
Lund University, Lund, Sweden, March 2018

Self-Referential Compilation, Emulation,
Virtualization, and Symbolic Execution with Selfie
Christoph M. Kirsch, University of Salzburg, Austria

selfie.cs.uni-salzburg.at

http://selfie.cs.uni-salzburg.at

What is the meaning
of this sentence?

Selfie as in
self-referentiality

Teaching the Construction of
Semantics of Formalisms

Compilation

Interpretation

Virtualization

Verification

Joint Work

✤ Alireza Abyaneh

✤ Martin Aigner

✤ Sebastian Arming

✤ Christian Barthel

✤ Simon Bauer

✤ Thomas Hütter

✤ Alexander Kollert

✤ Michael Lippautz

✤ Cornelia Mayer

✤ Philipp Mayer

✤ Christian Moesl

✤ Simone Oblasser

✤ Clement Poncelet

✤ Sara Seidl

✤ Ana Sokolova

✤ Manuel Widmoser

Inspiration

✤ Armin Biere: SAT/SMT Solvers

✤ Donald Knuth: Art

✤ Jochen Liedtke: Microkernels

✤ David Patterson: RISC

✤ Niklaus Wirth: Compilers

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]
✤ Selfie is a self-referential 10k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset of C called C Star
(C*) to a tiny subset of RISC-V called RISC-U,

2. a self-executing emulator called mipster that executes RISC-U code including itself
when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster and can host all of
selfie including itself,

4. a self-executing symbolic execution engine called monster that executes RISC-U code
symbolically when compiled with starc which includes all of selfie,

5. a tiny C* library called libcstar utilized by all of selfie, and

6. a tiny, experimental SAT solver called babysat.

http://selfie.cs.uni-salzburg.at

Also, there is a…

✤ linker (in-memory only)

✤ disassembler (w/ source code line numbers)

✤ debugger (tracks full machine state w/ rollback)

✤ profiler (#proc-calls, #loop-iterations, #loads, #stores)

Discussion of Selfie reached  
3rd place on Hacker News

news.ycombinator.com

http://news.ycombinator.com

Code

Book (Draft)

Website
selfie.cs.uni-salzburg.at

leanpub.com/selfie

github.com/cksystemsteaching/selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie

nsf.gov/csforall

computingatschool.org.uk

k12cs.org
bootstrapworld.org

code.org

programbydesign.org

csfieldguide.org.nz

http://nsf.gov/csforall
http://computingatschool.org.uk
http://k12cs.org
http://bootstrapworld.org
http://code.org
http://programbydesign.org
http://csfieldguide.org.nz

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data types other
than int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

library: exit, malloc, open, read, write

Minimally complex,
maximally self-
contained system
Programming languages
vs systems engineering?

> make
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie.c into x86 selfie executable  
using standard C compiler

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments

./selfie: with 97779(55.55%) characters in 28914 actual symbols

./selfie: 261 global variables, 289 procedures, 450 string literals

./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return

./selfie: 121660 bytes generated with 28779 instructions and 6544
bytes of data

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a RISC-U executable  
and  

then running that RISC-U executable to compile selfie.c again  
(takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie.c into a RISC-U executable selfie1.m  
and  

then running selfie1.m to compile selfie.c  
into another RISC-U executable selfie2.m  

(takes ~6 minutes)

Implementing an OS Kernel:
1-Week Homework Assignment

Compiler

Emulator

Formalism

Machine

Compiler

Emulator A

Formalism

Machine

Emulator B

Compiler

Emulator A

Formalism

Machine

Emulator B Emulator C||“OS”

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)

Emulation versus Virtualization

Compiler

Emulator

Formalism

Machine

Compiler

Emulator A

Formalism

Machine

Emulator B

Compiler

Emulator A

Formalism

Machine

Hypervisor

> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)

Ongoing Work

✤ SAT/SMT Solvers (microsat/boolector)
✤ Symbolic Execution Engine (KLEE/SAGE)
✤ Inductive Theorem Prover (ACL2)

1. Large memory and multicore support
2. x86 support through binary translation
3. ARM support?

ISAs

Verification

-> microsat in C* is as fast as in C (forget structs, arrays, &&, ||, goto)

Replay vs. Symbolic Execution

✤ Selfie supports replay of RISC-U execution upon detecting
runtime errors such as division by zero

✤ Selfie first rolls back n instructions (undo (!) semantics,
system calls?) and then re-executes them but this time
printed on the console

✤ We use a cyclic buffer for replaying n instructions

✤ That buffer is also used in symbolic execution but then for
recording symbolic execution of up to n instructions

Symbolic Execution: Status

✤ We fuzz input read from files

✤ Symbolic execution proceeds by computing integer
interval constraints, only recording memory stores

✤ Sound but only complete for a subset of all programs

✤ Selfie compiler falls into that subset, so far

✤ We detect division by zero and (some) unsafe memory
access

Symbolic Execution: Future

✤ Witness generation and on-the-fly validation

✤ Loop termination through manually crafted invariants

✤ Parallelization on our 64-core machine

✤ And support for utilizing 0.5TB of physical memory

Thank you!

acsd2018.cs.uni-salzburg.at

http://acsd2018.cs.uni-salzburg.at

