Safety Checking for Embedded Programs:
(Henzinger, Kirsch, Majumdar, Matic in Proc. of EMSOFT 2002)

EXPTIME-
Complete

EXPTIME-
Complete

EXPTIME-
Complete

?
Linear

in
E Code

Linear
in

E Code

NP-HardNP-Hard
NP-

Complete
[Hardness: JSM91]

NP-HardNP-Hard
NP-

Complete
[Hardness: GJ79]

Periodic Tasks Giotto Arbitrary

Preemptive

Non-Preemptive

Multiprocessor

Scheduling
Constraints

Triggering
Complexity

?

© 2003 C. Kirsch -44-

The Scheduling Machine

The Scheduling Machine is a virtual machine that
orders the execution of software tasks

S code (+ control-flow instructions) is:

• universal – any scheduling strategy
• verifiable – fast time safety checking
• distributed – can schedule:

• computation
• communication

The Scheduling Machine is available for:

• Java (incl. S code debugger)

© 2003 C. Kirsch -45-

The E and S Machine in Class

© 2003 C. Kirsch -49-

Summary

Model

Program

Operating
System

Machine

Programming

Compilation

Scheduling Execution

Debugging

SimulationV
al

id
at

io
n

Im
plem

entation

