
Université Diderot, IRIF, Paris, April 2019

On the Self in Selfie
Christoph M. Kirsch

selfie.cs.uni-salzburg.at

http://selfie.cs.uni-salzburg.at

What is the meaning
of this sentence?

Selfie as in
self-referentiality

Teaching the Construction of
Semantics of Formalisms

Compilation

Interpretation

Virtualization

Verification

Joint Work

✤ Alireza Abyaneh

✤ Martin Aigner

✤ Sebastian Arming

✤ Christian Barthel

✤ Simon Bauer

✤ Thomas Hütter

✤ Alexander Kollert

✤ Michael Lippautz

✤ Cornelia Mayer

✤ Philipp Mayer

✤ Christian Moesl

✤ Simone Oblasser

✤ Clement Poncelet

✤ Sara Seidl

✤ Ana Sokolova

✤ Manuel Widmoser

Inspiration

✤ Armin Biere: SAT/SMT Solvers

✤ Donald Knuth: Art

✤ Jochen Liedtke: Microkernels

✤ Hennessy/Patterson: RISC

✤ Niklaus Wirth: Compilers

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]
✤ Selfie is a self-referential 10k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset of C called C Star (C*) to a
tiny subset of RISC-V called RISC-U,

2. a self-executing emulator called mipster that executes RISC-U code including itself when
compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster and can host all of selfie
including itself,

4. a self-executing symbolic execution engine called monster that executes RISC-U code
symbolically when compiled with starc which includes all of selfie,

5. a self-translating model generator called modeler that translates RISC-U code including itself
to BTOR2 models for checking (memory) safety properties, and

6. a tiny C* library called libcstar utilized by all of selfie.

http://selfie.cs.uni-salzburg.at

Selfie runs on 64-bit RISC-V QEMU and
supports the official 64-bit RISC-V toolchain

Also, there is a…

✤ linker (in-memory only)

✤ disassembler (w/ source code line numbers)

✤ debugger (tracks full machine state w/ rollback)

✤ profiler (#proc-calls, #loop-iterations, #loads, #stores)

✤ ELF boot loader (same code for mipster/hypster)

Code as Prose

Discussion of Selfie reached  
3rd place on Hacker News

news.ycombinator.com

http://news.ycombinator.com

Code + Self-Grader

Book (draft)

Website
selfie.cs.uni-salzburg.at

leanpub.com/selfie

github.com/cksystemsteaching/selfie

Slides
selfie.cs.uni-salzburg.at/slides

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie
http://selfie.cs.uni-salzburg.at/slides
https://github.com/cksystemsteaching/selfie/tree/master/grader

uint64_t atoi(uint64_t *s) {
 uint64_t i;
 uint64_t n;
 uint64_t c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data types other
than uint64_t and
uint64_t* and

dereferencing:
the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

library: exit, malloc, open, read, write

Minimally complex,
maximally self-
contained system
Programming languages
vs systems engineering?

> make
cc -w -O3 -m64 -D'main(a,b)=main(int argc, char** argv)' \ 
-Duint64_t=‘unsigned long long' selfie.c -o selfie

bootstrapping selfie.c into x86 selfie executable  
using standard C compiler

> ./selfie
usage: selfie
{ -c { source } | -o binary | [-s | -S] assembly | -l binary | -
sat dimacs } [(-m | -d | -r | -n | -y | -min | -mob) 0-64 ...]

selfie usage

> ./selfie -c selfie.c

selfie compiling selfie.c with starc

289095 characters read in 10034 lines and 1335 comments
with 170555(58.99%) characters in 43772 actual symbols
341 global variables, 438 procedures, 411 string literals
2517 calls, 1139 assignments, 86 while, 874 if, 391 return
symbol table search time was 2 iterations on average and 
48795 in total

170504 bytes generated with 39496 instructions and 12520 bytes of data

init: lui: 2296(5.81%), addi: 13595(34.40%)
memory: ld: 7106(17.98%), sd: 5884(14.89%)
compute: add: 3422(8.65%), sub: 704(1.78%), mul: 807(2.40%),
 divu: 78(0.19%), remu: 35(0.80%)
control: sltu: 624(1.57%), beq: 964(2.43%),
 jal: 3555(8.99%), jalr: 438(1.10%), ecall: 8(0.20%)

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie -c selfie.c -m 3 -c selfie.c
selfie compiling selfie.c with starc
...
selfie executing selfie.c with 3MB physical memory on mipster
selfie compiling selfie.c with starc
...
selfie.c exiting with exit code 0 and 2.11MB mallocated memory
...
summary: 285261695 executed instructions and 2.10MB mapped memory
init: lui: 836418(0.29%), addi: 120536779(42.25%)
memory: ld: 61562613(21.58%), sd: 39713446(13.92%)
compute: add: 7234823(2.53%), sub: 5903746(2.60%), mul:
6878318(2.41%), divu: 2100676(0.73%), remu: 2016943(0.70%)
control: sltu: 4436689(1.55%), beq: 6011381(2.10%), jal:
18600397(6.52%), jalr: 9118787(3.19%), ecall: 310679(0.10%)
profile: total,max(ratio%)@addr(line#),2max,3max
calls: 9118787,2492778(27.33%)@0x282C(~1671),...
loops: 500189,164040(32.79%)@0x355C(~1859),...
loads: 61562613,2492778(4.40%)@0x2840(~1671),...
stores: 39713446,2492778(6.27%)@0x2830(~1671),...

compiling selfie.c with x86 selfie executable into a RISC-U executable  
and  

then running that RISC-U executable to compile selfie.c again  
(takes a minute)

> ./selfie -c selfie.c -o selfie1.m -m 3 -c selfie.c -o selfie2.m

selfie compiling selfie.c with starc
...
170632 bytes with 39496 instructions and 12520 bytes of data written
into selfie1.m

selfie executing selfie1.m with 3MB physical memory on mipster
selfie compiling selfie.c with starc

...
170632 bytes with 39496 instructions and 12520 bytes of data written
into selfie2.m

selfie1.m exiting with exit code 0 and 2.11MB mallocated memory
...
summary: 285338515 executed instructions and 2.10MB mapped memory

compiling selfie.c into a RISC-U executable selfie1.m  
and  

then running selfie1.m to compile selfie.c  
into another RISC-U executable selfie2.m  

(takes a minute)

> ./selfie -c selfie.c -m 6 -c selfie.c -m 3 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes hours)

> ./selfie -c selfie.c -m 6 -c selfie.c -y 3 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes 2 minutes)

On the Self
in Selfie
How does self-referentiality  
work in selfie?

Selfie Stick!

selfie emulator (x86) spike emulator (x86) + pk kernel (RISC-V)

selfie emulator (RISC-V)

selfie hypervisor (RISC-V)

selfie hypervisor (RISC-V)

selfie compiler (RISC-V)

Self-Compilation

scanner
parser

code generator

library code
generated code

selfie
compiler

ELF 64-bit
RISC-V binary

read

write

open

open

malloc

exit

selfie source codeC* program

exit
open
read
write
malloc

system call
wrappers

selfie emulator QEMU, spike emulator + pk kernel

Generated Code: unsigned + code

0x150(~6): ld $t0,-16($gp)
0x154(~6): addi $t1,$zero,1
0x158(~6): add $t0,$t0,$t1
0x15C(~6): sd $t0,-16($gp)

64-bit RISC-V add instruction

C code for unsigned 64-bit
integer addition

add implementation in selfie emulator

64-bit RISC-V add instruction

C code for unsigned 64-bit integer addition

selfie compiler gcc/clang

Synergy of Compiler & Emulator

Synergy of
Compiler & Emulator & Hypervisor

Library Code: open wrapper

0xA8(~1): 0x00013603: ld $a2,0($sp)
0xAC(~1): 0x00810113: addi $sp,$sp,8
0xB0(~1): 0x00013583: ld $a1,0($sp)
0xB4(~1): 0x00810113: addi $sp,$sp,8
0xB8(~1): 0x00013503: ld $a0,0($sp)
0xBC(~1): 0x00810113: addi $sp,$sp,8
0xC0(~1): 0x40000893: addi $a7,$zero,1024
0xC4(~1): 0x00000073: ecall
0xC8(~1): 0x00008067: jalr $zero,0($ra)

selfie emulator QEMU, spike emulator + pk kernel

parameters

syscall ID

C library call

open implementation in selfie emulator

selfie compiler gcc/clang

malloc is different!

malloc invokes
the brk system call

both manage pure
address spaces

actual memory
storage is done

in the paging system

Self-Execution

emulator0 context0

context1

execute

emulator1

user code

execute

exception

exception

RISC-U Machine State

32x 64-bit
CPU registers

+
1x 64-bit

program counter

4GB of
byte-addressed

64-bit-word-aligned
main

memory

context

Virtual Memory in Selfie

4GB of
byte-addressed

64-bit-word-aligned
virtual

memory

MBs of
byte-addressed

64-bit-word-aligned
physical
memory

4KB-paged

on demand

Code Execution and Exceptions

emulator context
execute

exception

selfie emulator QEMU, spike emulator + pk kernel

lui addi
add sub mul
divu remu
ld sd

sltu beq
jal jalr

ecall

exit
open
read
write
brk

13+1 instructions:

1. division-by-0
2. page fault
3. timer interrupt
4. system call

Self-Execution Revisited

emulator0 context0

context1

execute

emulator1

user code

execute

exception

exception

Self-Execution: Concurrency

emulator0 context0

context1 context2

user2

execute

emulator1

user1

execute

exception

exception

exception

Hosting: Concurrency

emulator context0

context1 context2

user2

execute

user1

hypervisor
switch

context1 context2
exception

exception

Emulation versus Virtualization

Self-Hosting: Hierarchy

emulator context1 context2context0

hypervisor context1

hypervisor context2

user

switch

switch

execute

exception

exceptions

exception

?

Bit-precise
Symbolic
Exploration?
What exactly is needed to explore the
bit-precise execution of systems code
like selfie’s symbolically?

Selfie
Symbolic
Execution

monster
(beast)

Selfie  
Model

Generator
modeler
(beauty)

Replay vs. Symbolic Execution

✤ Selfie supports replay of RISC-U execution upon detecting
runtime errors such as division by zero

✤ Selfie first rolls back n instructions (undo (!) semantics,
system calls?) and then re-executes them but this time
printed on the console

✤ We use a cyclic buffer for replaying n instructions

✤ That buffer is logically also used in symbolic execution but
then for recording symbolic execution of up to n instructions

Symbolic Execution: Status

✤ We fuzz input read from files

✤ Symbolic execution proceeds by generating SMT-LIB
formulae that are satisfiable iff there is an input that
leads to a (memory) safety violation

✤ Exponential in the size of the input and the binary

✤ Ongoing bachelor project: a hybrid symbolic execution
and bounded model checking engine

Model Generation: Status

✤ We fuzz input read from files

✤ Model generation proceeds by generating BTOR2 formulae that are
satisfiable iff there is an input that leads to a (memory) safety violation

✤ Key difference to symbolic execution:  
 
It's translation, not execution, linear in time and space in the size of the
binary.

✤ Selfie representation:  
 
300KB (source), 200KB (binary), 1MB (assembly), 13MB (BTOR2)

What’s next?

Finding bugs and teaching verification!
selfie.cs.uni-salzburg.at

http://selfie.cs.uni-salzburg.at

Got Research and Teaching Ideas?

✤ Selfie is a simple but still realistic sandbox

✤ You control everything!

✤ Want to play with an idea that requires compiler/
operating systems/architecture support?

✤ We are glad to help you get started!

Thank you!

