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Teaching the 
absolute basics!



What are the 
absolute basics?



What is 
Computer 
Science?



To Create Meaning with a Machine
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✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset 
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter 
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster 
and can host all of selfie including itself, and

4. a tiny C* library called libcstar utilized by all of selfie.
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library: exit, malloc, open, read, write
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compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)



“The OS is an interpreter until people wanted speed.” 

–selfie



compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)



> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)



> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)



Code

Book (Draft)

Website
selfie.cs.uni-salzburg.at

leanpub.com/selfie

github.com/cksystemsteaching/selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie


Thank you!


