
Helmut Veith Memorial Workshop, Obergurgl, February 2017

Teaching Computer Science
Through Self-Referentiality
Christoph Kirsch, University of Salzburg, Austria

scalloc.cs.uni-salzburg.at
concurrent memory allocator

scal.cs.uni-salzburg.at
concurrent data structures

selfie.cs.uni-salzburg.at

http://scalloc.cs.uni-salzburg.at
http://scal.cs.uni-salzburg.at
http://selfie.cs.uni-salzburg.at

Joint Work

✤ Martin Aigner, teaching assistant

✤ Sebastian Arming, teaching assistant

✤ Christian Barthel, bachelor thesis  
RISC-V port, presented @ Google PhD Summit

✤ Michael Lippautz, original emulator design

✤ Simone Oblasser, bachelor thesis  
RISC-V port, presented @ Google PhD Summit

Inspiration

✤ Niklaus Wirth: Compiler Construction

✤ Jochen Liedtke: Microkernels

Computer Science for Everyone

nsf.gov/csforall

computingatschool.org.uk

k12cs.org
bootstrapworld.org

code.org

programbydesign.org

csfieldguide.org.nz

http://nsf.gov/csforall
http://computingatschool.org.uk
http://k12cs.org
http://bootstrapworld.org
http://code.org
http://programbydesign.org
http://csfieldguide.org.nz

Teaching the
absolute basics!

What are the
absolute basics?

What is
Computer
Science?

To Create Meaning with a Machine

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster
and can host all of selfie including itself, and

http://selfie.cs.uni-salzburg.at

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster
and can host all of selfie including itself, and

4. a tiny C* library called libcstar utilized by all of selfie.

http://selfie.cs.uni-salzburg.at

Semantics and Performance

Compiler

Interpreter

Formalism

Physics

Semantics and Performance

Compiler

Interpreter

Formalism

Physics

Semantics and Performance

Compiler

Interpreter

Formalism

Physics

Semantics and Performance

Compiler

Interpreter

Formalism

Physics

Semantics and Performance

Compiler

Interpreter

Formalism

Physics

Compiler

Interpreter

Formalism

Physics

Interpreter

Semantics and Performance

Compiler

Interpreter

Formalism

Physics

Compiler

Interpreter

Formalism

Physics

Interpreter

Compiler

Interpreter

Formalism

Physics

Virtual Machine

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

character literals
string literals

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

character literals
string literals

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

library: exit, malloc, open, read, write

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

Library

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building SelfieLibrary

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals

Library

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State

Library

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners

Library

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures

Library

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap

Library

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator

Library

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Memory Management

Library

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Memory Management
9. Composite Data Types

Library

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Memory Management
9. Composite Data Types
10.MIPSter Boot Loader

Library

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Memory Management
9. Composite Data Types
10.MIPSter Boot Loader
11.MIPSter Emulator

Library

Compiler

Emulator
Hypervisor

selfie.c

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Memory Management
9. Composite Data Types
10.MIPSter Boot Loader
11.MIPSter Emulator
12.MIPSter Hypervisor

Library

Compiler

Emulator
Hypervisor

selfie.c

> make
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie.c into x86 selfie executable  
using standard C compiler

(now also available for RISC-V machines)

> make
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie.c into x86 selfie executable  
using standard C compiler

(now also available for RISC-V machines)

> make
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie.c into x86 selfie executable  
using standard C compiler

(now also available for RISC-V machines)

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments

./selfie: with 97779(55.55%) characters in 28914 actual symbols

./selfie: 261 global variables, 289 procedures, 450 string literals

./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return

./selfie: 121660 bytes generated with 28779 instructions and 6544
bytes of data

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments

./selfie: with 97779(55.55%) characters in 28914 actual symbols

./selfie: 261 global variables, 289 procedures, 450 string literals

./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return

./selfie: 121660 bytes generated with 28779 instructions and 6544
bytes of data

compiling selfie.c with x86 selfie executable

(takes seconds)

compiling selfie.c with x86 selfie executable into a MIPSter executable  
and  

then running that MIPSter executable to compile selfie.c again  
(takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a MIPSter executable  
and  

then running that MIPSter executable to compile selfie.c again  
(takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a MIPSter executable  
and  

then running that MIPSter executable to compile selfie.c again  
(takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a MIPSter executable  
and  

then running that MIPSter executable to compile selfie.c again  
(takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a MIPSter executable  
and  

then running that MIPSter executable to compile selfie.c again  
(takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a MIPSter executable  
and  

then running that MIPSter executable to compile selfie.c again  
(takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a MIPSter executable  
and  

then running that MIPSter executable to compile selfie.c again  
(takes ~6 minutes)

compiling selfie.c into a MIPSter executable selfie1.m  
and  

then running selfie1.m to compile selfie.c  
into another MIPSter executable selfie2.m  

(takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie.c into a MIPSter executable selfie1.m  
and  

then running selfie1.m to compile selfie.c  
into another MIPSter executable selfie2.m  

(takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie.c into a MIPSter executable selfie1.m  
and  

then running selfie1.m to compile selfie.c  
into another MIPSter executable selfie2.m  

(takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie.c into a MIPSter executable selfie1.m  
and  

then running selfie1.m to compile selfie.c  
into another MIPSter executable selfie2.m  

(takes ~6 minutes)

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)

“The OS is an interpreter until people wanted speed.”

–selfie

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)

Code

Book (Draft)

Website
selfie.cs.uni-salzburg.at

leanpub.com/selfie

github.com/cksystemsteaching/selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie

Thank you!

