scal.cs.uni-
salzburg.at

scalloc.cs.uni-

salzburg.at

multicore-scalable
concurrent data

multicore-scalable

- concurrent allocator

structures
selfie.cs.uni-

salzburg.at

self-referential systems
software for teaching

Scal, Scalloe, and Selhie

Christoph Kirsch, University of Salzburg, Austria

University of Melbourne, December 2016

http://scalloc.cs.uni-salzburg.at
http://scalloc.cs.uni-salzburg.at
http://scal.cs.uni-salzburg.at
http://scal.cs.uni-salzburg.at
http://selfie.cs.uni-salzburg.at
http://selfie.cs.uni-salzburg.at

Joint Work

+ Martin Aigner

+ Christian Barthel

+ Mike Dodds

+ Andreas Haas

+ Thomas Henzinger
+ Andreas Holzer

<+ Thomas Hitter

Michael Lippautz
Alexander Miller
Simone Oblasser
Hannes Payer
Mario Preishuber
Ana Sokolova

Ali Szegin

How do we exchange data among increasingly many cores
on a shared memory machine such that performance still
increases with the number of cores?

—The Multicore Scalability Challenge

Core 1 Core 2

Concurrent
Shared Memory
Access

Core 3 Core 4

~100 cores

How do we allocate and deallocate shared memory with

increasingly many cores such that performance increases with
the number of cores while memory consumption stays low?

—Multicore Shared Memory Allocation Problem

~1TB memory

Core 1 Core 2

Concurrent
Shared Memory
Allocation

Core 3 Core 4

~100 cores

How do we teach computer science to students not necessarily
majoring in computer science but who anyway code every day?

—The Computer Science Education Challenge

The Multicore Scalability Challenge

A
linear scalability
positive scalability
high performance
S
O
o
@)
=)
2
il negative scalability
positive scalability
low performance
>

number of cores

Timestamped (1'5) Stack [POPL15]

Core 1 Core 2

Concurrent

Stack

operations per ms (more is better)

Timestamped (15) Stack [POPL15

4000 4000

Treiber Stack ---X--- TS-atomic Stack TS-hardware Stack ----v-- - TS-stutter Stack @
EB Stack —H— TS-CAS Stack TS-interval Stack
T T T T T T T T T T T T T T
12000 - 3 12000 -
10000 - . £ 10000 | _
o]
k%
8000 |- . S 8000 - i
=
(2]
6000 - R - E 5000
F 5
2
K}
©
o
Q
o

2000 "zt - A 2000

number of threads number of threads

(a) Producer-consumer benchmark, 40-core machine. (b) Producer-consumer benchmark, 64-core machine.

Elimination Through Shared Timestamps

7
;Ig | | Performance TS-interval Stack
12000°T: Retries TS-interval Stack ---2k---
o~ : Performance TS-CAS Stack Sl @ s
S Retries TS-CAS Stack 5
@ 10000 | 2
%) — TG w8
P @
c 8000 [7
E 4 2
2 3
6000 ;i 3 Q0
5 N SR
Q ‘ s
2 o
S 4000 - x.. 1o @
o 2000 F B et NEE S EREESS Ko N e 3
0]]]] 0
0 3000 6000 9000 12000 15000

delay in ns

Figure 6: High-contention producer-consumer benchmark
using T'S-interval and TS-CAS timestamping with increas-
ing delay on the 40-core machine, exercising 40 producers
and 40 consumers.

The order in which concurrently pushed elements appear on
the TS stack is only determined when they are popped off the
TS stack, even if they had been on the TS stack for, say, a year.

—Showing that the TS Stack 1s a stack 1s hard hence POPL

Concurrent Data Structures: scal.cs.uni-salzburg.at

POPLI15, CK15, POPL15, NETYS15]

Core 1 Core 2

Concurrent

Data Structure

Core 3 Core 4

http://scal.cs.uni-salzburg.at

Name

Lock-based Singly-linked
Michael Scott (MS) Queue
Flat Combining Queue
Wait-free Queue

Linked Cyclic Ring Queue
Timestamped (TS) Queue
Cooperative TS Queue
Segment Queue

Random Dequeue (RD)
Bounded Size k-FIFO
Unbounded Size k-FIFO
b-RR Distributed Queue
Least-Recently-Used (LRU)
Locally Linearizable DQ
Locally Linearizable k-FIFO
Relaxed TS Queue
Lock-based Singly-linked
Treiber Stack
Elimination-backoff Stack
Timestamped (TS) Stack
k-Stack

b-RR Distributed Stack (DS)
Least-Recently-Used (LRU)
Locally Linearizable DS
Locally Linearizable k-Stack
Timestamped (TS) Deque
d-RA DQ and DS

Semantics

strict queue

strict queue

strict queue

strict queue

strict queue

strict queue

strict queue
k-relaxed queue
k-relaxed queue
k-relaxed queue, pool
k-relaxed queue, pool
k-relaxed queue, pool
k-relaxed queue, pool
locally linearizable
locally linearizable
quiescently consistent
strict stack

strict stack

strict stack

strict stack

k-relaxed stack
k-relaxed stack, pool
k-relaxed stack, pool
locally linearizable
locally linearizable
strict deque

strict pool

Year
1968
1996
2010
2012
2013
2015
2015
2010
2010
2013
2013
2013
2013
2015
2015
2015
1968
1986
2004
2015
2013
2013
2013
2015
2015
2015
2013

Ref
(1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[8]
[9]
[9]

[10]

[10]

[11]

[11]
[71]
[1]

[12]

[13]
[6]

[14]

[10]

[10]

[11]

[11]
[71]

[10]

https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lockbased_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/flatcombining_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/wf_queue_ppopp12.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lcrq.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/cts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/segment_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/random_dequeue_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/boundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/unboundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_partrr.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lru_distributed_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_local_linearizability.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/dyn_distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/unboundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/rts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/scal/src/datastructures/lockbased_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/elimination_backoff_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/kstack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_partrr.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lru_distributed_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_local_linearizability.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/dyn_distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/kstack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_deque.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_1random.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h

How do we allocate and deallocate shared memory with

increasingly many cores such that performance increases with
the number of cores while memory consumption stays low?

—Multicore Shared Memory Allocation Problem

Multicore Memory Allocation Problem

linear scalability

positive scalability
high performance

throughput

negative scalability

positive scalability
low performance

number of cores

Scalloce: Concurrent Memory Allocator

scalloc.cs.uni-salzburg.at |OOPSLATS

Core 1 Core 2

Concurrent
Free-List
(Distributed
Stack [CF13])

Core 3 Core 4

http://scalloc.cs.uni-salzburg.at

l.ocal Allocation & Deallocation

speedup with respect to ptmalloc2 (more is better)

Hoard ---e--- llalloc ----- oXTRRE Streamflow --- ©- -- TBB compact ------ Ao
jemalloc - - -+--- ptmalloc?2 SuperMalloc TCMalloc scalloc —w»—
14 T T T T T T T T T
12 =
I i 2
10 | P :

memory consumption in MB (less is better)

oL i
0 1 1 1 1 1 1 1 1 1
12 4 6 8 10 20 30 40
number of threads number of threads
(a) Speedup (b) Memory consumption

Figure 6: Thread-local workload: Threadtest benchmark

“Remote” Deallocation

Hoard ---e--- lalloc --------- Streamflow --- &- -- TBB compact ------ AT
jemalloc ---+--- ptmalloc2 SuperMalloc TCMalloc scalloc —v—
0-4 T T T T T T T m 16 T T T T T T
y =
S LA gt e e O e AT i o A A %
S e - = 1 N o B T e e x|
3 S %o g
k= 0.3 : g" 12 .
= >
—~ - - S~ -9 - --D 0
=3 P22 St i S 3 W h i i i s
§ .(,2 0‘2 I,/L r ____________ i/ 7 %-E 8
=& 0151 P ;, S 6
) = O &
< 0.1 = _
2 ot 2
= 0.05 .) 9 3
O | | | | | | | | % O | | | | | | | |
2 46 810 20 30 40 2 4 6 810 20 30 40

number of threads
(b) Average per-thread memory consumption

number of threads
(a) Total per-thread allocator time

Figure 9: Temporal and spatial performance for the producer-consumer experiment

Scalloce: Concurrent Memory Allocator

scalloc.cs.uni-salzburg.at |OOPSLATS

Core 1 Core 2

Eager Reuse of
Deallocated
Memory

Core 3 Core 4

http://scalloc.cs.uni-salzburg.at

Virtual Spans: 64-bit Address Space

arena virtual span real span
/ /
/ IS /
4@6 / Q/Q) / /
/
@% Q)% / Q> /
A > / O @(’Q 4
@6 / N /’ block
/
/ - payload
/
/ /
/
/
virtual span real span
Ph % header

Figure 1: Structure of arena, virtual spans, and real spans

Object Size

1000 [T T T T T T T T T] 100000 [T T T T T T T T T
100 | z |
3 [] = 10000 L e
R~ 10 |] =f= |
g0 : g o 1000 |
25 2%
E=irs 1} . S b
Sy ¥ |
St o = 100 +
Q
S8 01} | S g
=g " .
"C_‘S\./ O ~ F
£ < 10 |
= 001 | | 5 0
“ ~
0.001 | | | | | | | | | 1 9 """"""" \9 | | | | | | |
e b/\@ \5‘& F & & & \,@& S b/\@ \5‘& & & F & \ﬁ&
AR e i e A
object size range in bytes (logscale) object size range in bytes (logscale)
(a) Total allocator time (b) Average memory consumption

Figure 10: Temporal and spatial performance for the object-size robustness experiment at 40 threads

ACDC: Explorative Benchmarking Memory Management
acdc.cs.uni-salzburg.at ISMM15,D1.514

+ configurable multicore-scalable mutator for mimicking virtually

any allocation, deallocation, sharing, and access behavior
% written in C, tracks with minimal overhead:
1. memory allocation time
2. memory deallocation time
5. memory consumption

4. memory access time

http://acdc.cs.uni-salzburg.at

Memory Access

12| T I I I I
3
g 10_5‘ ''''' i ----- ® - — .. i'—___i__ =
Q
)
7]
L
= ey
£ o
=l =
2 8
5w O
Q -
2= 4 1
=
)
s
—
S 2 ¢ .
=)
)

OI | | | |

0 20 40 60 80 100
percentage of object accesses in allocation order

Figure 11: Memory access time for the locality experiment

How do we teach computer science to students not necessarily
majoring in computer science but who anyway code every day?

—The Computer Science Education Challenge

Selfie: Teaching Computer Science

selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C¥) to a tiny subset of MIPS32 called MIPSter,

2. aself-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster
and can host all of selfie including itself, and

4. atiny C* library called libcstar utilized by all of selfie.

http://selfie.cs.uni-salzburg.at

1 1 1 *
5 statements: LR (’fltct)l ,(lnt Sl no data structures,
ol Sl . . .
1 *
assignment iy just int and 1r.1t
while et and dereferencing:
if the * operator
return s -0 N Ty
procedure() L R Charact literals
ing literals
oAt = e = =0 £
s o e GEise R (€ S s
s sl iale <eus C1F)
QSN B Aak
integer arithmetics jmmmrmmee b Sl B Sl no bitwise operators
pointer arithmetics {==~=—-gp C = * (5+1); no Boolean operators

G EHE1ENRE] RE S

library: exit, malloc, open, read, write

1A K €
-D'main(a,b)=main(a, charxkargv)'| selfie.c -o selfie

—bootstrapping selfie using standard C compiler

> ./selfie

./selfie; usage: selfie {l-c { source }|l|-o0 binarv|||-s assembly
| |- binary|} [(|| -d! —min| m S1Z€| ...

—selfie usage

> —-c selfie.c
./selfie:| this is selfie's starc compiling selfie.c

./selfie:] 176408 characters read in 7083 lines and 969 comments
./selfie:] with 97779(55.55%) characters in 28914 actual symbols
./selfie:] 261 global variables, 289 procedures, 450 string literals
./selfie:] 1958 calls, 723 assignments, 57 while, 572 if, 243 return
./selfie:] 121660 bytes generated with 28779 instructions and 6544
pytes of data

—compiling selfie with selfie (takes seconds)

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
ohysical memor

selfie.c:| this is selfie's starc compiling selfie.c
selfie.c:| exiting with exit code © and 1.05MB of mallocated memory

—compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

oytes wit

ritten into selfiel.m

this is selfie's starc compiling selfie.c

121660 bytes with 28//9 instructions and 6544 bytes of data
ritten inko selfie2.m

exiting with exit code © and 1.05MB of mallocated memory

./selfie: this 1s selfie’'s mipster terminating selfiel.m with exit
code O and 1.16MB of mapped memor

—compiling selfie with selfie and generating an executable selfiel.m
that is then executed to compile selfie again generating another
executable selfie2.m (takes ~6 minutes)

./selfie —c selfie.c

—compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile
selfie again (takes ~24 hours)

> ,/selfie —-c selfie.c —-m 2 -c selfie.c @—c selfie.c

—compiling selfie with selfie and then running that executable to
compile selfie again and then hosting that executable in a
virtual machine to compile selfie again (takes ~12 minutes)

No coffee. No workee.

kL
-
>
-
=
qu
IS
e

