
Joint work with Daniel Kocher, Stefanie Muroya, and Michael Starzinger

Quantum Advantage for All
Christoph Kirsch, University of Salzburg, Austria and Czech Technical University, Prague, Czechia

Wolfgang Lake

github.com/cksystemsteaching/selfie

github.com/cksystemsgroup/unicorn

1.Self-contained 12-KLOC system

2.Self-compiling C* compiler

3.Self-executing RISC-U emulator

4.Self-hosting RISC-U hypervisor

5.Self-collecting garbage collector

6.Self-fuzzing fuzzer

7.Self-executing symbolic execution engine

RISC-V symbolic execution engine in Rust:

1. Inspired by bounded model checking

2.Connects to Z3, boolector, btormc, SAT solvers

3.Targets quantum annealers and 

gate-model quantum machines 
as accelerators

http://github.com/cksystemsteaching/selfie
http://github.com/cksystemsgroup/unicorn

Dachstein Glacier

Unicorn
n is the number of instructions on any path

Program P

(64-bit RISC-V)

O(n2)

Combinational

Circuit

reachability satisfiability

O(|P|)

Finite State Machine

over

SMT of bitvectors/arrays

if and only if

inspired by [BTOR2, Biere et al.]

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

u i n t 6 4 _ t ∗ x ;
u i n t 6 4 _ t main () { u i n t 6 4 _ t a ;

x = ma l l o c (1) ; / / r ounded up t o 8
/ / t o u ch t o t r i g g e r page f a u l t h e r e
∗ x = 0 ;
/ / r e ad 1 by t e from c o n s o l e i n t o x
r ead (0 , x , 1) ;
/ / copy from heap t o s t a c k s egment
a = ∗ x ;
/ / d e c r emen t i n p u t u n t i l <= ' 0 '
while (a > ' 0 ')

a = a − 1 ;
/ / s e gmen t a t i o n f a u l t on i n p u t ' 1 '
i f (a == ∗ x − 1) / / ' 0 ' == ' 1 ' − 1

/ / s e g f a u l t : ' 0 ' ! = 0
a = ∗ (x + a) ;

return 0 ;
}

Fig. 2. Running example of a C* program

3.1 C* [31]
Consider the source code of the running example in Fig. 2. The program reads a single byte

from the console keyboard and returns zero as exit code unless the user presses 1 in which case a
segmentation fault may be triggered by the attempt to read from unallocated memory with *(x +
a) since a is then ’0’ which is 48, and not 0. Below we consider certain types of unsafe memory
access triggering segmentation faults as well as non-zero exit codes and division by zero as machine
states to look for. However, the toolchain is able to compute program input that leads to any given
machine state. Program input is all read input. Once some input has been determined the code can
be executed on that input to validate if a machine state is actually reached using, for example, the
RISC-U emulator.
The code is written in C* which is a tiny subset of C that has originally been developed for

educational purposes [1, 2, 31]. The example essentially features all elements of C* except procedure
calls. C* only features two data types, uint64_t and uint64_t*, and �ve statements: assignment,
while, if, return, and procedure call. There are the usual arithmetic and comparison operators but
only for unsigned 64-bit integer arithmetic. Notably, there is only the unary dereference operator *
to access heap memory. There are no arrays and no structs hence the name C*. Furthermore, C*
supports integer, character, and string literals as well as global and local variables and procedure
parameters. Lastly, there is printf library support and a total of �ve builtin procedures: exit,
open, read, write, and malloc. Turns out that, because of its overall simplicity and in particular
its focus on unsigned integer arithmetic, C* is well-suited as target for researching and prototyping
tools for symbolic execution [12, 19, 30, 40].

The part of the toolchain that is relevant here is written in C* and consists of a non-optimizing
linear-time (modulo global (local) symbol table hash collisions (search)) C* compiler that targets
RISC-U, a tiny subset of 64-bit RISC-V [54], as well as a RISC-U emulator and BEATOR which
translates RISC-U code to BTOR2 [40]. RISC-U binaries generated by the C* compiler are in ELF

6

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

20 zero 2 . . .
22 constd 2 2 . . .
/ / . . . 1− by te input
71 sor t b i tvec 8 ; 1 by te . . .
81 input 71 ; 1 by te . . .
91 uext 2 81 56 / / e x t end ing input t o 64 b i t s
/ / . . . r e g i s t e r s t a t e s . . .
202 s t a t e 2 sp ; r e g i s t e r $2 . . .
210 s t a t e 2 a0 ; r e g i s t e r $10
211 s t a t e 2 a1 ; r e g i s t e r $11
/ / . . . r ead system c a l l . . .
42000001 i t e 2 42000000 211 36609200 . . .
42000007 eq 1 42000006 22 / / i n c == 2
42000008 i t e 2 42000007 92 91 . . .
42000019 eq 1 42000006 28 / / i n c == 8
42000020 i t e 2 42000019 98 42000018
42000021 add 2 211 210 ; $a1 + $a0
/ / memory [$a1 + $a0] = input :
42000022 write 3 20000000 42000021 42000020
/ / . . . brk system c a l l :
45000001 s t a t e 2 brk −bump− p o i n t e r
/ / . . . upda t ing p h y s i c a l memory :
70000000 next 3 20000000 42000028
/ / . . . a d d r e s s >= cu r r e n t end o f heap :
80000006 ugte 1 44000001 45000001
/ / a dd r e s s < c u r r e n t s t a r t o f s t a c k :
80000007 ul t 1 44000001 202
80000008 and 1 80000006 80000007
/ / a c c e s s between heap and s t a c k :
80000009 bad 80000008 b2

Fig. 7. System call and bad state fragment of the BTOR2 model for the running example

3.4 BEATOR Loves QUBOT Loves BEATOR
Dead code elimination, constant propagation, and bounded memory modeling are all e�ective
translation techniques in reducing the number of qubits in a QUBO model. Moreover, they can
be done by BEATOR or by QUBOT. We have therefore added support of all three to BEATOR. By
bounded memory modeling we mean modeling a segmenting MMU and RAM in a bounded number
of 64-bit bitvectors, one for each memory word in RAM, resulting in BTOR2 models that do not
contain any arrays of bitvectors and thus any read and write operators anymore. The segmenting
MMU bounds the size of the data, heap, and stack segments and then maps them, using the slice
operator of BTOR2, from the 64-bit RISC-U virtual address space to a minimal physical address
space. For the running example, a 4-bit physical address space is su�cient with only 12 memory
words actually being accessed: 2 data words, 1 heap word, and 9 stack words while only the heap
word (*x) and 1 stack word (a) are ever updated, see again Fig. 4 for the memory layout.

14

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Algorithmic Time is �antum Space Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

11 one 1
/ / . . . d a t a f low . . .
36603600 eq 1 205 200 / / $ t 0 == $ze ro
36603601 not 1 36603600 / / $ t 0 != $ze ro
/ / . . . c o n t r o l f low . . .
/ / beq t0 , zero , 8 [R0] :
56603600 next 1 16603600 16603200
/ / A0 : ld t0 , − 1 6 (gp) :
56604000 and 1 16603600 36603601
56604001 next 1 16604000 56604000
/ / . . . sd t0 , − 8 (s0) :
56606400 next 1 16606400 16606000
/ / . . . R0 : addi t0 , zero , 0 :
56606800 and 1 16603600 36603600
56606801 i t e 1 56606800 11 16606400
56606802 next 1 16606800 56606801

Fig. 6. Conditional control-flow fragment of the BTOR2 model for the running example

�ag at nid 16603600 is set) and the value of register t0 is equal to 0 (line at nid 36603600), or else
if sd t0,-8(s0) is currently executing (pc �ag at nid 16606400 and the line at nid 56606801). If
beq t0,zero,8[R0] is currently executing and the value of register t0 is not equal to 0 (line at
nid 36603601) then the pc �ag of A0:ld t0,-16(gp) is set (line at 56604001). Note that only the
translation of beq as well as jal and jalr instructions results in BTOR2 code that connects control
and data �ow. While there are only �nitely many jump targets with jal and jalr instructions
(RISC-U binaries are static), beq instructions remain as the only source of path explosion with read
system calls being the only source of data explosion, as shown next.

Lastly, Fig. 7 shows a system call and bad state fragment of the BTOR2 model generated for the
running example. In particular, it shows how input �ows into the model through a read system
call, how a potential segmentation fault is detected as bad state, and how main memory is written
to, in this case, through the read system call. One-byte input (nid 81) is unsigned-extended to a
64-bit memory word (nid 91) and then �ows via an ite cascade (head at nid 42000020) to a write
operator (nid 42000022). The address for the write operator is a1 + a0 (nid 42000021) where
register a0 (nid 210) is a cursor over the write bu�er that was originally passed to the read system
call in register a1 (nid 211). A potential segmentation fault, such as through SEGFL:ld t0,0(t0),
is detected in line 80000009 bad 80000008 b2 if there is any memory access at an address above
the heap (bump pointer value of the brk system call at nid 45000001) and below the stack (pointer
nid 202) where nid 44000001 is the head of an ite cascade over all addresses used in read and
write operators. There are similar bad states for other unsafe parts of memory. All of main memory
is updated by a single next (nid 70000000) that refers to the head of an ite cascade at 42000028
over all write operators in the model.

There is a fun fact that we like to mention: running BEATOR is fast and since it is written in C*
it can actually model itself and the rest of the unicorn toolchain written in C* as well. The BTOR2
model of the whole C* toolchain takes less than a second to build and is around 4MB.

13

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1 sor t b i tvec 1 ; Boolean
2 sor t b i tvec 64 ; 64− b i t machine word
3 sor t array 2 2 ; 64− b i t p h y s i c a l memory
10 zero 1 . . .
/ / . . . r e g i s t e r s t a t e s 200 −231 . . .
200 zero 2 zero / / r e g i s t e r $0 i s a lways 0 . . .
203 s t a t e 2 gp ; r e g i s t e r $3 . . .
205 s t a t e 2 t 0 ; r e g i s t e r $5
206 s t a t e 2 t 1 ; r e g i s t e r $6
/ / . . . program coun t e r s t a t e s . . .
16603600 s t a t e 1 / / beq t0 , zero , 8 [R0] :
16603601 i n i t 1 16603600 10
16604000 s t a t e 1 / / A0 : ld t0 , − 1 6 (gp) . . .
16606800 s t a t e 1 / / R0 : addi t0 , zero , 0
/ / . . . 64− b i t memory (data , heap , s t a c k) :
20000000 s t a t e 3 phy s i c a l −memory

l o a d i n g data , heap , s t a c k i n t o memory :
20000001 i n i t 3 20000000 17380002
/ / . . . d a t a f low . . . A0 : ld t0 , − 1 6 (gp) :
36604000 constd 2 −16
36604001 add 2 203 36604000
36604003 read 2 20000000 36604001
36604004 i t e 2 16604000 36604003 36603202
/ / . . . A1 : add t0 , t0 , t 1 :
36605600 add 2 205 206
36605601 i t e 2 16605600 36605600 36604004
/ / . . . SEGFL : ld t0 , 0 (t 0) :
36606002 i t e 2 16606000 36606001 36605601
/ / . . . R0 : addi t0 , zero , 0 :
36606800 i t e 2 16606800 200 36606002
/ / . . . upda t ing r e g i s t e r s . . .
60000005 next 2 205 36606800 t 0

Fig. 5. Data-flow fragment of the BTOR2 model for the running example

that updates the same state variable. For example, 36606800 ite 2 16606800 200 36606002
either selects the value of register zero (nid 200) for updating the value of register t0, if R0:addi
t0,zero,0 is currently executing (nid 16606800), or else refers to the ite expression for SEGFL:ld
t0,0(t0) at 36606002 which may also update t0, and so on. Finally, the next value of registers
such as t0 at nid 205 is determined by lines whose nids begin with digit 6 such as 60000005
next 2 205 36606800 t0 which refers to the head of the ite cascade for t0 at 36606800. Actual
computation can be seen in 36605600 add 2 205 206which adds the values of registers t0 and t1
(nid 206) as instructed by A1:add t0,t0,t1. Line 36604003 read 2 20000000 36604001models
the memory read at address gp-16 as instructed by A0:ld t0,-16(gp).

Fig. 6 shows a conditional control-�ow fragment of the BTOR2 model generated from the running
example in Fig. 2. For example, line 56606802 next 1 16606800 56606801 sets the pc �ag of
R0:addi t0,zero,0 (nid 16606800) either if beq t0,zero,8[R0] is currently executing (its pc

12

Data Flow Control Flow System Calls, Bad States

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

u i n t 6 4 _ t ∗ x ;
u i n t 6 4 _ t main () { u i n t 6 4 _ t a ;

x = ma l l o c (1) ; / / r ounded up t o 8
/ / t o u ch t o t r i g g e r page f a u l t h e r e
∗ x = 0 ;
/ / r e ad 1 by t e from c o n s o l e i n t o x
r ead (0 , x , 1) ;
/ / copy from heap t o s t a c k s egment
a = ∗ x ;
/ / d e c r emen t i n p u t u n t i l <= ' 0 '
while (a > ' 0 ')

a = a − 1 ;
/ / s e gmen t a t i o n f a u l t on i n p u t ' 1 '
i f (a == ∗ x − 1) / / ' 0 ' == ' 1 ' − 1

/ / s e g f a u l t : ' 0 ' ! = 0
a = ∗ (x + a) ;

return 0 ;
}

Fig. 2. Running example of a C* program

3.1 C* [31]
Consider the source code of the running example in Fig. 2. The program reads a single byte

from the console keyboard and returns zero as exit code unless the user presses 1 in which case a
segmentation fault may be triggered by the attempt to read from unallocated memory with *(x +
a) since a is then ’0’ which is 48, and not 0. Below we consider certain types of unsafe memory
access triggering segmentation faults as well as non-zero exit codes and division by zero as machine
states to look for. However, the toolchain is able to compute program input that leads to any given
machine state. Program input is all read input. Once some input has been determined the code can
be executed on that input to validate if a machine state is actually reached using, for example, the
RISC-U emulator.
The code is written in C* which is a tiny subset of C that has originally been developed for

educational purposes [1, 2, 31]. The example essentially features all elements of C* except procedure
calls. C* only features two data types, uint64_t and uint64_t*, and �ve statements: assignment,
while, if, return, and procedure call. There are the usual arithmetic and comparison operators but
only for unsigned 64-bit integer arithmetic. Notably, there is only the unary dereference operator *
to access heap memory. There are no arrays and no structs hence the name C*. Furthermore, C*
supports integer, character, and string literals as well as global and local variables and procedure
parameters. Lastly, there is printf library support and a total of �ve builtin procedures: exit,
open, read, write, and malloc. Turns out that, because of its overall simplicity and in particular
its focus on unsigned integer arithmetic, C* is well-suited as target for researching and prototyping
tools for symbolic execution [12, 19, 30, 40].

The part of the toolchain that is relevant here is written in C* and consists of a non-optimizing
linear-time (modulo global (local) symbol table hash collisions (search)) C* compiler that targets
RISC-U, a tiny subset of 64-bit RISC-V [54], as well as a RISC-U emulator and BEATOR which
translates RISC-U code to BTOR2 [40]. RISC-U binaries generated by the C* compiler are in ELF

6

Classic vs Quantum
n is the number of instructions on any path, w is word size

O(n2)

Combinational

Circuit

O(n2w2)

Quadratic

Unconstrained

Binary Optimization

(QUBO) Model

O(n2w)

Quantum Circuit

O(n2w2)

SAT Formula

O(n2)

SMT Formula

classical computing quantum computing

“4xy - 2x - 2y + 2 = 0”

Algorithmic Time is Quantum Space

O(f(x)) time, O(g(x)) space => O(f(x).g(x)) quantum space

O(f(x)) to O(f2(x)) quantum space

Winter Rose

QUBO

Chimera

Minor Embedding

on

D-Wave

Quantum Annealer

Quantum Advantage for All

https://arxiv.org/abs/2111.12063

