
University of Melbourne, December 2016

Scal, Scalloc, and Selfie
Christoph Kirsch, University of Salzburg, Austria

scalloc.cs.uni-
salzburg.at

multicore-scalable
concurrent allocator

scal.cs.uni-
salzburg.at

multicore-scalable
concurrent data

structures
selfie.cs.uni-
salzburg.at

self-referential systems
software for teaching

http://scalloc.cs.uni-salzburg.at
http://scalloc.cs.uni-salzburg.at
http://scal.cs.uni-salzburg.at
http://scal.cs.uni-salzburg.at
http://selfie.cs.uni-salzburg.at
http://selfie.cs.uni-salzburg.at

Joint Work

✤ Martin Aigner

✤ Christian Barthel

✤ Mike Dodds

✤ Andreas Haas

✤ Thomas Henzinger

✤ Andreas Holzer

✤ Thomas Hütter

✤ Michael Lippautz

✤ Alexander Miller

✤ Simone Oblasser

✤ Hannes Payer

✤ Mario Preishuber

✤ Ana Sokolova

✤ Ali Szegin

How do we exchange data among increasingly many cores
on a shared memory machine such that performance still

increases with the number of cores?

–The Multicore Scalability Challenge

Concurrent
Shared Memory

Access

Core 1 Core 2

Core 3 Core 4

~100 cores

How do we allocate and deallocate shared memory with
increasingly many cores such that performance increases with
the number of cores while memory consumption stays low?

–Multicore Shared Memory Allocation Problem

Concurrent
Shared Memory

Allocation

Core 1 Core 2

Core 3 Core 4

~1TB memory

~100 cores

How do we teach computer science to students not necessarily
majoring in computer science but who anyway code every day?

–The Computer Science Education Challenge

The Multicore Scalability Challenge

linear scalability

positive scalability
high performance

negative scalability

positive scalability
low performance

th
ro

ug
hp

ut

number of cores

Timestamped (TS) Stack [POPL15]

Concurrent
Stack

Core 1 Core 2

Core 3 Core 4

Timestamped (TS) Stack [POPL15]

Treiber Stack
EB Stack

TS-atomic Stack
TS-CAS Stack

TS-hardware Stack
TS-interval Stack

TS-stutter Stack

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(a) Producer-consumer benchmark, 40-core machine.

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 8 16 24 32 40 48 56 64

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(b) Producer-consumer benchmark, 64-core machine.

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(c) Producer-only benchmark, 40-core machine.

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 8 16 24 32 40 48 56 64

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(d) Producer-only benchmark, 64-core machine.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 10 20 30 40 50 60 70 80

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(e) Consumer-only benchmark, 40-core machine.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 8 16 24 32 40 48 56 64

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

number of threads

(f) Consumer-only benchmark, 64-core machine.

Figure 5: TS stack performance in the high-contention scenario on 40-core machine (left) and 64-core machine (right).

push operations of the TS-atomic stack and the TS-stutter
stack, which means that the delay in the TS-interval time-
stamping is actually shorter than the execution time of the
TS-atomic timestamping and the TS-stutter timestamping.
Perhaps surprisingly, TS-stutter, which does not require
strong synchronisation, is slower than TS-atomic, which is
based on an atomic fetch-and-increment instruction.

Pop performance. We measure the performance of pop
operations of all data-structures in a consumer-only bench-
mark where each thread pops 1,000,000 from a pre-filled
stack. Note that no elimination is possible in this bench-
mark. The stack is pre-filled concurrently, which means in
case of the TS-interval stack and TS-stutter stack that some
elements may have unordered timestamps. Again the TS-
interval stack uses the same delay as in the high-contention
producer-consumer benchmark.

Figure 5e and Figure 5f show the performance and
scalability of the data-structures in the high-contention
consumer-only benchmark. The performance of the TS-
interval stack is significantly higher than the performance of
the other stack implementations, except for low numbers of
threads. The performance of TS-CAS is close to the perfor-
mance of TS-interval. The TS-stutter stack is faster than the
TS-atomic and TS-hardware stack due to the fact that some
elements share timestamps and therefore can be removed in
parallel. The TS-atomic stack and TS-hardware stack show
the same performance because all elements have unique
timestamps and therefore have to be removed sequentially.
Also in the Treiber stack and the EB stack elements have to
be removed sequentially. Depending on the machine, remov-
ing elements sequentially from a single list (Treiber stack)
is sometimes less and sometimes as expensive as removing
elements sequentially from multiple lists (TS stack).

Elimination Through Shared Timestamps

 0

 2000

 4000

 6000

 8000

 10000

 12000

0 3000 6000 9000 12000 15000
 0

 1

 2

 3

 4

 5

 6

 7

o
p

e
ra

tio
n

s
p

e
r

m
s

(m
o

re
 is

 b
e

tt
e

r)

n
u

m
b

e
r

o
f

re
tr

ie
s

(l
e

ss
 is

 b
e

tt
e

r)

delay in ns

Performance TS-interval Stack
Retries TS-interval Stack

Performance TS-CAS Stack
Retries TS-CAS Stack

Figure 6: High-contention producer-consumer benchmark
using TS-interval and TS-CAS timestamping with increas-
ing delay on the 40-core machine, exercising 40 producers
and 40 consumers.

6.2 Analysis of Interval Timestamping

Figure 6 shows the performance of the TS-interval stack
and the TS-CAS stack along with the average number of
tryRem calls needed in each pop (one call is optimal, but
contention may cause retries). These figures were collected
with an increasing interval length in the high contention
producer-consumer benchmark on the 40-core machine. We
used these results to determine the delays for the bench-
marks in Section 6.1.

Initially the performance of the TS-interval stack in-
creases with an increasing delay time, but beyond 7.5 µs the
performance decreases again. After that point an average
push operation is slower than an average pop operation and
the number of pop operations which return EMPTY increases.

For the TS-interval stack the high performance correlates
strongly with a drop in tryRem retries. We conclude from this
that the impressive performance we achieve with interval
timestamping arises from reduced contention in tryRem. For
the optimal delay time we have 1.009 calls to tryRem per
pop, i.e. less than 1% of pop calls need to scan the SP
pools array more than once. In contrast, without a delay
the average number of retries per pop call is more than 6.

The performance of the TS-CAS stack increases initially
with an increasing delay time. However this does not de-
crease the number of tryRem retries significantly. The rea-
son is that without a delay there is more contention on the
global counter. Therefore the performance of TS-CAS with
a delay is actually better than the performance without a
delay. However, similar to TS-interval timestamping, with
a delay time beyond 6 µs the performance decreases again.
This is the point where an average push operation becomes
slower than an average pop operations.

7. TS Queue and TS Deque Variants

In this paper, we have focussed on the stack variant of our
algorithm. However, stored timestamps can be removed in
any order, meaning it is simple to change our TS stack into
a queue / deque. Doing this requires three main changes:

1. Change the timestamp comparison operator in tryRem.
2. Change the SP pool such that getYoungest returns the

oldest / right-most / left-most element.
3. For the TS queue, remove elimination in tryRem. For the

TS deque, enable it only for stack-like removal.

The TS queue is the second fastest queue we know of. In our
experiments the TS-interval queue outperforms the Michael-
Scott queue [18] and the flat-combining queue [10] but the
lack of elimination means it is not as fast as the LCRQ [1].

The TS-interval deque is the fastest deque we know of,
although it is slower than the corresponding stack / queue.
However, it still outperforms the Michael-Scott and flat-
combining queues, and the Treiber and EB stacks.

8. Related Work

Timestamping. Our approach was initially inspired by
Attiya et al.’s Laws of Order paper [2], which proves that
any linearizable stack, queue, or deque necessarily uses the
RAW or AWAR patterns in its remove operation. While
attempting to extend this result to insert operations, we
were surprised to discover a counter-example: the TS stack.
We believe the Basket Queue [15] was the first algorithm to
exploit the fact that enqueues need not take e�ect in order
of their atomic operations, although unlike the TS stack it
does not avoid strong synchronisation when inserting.

Gorelik and Hendler use timestamping in their AFC
queue [6]. As in our stack, enqueued elements are time-
stamped and stored in single-producer bu�ers. Aside from
the obvious di�erence in kind, our TS stack di�ers in several
respects. The AFC dequeue uses flat-combining-style con-
solidation – that is, a combiner thread merges timestamps
into a total order. As a result, the AFC queue is block-
ing. The TS stack avoids enforcing an internal total order,
and instead allows non-blocking parallel removal. Removal
in the AFC queue depends on the expensive consolidation
process, and as a result their producer-consumer benchmark
shows remove performance significantly worse than other
flat-combining queues. Interval timestamping lets the TS
stack trade insertion and removal cost, avoiding this prob-
lem. Timestamps in the AFC queue are Lamport clocks [17],
not hardware-generated intervals. (We also experiment with
Lamport clocks – see TS-stutter in §3.2). Finally, AFC queue
elements are timestamped before being inserted – in the TS
stack, this is reversed. This seemingly trivial di�erence en-
ables timestamp-based elimination, which is important to
the TS stack’s performance.

The LCRQ queue [1] and the SP queue [11] both index
elements using an atomic counter. However, dequeue opera-
tions do not look for one of the youngest elements as in our
TS stack, but rather for the element with the enqueue index
that matches the dequeue index exactly. Both approaches
fall back to a slow path when the dequeue counter becomes
higher than the enqueue counter. In contrast to indices,
timestamps in the TS stack need not be unique or even or-
dered, and the performance of the TS stack does not depend
on a fast path and a slow path, but only on the number of
elements which share the same timestamp.

Our use of the x86 RDTSCP instruction to generate hard-
ware timestamps is inspired by work on testing FIFO
queues [7]. There the RDTSC instruction is used to deter-
mine the order of operation calls. (Note the distinction be-
tween the synchronised RDTSCP and unsynchronised RDTSC).
RDTSCP has since been used in the design of an STM by Ruan
et al. [20], who investigate the instruction’s multi-processor
synchronisation behaviour.

Correctness. Our stack theorem lets us prove that the
TS stack is linearizable with respect to sequential stack
semantics. This theorem builds on Henzinger et al. who
have a similar theorem for queues [12]. Their theorem is

The order in which concurrently pushed elements appear on
the TS stack is only determined when they are popped off the
TS stack, even if they had been on the TS stack for, say, a year.

–Showing that the TS Stack is a stack is hard hence POPL

Concurrent Data Structures: scal.cs.uni-salzburg.at
[POPL13, CF13, POPL15, NETYS15]

Concurrent
Data Structure

Core 1 Core 2

Core 3 Core 4

http://scal.cs.uni-salzburg.at

Scal

Name Semantics Year Ref
Lock-based Singly-linked
List Queue

strict queue 1968 [1]

Michael Scott (MS) Queue strict queue 1996 [2]

Flat Combining Queue strict queue 2010 [3]

Wait-free Queue strict queue 2012 [4]

Linked Cyclic Ring Queue
(LCRQ)

strict queue 2013 [5]

Timestamped (TS) Queue strict queue 2015 [6]

Cooperative TS Queue strict queue 2015 [7]

Segment Queue k-relaxed queue 2010 [8]

Random Dequeue (RD)
Queue

k-relaxed queue 2010 [8]

Bounded Size k-FIFO
Queue

k-relaxed queue, pool 2013 [9]

Unbounded Size k-FIFO
Queue

k-relaxed queue, pool 2013 [9]

b-RR Distributed Queue
(DQ)

k-relaxed queue, pool 2013 [10]

Least-Recently-Used (LRU)
DQ

k-relaxed queue, pool 2013 [10]

Locally Linearizable DQ

(static, dynamic)

locally linearizable
queue, pool

2015 [11]

Locally Linearizable k-FIFO
Queue

locally linearizable
queue

2015 [11]

Relaxed TS Queue quiescently consistent

queue (conjectured)

2015 [7]

Lock-based Singly-linked
List Stack

strict stack 1968 [1]

Treiber Stack strict stack 1986 [12]

Elimination-backoff Stack strict stack 2004 [13]

Timestamped (TS) Stack strict stack 2015 [6]

k-Stack k-relaxed stack 2013 [14]

b-RR Distributed Stack (DS) k-relaxed stack, pool 2013 [10]

Least-Recently-Used (LRU)
DS

k-relaxed stack, pool 2013 [10]

Locally Linearizable DS

(static, dynamic)

locally linearizable
stack, pool

2015 [11]

Locally Linearizable k-Stack locally linearizable
stack

2015 [11]

Timestamped (TS) Deque strict deque
(conjectured)

2015 [7]

d-RA DQ and DS strict pool 2013 [10]

Scal: A Benchmarking Suite for Concurrent Data Structures [NETYS15]

https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lockbased_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/flatcombining_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/wf_queue_ppopp12.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lcrq.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/cts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/segment_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/random_dequeue_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/boundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/unboundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_partrr.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lru_distributed_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_local_linearizability.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/dyn_distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/unboundedsize_kfifo.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/rts_queue.h
https://github.com/cksystemsgroup/scal/blob/master/scal/src/datastructures/lockbased_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/elimination_backoff_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/kstack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_partrr.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/lru_distributed_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_local_linearizability.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/dyn_distributed_data_structure.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/kstack.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ts_deque.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/balancer_1random.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/ms_queue.h
https://github.com/cksystemsgroup/scal/blob/master/src/datastructures/treiber_stack.h

How do we allocate and deallocate shared memory with
increasingly many cores such that performance increases with
the number of cores while memory consumption stays low?

–Multicore Shared Memory Allocation Problem

Multicore Memory Allocation Problem

linear scalability

positive scalability
high performance

negative scalability

positive scalability
low performance

th
ro

ug
hp

ut

number of cores

Scalloc: Concurrent Memory Allocator
scalloc.cs.uni-salzburg.at [OOPSLA15]

Concurrent
Free-List

(Distributed
Stack [CF13])

Core 1 Core 2

Core 3 Core 4

http://scalloc.cs.uni-salzburg.at

Local Allocation & Deallocation

Hoard
jemalloc

llalloc
ptmalloc2

Streamflow
SuperMalloc

TBB
TCMalloc

compact
scalloc

0

5

10

15

20

25

30

35

40

45

50

1 2 4 6 8 10 20 30 40sp
ee

du
p

w
ith

re
sp

ec
tt

o
pt

m
al

lo
c2

(m
or

e
is

be
tte

r)

number of threads
(a) Speedup

0

2

4

6

8

10

12

14

1 2 4 6 8 10 20 30 40

m
em

or
y

co
ns

um
pt

io
n

in
M

B
(le

ss
is

be
tte

r)

number of threads
(b) Memory consumption

Figure 6: Thread-local workload: Threadtest benchmark

0

20

40

60

80

100

120

140

1 2 4 6 8 10 20 30 40sp
ee

du
p

w
ith

re
sp

ec
tt

o
pt

m
al

lo
c2

(m
or

e
is

be
tte

r)

number of threads
(a) Speedup

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 6 8 10 20 30 40

m
em

or
y

co
ns

um
pt

io
n

in
G

B
(le

ss
is

be
tte

r)

number of threads
(b) Memory consumption

Figure 7: Thread-local workload: Shbench benchmark

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 10 20 30 40

m
ill

io
n

op
er

at
io

ns
pe

rs
ec

(m
or

e
is

be
tte

r)

number of threads
(a) Throughput

0

1

2

3

4

5

6

7

8

1 2 4 8 10 20 30 40

m
em

or
y

co
ns

um
pt

io
n

in
M

B
(le

ss
is

be
tte

r)

number of threads
(b) Memory consumption

Figure 8: Thread-local workload (including thread termination): Larson benchmark

463

“Remote” Deallocation

Hoard
jemalloc

llalloc
ptmalloc2

Streamflow
SuperMalloc

TBB
TCMalloc

compact
scalloc

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10 20 30 40

to
ta

lp
er

-th
re

ad
al

lo
ca

to
rt

im
e

in
se

co
nd

s
(le

ss
is

be
tte

r)

number of threads
(a) Total per-thread allocator time

0

2

4

6

8

10

12

14

16

2 4 6 8 10 20 30 40av
er

ag
e

pe
r-

th
re

ad
m

em
or

y
co

ns
um

pt
io

n
in

M
B

(le
ss

is
be

tte
r)

number of threads
(b) Average per-thread memory consumption

Figure 9: Temporal and spatial performance for the producer-consumer experiment

0.001

0.01

0.1

1

10

100

1000

16
-64

B

64
-25

6B

25
6-1

KB
1-4

KB

4-1
6K

B

16
-64

KB

64
-25

6K
B

25
6K

B-1M
B

1-4
MB

to
ta

la
llo

ca
to

rt
im

e
in

se
co

nd
s

(lo
gs

ca
le

,l
es

s
is

be
tte

r)

object size range in bytes (logscale)
(a) Total allocator time

1

10

100

1000

10000

100000

16
-64

B

64
-25

6B

25
6-1

KB
1-4

KB

4-1
6K

B

16
-64

KB

64
-25

6K
B

25
6K

B-1M
B

1-4
MB

av
er

ag
e

m
em

or
y

co
ns

um
pt

io
n

in
M

B
(lo

gs
ca

le
,l

es
s

is
be

tte
r)

object size range in bytes (logscale)
(b) Average memory consumption

Figure 10: Temporal and spatial performance for the object-size robustness experiment at 40 threads

two threads causes on average 50% remote frees and running
40 threads causes on average 97.5% remote frees.

Figure 9a presents the total time each thread spends in the
allocator for an increasing number of producers/consumers.
Up to 30 threads scalloc and Streamflow provide the best
temporal performance and for more than 30 threads scalloc
outperforms all other allocators.

The average per-thread memory consumption illustrated
in Figure 9b suggests that all allocators deal with blowup
fragmentation, i.e., we do not observe unbounded growth
in memory consumption. However, the absolute differences
among different allocators are significant. Scalloc provides
competitive spatial performance where only jemalloc and
ptmalloc2 require less memory at the expense of higher total
per-thread allocator time.

This experiment demonstrates that the approach of scalloc
to distributing contention across spans with one remote free
list per span works well in a producer-consumer workload
and that using a lock-based implementation for reusing spans
is not a performance bottleneck.

7.4 Robustness against False Sharing
False sharing occurs when objects that are allocated in the
same cache line are read from and written to by different
threads. In cache coherent systems this scenario can lead
to performance degradation as all caches need to be kept
consistent. An allocator is prone to active false sharing [3]
if objects that are allocated by different threads (without
communication) end up in the same cache line. It is prone
to passive false sharing [3] if objects that are remotely

464

Scalloc: Concurrent Memory Allocator
scalloc.cs.uni-salzburg.at [OOPSLA15]

Eager Reuse of
Deallocated

Memory

Core 1 Core 2

Core 3 Core 4

http://scalloc.cs.uni-salzburg.at

Virtual Spans: 64-bit Address Space

Scalloc: From Scalable Concurrent Data Structures
to a Fast, Scalable, Low-Memory-Overhead Allocator

Abstract
1. Introduction
2. Related Work
[Michael: To discuss: Get rid of related work right away or

have it after the detailed description?]

3. The Allocator in Detail
Like other allocators (e.g. [17] and [14]), scalloc can be
divided into two main parts:

(1) a mutator-facing frontend that manages memory in so-
called spans, and

(2) a backend for managing the spans (ideally returning them
to the operating system when empty).

Scalloc maintains scalability with respect to performance
and memory consumption by:

• introducing virtual spans that enable unified treatment of
variable-size objects;

• providing a scalable backend for managing spans;
• providing a frontend with constant time malloc and free

calls that only consider live heap (no garbage collection
cycles).

The following subsections describe these crucial concepts of
scalloc.

3.1 Real Spans and Size Classes
A (real) span is a contiguous portion of memory partitioned
into blocks of the same size. The size of blocks in a span
determines which size class the span belongs to. All spans in
a given size class have the same number of blocks. Hence,
the size of a span is fully determined by its size class: it

[Copyright notice will appear here once ’preprint’ option is removed.]

res
erv

ed

ad
dre

sse
s

virtual span

un
map

pe
d

mem
ory

real span

header

block

payload

arena virtual span real span

Figure 1: Structure of arena, virtual spans, and real spans

is the product of the block size and the number of blocks,
plus a span header containing administrative information. In
scalloc, there are 29 size classes but only 9 distinct real-span
sizes which are all multiples of 4KB (the size of a system
page).

The first 16 size classes, with block sizes ranging from
16 bytes to 256 bytes in increments of 16 bytes, are taken
from TCMalloc [6]. This design of small size-classes limits
block internal fragmentation. All these 16 size classes have
the same real-span size. Size classes with larger blocks range
from 512 bytes to 1MB, in increments that are powers of
two. These size classes may have different real-span size,
explaining the difference between 29 size classes and 9 dis-
tinct real-span sizes.

Objects of size larger than any size class are not managed
by spans, but rather allocated directly from the operating
system using mmap.

3.2 Virtual Spans
A virtual span is a span allocated in a very large portion
of virtual memory (32TB) which we call arena. All virtual
spans have the same fixed size of 2MB and are 2MB-aligned
in the arena. Each virtual span contains a real span, of one of
the available size classes. By the size class of the virtual span
we mean the size class of the contained real span. Typically,
the real span is (much) smaller than the virtual span that
contains it. The maximal real-span size is limited by the size
of the virtual span. This is why virtual spans are suitable
for big objects as well as for small ones. The structure of the

1 2015/3/18

Object Size

Hoard
jemalloc

llalloc
ptmalloc2

Streamflow
SuperMalloc

TBB
TCMalloc

compact
scalloc

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2 4 6 8 10 20 30 40

to
ta

lp
er

-th
re

ad
al

lo
ca

to
rt

im
e

in
se

co
nd

s
(le

ss
is

be
tte

r)

number of threads
(a) Total per-thread allocator time

0

2

4

6

8

10

12

14

16

2 4 6 8 10 20 30 40av
er

ag
e

pe
r-

th
re

ad
m

em
or

y
co

ns
um

pt
io

n
in

M
B

(le
ss

is
be

tte
r)

number of threads
(b) Average per-thread memory consumption

Figure 9: Temporal and spatial performance for the producer-consumer experiment

0.001

0.01

0.1

1

10

100

1000

16
-64

B

64
-25

6B

25
6-1

KB
1-4

KB

4-1
6K

B

16
-64

KB

64
-25

6K
B

25
6K

B-1M
B

1-4
MB

to
ta

la
llo

ca
to

rt
im

e
in

se
co

nd
s

(lo
gs

ca
le

,l
es

s
is

be
tte

r)

object size range in bytes (logscale)
(a) Total allocator time

1

10

100

1000

10000

100000

16
-64

B

64
-25

6B

25
6-1

KB
1-4

KB

4-1
6K

B

16
-64

KB

64
-25

6K
B

25
6K

B-1M
B

1-4
MB

av
er

ag
e

m
em

or
y

co
ns

um
pt

io
n

in
M

B
(lo

gs
ca

le
,l

es
s

is
be

tte
r)

object size range in bytes (logscale)
(b) Average memory consumption

Figure 10: Temporal and spatial performance for the object-size robustness experiment at 40 threads

two threads causes on average 50% remote frees and running
40 threads causes on average 97.5% remote frees.

Figure 9a presents the total time each thread spends in the
allocator for an increasing number of producers/consumers.
Up to 30 threads scalloc and Streamflow provide the best
temporal performance and for more than 30 threads scalloc
outperforms all other allocators.

The average per-thread memory consumption illustrated
in Figure 9b suggests that all allocators deal with blowup
fragmentation, i.e., we do not observe unbounded growth
in memory consumption. However, the absolute differences
among different allocators are significant. Scalloc provides
competitive spatial performance where only jemalloc and
ptmalloc2 require less memory at the expense of higher total
per-thread allocator time.

This experiment demonstrates that the approach of scalloc
to distributing contention across spans with one remote free
list per span works well in a producer-consumer workload
and that using a lock-based implementation for reusing spans
is not a performance bottleneck.

7.4 Robustness against False Sharing
False sharing occurs when objects that are allocated in the
same cache line are read from and written to by different
threads. In cache coherent systems this scenario can lead
to performance degradation as all caches need to be kept
consistent. An allocator is prone to active false sharing [3]
if objects that are allocated by different threads (without
communication) end up in the same cache line. It is prone
to passive false sharing [3] if objects that are remotely

464

ACDC: Explorative Benchmarking Memory Management
acdc.cs.uni-salzburg.at [ISMM13,DLS14]

✤ configurable multicore-scalable mutator for mimicking virtually
any allocation, deallocation, sharing, and access behavior

✤ written in C, tracks with minimal overhead:

1. memory allocation time

2. memory deallocation time

3. memory consumption

4. memory access time

http://acdc.cs.uni-salzburg.at

Memory Access
deallocated by a thread are immediately usable for allocation
by this thread again.

We have conducted the false sharing avoidance evaluation
benchmark from Berger et. al. [3] (including active-false and
passive-false benchmarks) to validate scalloc’s design. The
results we have obtained suggest that most allocators avoid
active and passive false sharing. However, SuperMalloc and
TCMalloc suffer from both active and passive false sharing,
whereas Hoard is prone to passive false sharing only. We
omit the graphs because they only show binary results (either
false sharing occurs or not). Scalloc’s design ensures that
in the cases covered by the active-false and passive-false
benchmarks no false sharing appears, as spans need to be
freed to be reused by other threads for allocation. Only in
case of thread termination (not covered by the active-false
and passive-false benchmarks) threads may adopt spans in
which other threads still have blocks, potentially causing false
sharing. We have not encountered false sharing with scalloc
in any of our experiments.

7.5 Robustness for Varying Object Sizes
We configure the ACDC allocator benchmark [2] to allocate,
access, and deallocate increasingly larger thread-local objects
in 40 threads (number of native cores) to study the scalability
of virtual spans and the span pool.

Figure 10a shows the total time spent in the allocator,
i.e., the time spent in malloc and free. The x-axis refers to
intervals [2x,2x+2) of object sizes in bytes with 4 ≤ x ≤ 20
at increments of two. For each object size interval ACDC
allocates 2xKB of new objects, accesses the objects, and
then deallocates previously allocated objects. This cycle is
repeated 30 times. For object sizes smaller than 1MB scalloc
outperforms all other allocators because virtual spans enable
scalloc to rely on efficient size-class allocation. The only
possible bottleneck in this case is accessing the span-pool.
However, even in the presence of 40 threads we do not
observe contention on the span-pool. For objects larger than
1MB scalloc relies on mmap which adds system call latency
to allocation and deallocation operations and is also known
to be a scalability bottleneck [6].

The average memory consumption (illustrated in Fig-
ure 10b) of scalloc allocating small objects is higher (yet still
competitive) because the real-spans for size-classes smaller
than 32KB have the same size and madvise is not enabled
for them. For larger object sizes scalloc causes the smallest
memory overhead comparable to jemalloc and ptmalloc2.

This experiment demonstrates the advantages of trading
virtual address space fragmentation for high throughput and
low physical memory fragmentation.

7.6 Spatial Locality
In order to expose differences in spatial locality, we configure
ACDC to access allocated objects (between 16 and 32 bytes)
increasingly in allocation order (rather than out-of-allocation
order). For this purpose, ACDC organizes allocated objects

0

2

4

6

8

10

12

0 20 40 60 80 100

to
ta

lm
em

or
y

ac
ce

ss
tim

e
in

se
co

nd
s

(le
ss

is
be

tte
r)

percentage of object accesses in allocation order

Figure 11: Memory access time for the locality experiment

either in trees (in depth-first, left-to-right order, representing
out-of-allocation order) or in lists (representing allocation
order). ACDC then accesses the objects from the tree in
depth-first, right-to-left order and from the list in FIFO order.
We measure the total memory access time for an increasing
ratio of lists, starting at 0% (only trees), going up to 100%
(only lists), as an indicator of spatial locality. ACDC provides
a simple mutator-aware allocator called compact to serve as
optimal (yet without further knowledge of mutator behavior
unreachable) baseline. Compact stores the lists and trees
of allocated objects without space overhead in contiguous
memory for optimal locality.

Figure 11 shows the total memory access time for an
increasing ratio of object accesses in allocation order. Only
jemalloc and llalloc provide a memory layout that can be
accessed slightly faster than the memory layout provided by
scalloc. Note that scalloc does not require object headers
and reinitializes span free-lists upon retrieval from the span-
pool. For a larger ratio of object accesses in allocation
order, the other allocators improve as well but not as much
as llalloc, scalloc, Streamflow, and TBB which approach
the memory access performance of the compact baseline
allocator. Note also that we can improve memory access time
with scalloc even more by setting its reusability threshold
to 100%. In this case spans are only reused once they get
completely empty and reinitialized through the span-pool at
the expense of higher memory consumption. We omit this
data for consistency reasons.

To explain the differences in memory access time we pick
the data points for ptmalloc2 and scalloc at x=60% where
the difference in memory access time is most significant and
compare the number of all hardware events obtainable using
perf7. While most numbers are similar we identify two events
where the numbers differ significantly. First, the L1 cache
miss rate with ptmalloc2 is 20.8% while scalloc causes a

7 See https://perf.wiki.kernel.org

465

How do we teach computer science to students not necessarily
majoring in computer science but who anyway code every day?

–The Computer Science Education Challenge

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster
and can host all of selfie including itself, and

4. a tiny C* library called libcstar utilized by all of selfie.

http://selfie.cs.uni-salzburg.at

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

library: exit, malloc, open, read, write

> make
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

–bootstrapping selfie using standard C compiler

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

–selfie usage

> ./selfie -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments

./selfie: with 97779(55.55%) characters in 28914 actual symbols

./selfie: 261 global variables, 289 procedures, 450 string literals

./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return

./selfie: 121660 bytes generated with 28779 instructions and 6544
bytes of data

–compiling selfie with selfie (takes seconds)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

–compiling selfie with selfie and then running that executable to
compile selfie again (takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

–compiling selfie with selfie and generating an executable selfie1.m
that is then executed to compile selfie again generating another

executable selfie2.m (takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

–compiling selfie with selfie and then running that executable to
compile selfie again and then running that executable to compile

selfie again (takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

–compiling selfie with selfie and then running that executable to
compile selfie again and then hosting that executable in a 

virtual machine to compile selfie again (takes ~12 minutes)

Thank you!

