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Oops
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Flight Control
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Yaw Control
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Free Flight
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Fun Stuff
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Time-Portable Programming

TiptoeExotasks



Outline

1. Time-Portable Programming

2. Exotasks (Java)

3. Tiptoe (C)
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Time
• The temporal behavior of a process action is 

characterized by its execution time and its 
response time

• The execution time is the time it takes to 
execute the action in the absence of 
concurrent activities

• The response time is the time it takes to 
execute the action in the presence of 
concurrent activities
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Time-Portable Programming

• Time-portable programming specifies and 
implements upper AND lower bounds on 
response times of process actions

• A program is time-portable if the response 
times of its process actions are maintained 
across different hardware platforms and 
software workloads

• The difference ε between upper and lower 
bounds is its “degree of time portability”
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1. The execution time of a process action is 

determined by the process action and the 
executing processor.

‣ Worst-case execution time (WCET) analysis
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Correctness
1. The execution time of a process action is 

determined by the process action and the 
executing processor.

‣ Worst-case execution time (WCET) analysis

2. The response time of a process action is 
determined by the entire system of processes 
executing on a processor.

‣ Real-time scheduling theory
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Time-Portable Programming

Tiptoe
[USENIX 2008]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]
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Time-Portable Programming

Tiptoe
[USENIX 2008]
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[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
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Time-Portable Programming

Tiptoe
[USENIX 2008]

Exotasks
[LCTES 2007, TECS 2008]

Giotto
[EMSOFT 2001, Proceedings of the IEEE 2003]

HTL
[EMSOFT 2006]

Logical Execution Time

Modularity

C!
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3. Tiptoe (C)
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Exotasks

• Alternative to Java threads

• Single-threaded code: validated Java subset

• Isolated in space: private heaps, individual GC

• Communicate by message-passing Java objects

• Isolated in time: HTL semantics

• Other semantics are possible: scheduler plugins
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Eclipse Plugin
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Performance Histogram
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1. Time-Portable Programming

2. Exotasks (Java)

3. Tiptoe (C)
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Example Process
loop {
  int number_of_frames = determine_rate();

  allocate_memory(number_of_frames);
  read_from_network(number_of_frames);

  compress_data(number_of_frames);

  write_to_disk(number_of_frames);
  deallocate_memory(number_of_frames);
} until (done);
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Example Process
loop {
  int number_of_frames = determine_rate();

  allocate_memory(number_of_frames);
  read_from_network(number_of_frames);

  compress_data(number_of_frames);

  write_to_disk(number_of_frames);
  deallocate_memory(number_of_frames);
} until (done);

Workload Parameter
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Tiptoe Programming Model

• Process actions are characterized by their 
execution time and response time in terms 
of their optional workload parameters
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[USENIX 2008]

• malloc(n) takes O(1)

• free(n) takes O(1) (or O(n) if compacting)

• access takes one indirection

• memory fragmentation is bounded and 
predictable in constant time
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Response-Time Function
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fR(1 frame) = 8ms but only 125fps
...

fR(4 frames) = 20ms yields 200fps
...

fR(24 frames) = 100ms yet 240fps

Throughput & Latency
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Execution-Time Function

Bad

fE(w)

0

20

40

60

80

100

0 4 8 12 16 20 24

R
es

po
ns

e 
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

desired concurrent performance actual isolated performance

fR(w)



© C. Kirsch 2008

0

20

40

60

80

100

0 4 8 12 16 20 24

R
es

po
ns

e 
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

Scheduled Response Time

Bad

fS(4)

fR(w)

fE(w)

desired concurrent performance actual isolated performance



© C. Kirsch 2008

∀w. fS(w) ≤ fR(w) ?
and

∀w. fR(w) - ε ≤ fS(w) ?

with ε representing the
“degree of time portability”
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Scheduling and Admission
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Scheduling and Admission

• Process scheduling:

• How do we efficiently schedule 
processes on the level of individual 
process actions?
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Scheduling and Admission

• Process scheduling:

• How do we efficiently schedule 
processes on the level of individual 
process actions?

• Process admission:

• How do we efficiently test schedulability 
of newly arriving processes
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Just use EDF, or not?
action arrives

fR(4)
deadline

fE(4)

action completes
fS(4)
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Virtual Periodic Resource
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Tiptoe Process Model
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Tiptoe Process Model

• Each Tiptoe process declares a finite set of 
virtual periodic resources
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Tiptoe Process Model

• Each Tiptoe process declares a finite set of 
virtual periodic resources

• Each process action of a Tiptoe process 
uses exactly one virtual periodic resource 
declared by the process
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The smaller the π
the smaller the ε may be,

that is, the higher the
“degree of time portability”

but also
the higher the

scheduling overhead
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Scheduling Algorithm

• maintains a queue of ready processes ordered 
by deadline and a queue of blocked processes 
ordered by release times

• ordered-insert processes into queues

• select-first processes in queues

• release processes by moving and sorting them 
from one queue to another queue
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list array matrix
ordered-insert O(n) Θ(log(t)) Θ(log(t))
select-first Θ(1) O(log(t)) O(log(t))
release O(n2) O(log(t) + n · log(t)) Θ(t)

4

list array matrix
time O(n2) O(log(t) + n · log(t)) Θ(t)
space Θ(n) Θ(t + n) Θ(t2 + n)

3

Time and Space

n: number of processes   t: number of time instants
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Current/Future Work

• Concurrent memory management

• Process management

• I/O subsystem
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