
Google Tech Talk, Mountain View, September 2010

The Next Frontier of Cloud
Computing is in the Clouds, Literally

Silviu Craciunas, Andreas Haas
Christoph Kirsch, Hannes Payer
Harald Röck, Andreas Rottmann
Ana Sokolova, Rainer Trummer

Universität Salzburg

Joshua Love
Raja Sengupta

UC Berkeley

The JAviator
javiator.cs.uni-salzburg.at

©
 C

. K
ir

sc
h

20
10

Quad-Rotor Helicopter
• all carbon, titanium,

aluminum design
• custom motors

• 1.3m diameter
•~2.2kg weight
•+2kg payload

•~40min (empty)
•~10min (full)

[AIAA GNC 2008]

© C. Kirsch 2010

Open Source Blueprints

© C. Kirsch 2010

Minimal # of Different Parts

15V
10A
35g
1Kg

© C. Kirsch 2010

Custom Electronics

Power
Remote

Barometer

© C. Kirsch 2010

Gyro

Off-the-Shelf Stuff

UWB RFID LaserGumstixUltrasonic

© C. Kirsch 2010

© C. Kirsch 2010

Indoor Flight
STARMAC Controller

© C. Kirsch 2010

Outdoor Flight
Salzburg Controller

© C. Kirsch 2010

More Recent: Yawing

© C. Kirsch 2010

Oops

© C. Kirsch 2010

Autonomous

© C. Kirsch 2010

@%"&94.
@#8%!.#

>1?'()*+

1234%5

@@,-

@%"&94.
@#8%!.#

>1?'()*+

1234%5

@@,-

@%"&94.
@#8%!.#

>1?'()*+

1234%5

@@,-

• IP address
• location
• capabilities
•motion

A Cyber-Physical Server

• IP address
• location
• capabilities
•motion

• IP address
• location
• capabilities
•motion

restricted idealized

© C. Kirsch 2010

@%"&94.
@#8%!.#

>1?'()*+

1234%5

@@,-

@%"&94.
@#8%!.#

>1?'()*+

1234%5

@@,-

@%"&94.
@#8%!.#

>1?'()*+

1234%5

@@,-

@%"&94.
@#8%!.#

>1?'()*+

1234%5

@@,-

@%"&94.
@#8%!.#

>1?'()*+

1234%5

@@,-

@%"&94.
@#8%!.#

>1?'()*+

1234%5

@@,-

@%"&94.
@#8%!.#

>1?'()*+

1234%5

@@,-

@%"&94.
@#8%!.#

>1?'()*+

1234%5

@@,-

A Cyber-Physical Cloud
[HotCloud 2010]

migration
=

flying

© C. Kirsch 2010

Goals

• Multi-provider (10s):

• heterogeneous operations

• Multi-vehicle (100s):

• heterogeneous systems

• Multi-task (1000s):

• heterogeneous missions

© C. Kirsch 2010

High-Level Challenges

• Virtualization Infrastructure

‣ Salzburg

• Collaborative Control

‣ Berkeley

• Programming Language

‣ Berkeley, Salzburg

© C. Kirsch 2010

��������	
�

�

����������������

������������

�������
�������

�����������	��������������

 ������� ��������������

	
�! 	
�" 	
�# 	
�$ ������ %��&��'�

��������	
�

 ������
 ������

�����	
�

������

())��������*

�

������

��������	
� ��������	
�

 �

 ������
 ������

�����	
�

������

 �

 ������
 ������

�����	
�

������

 �

�+

	
		�
�������

Virtualization Infrastructure

•Spatial Isolation
•Temporal Isolation
•Power Isolation
•Migration
•Tracking

Isolating
space, time, power

simultaneously
likely requires

adequate runtime support
but also

advanced program analysis

We need
runtime environments

with an
interface

to
program analysis

for
trading off complexity

Heap Management

©
 C

. K
ir

sc
h

20
10

Do We Need Compaction?
• Compact-fit explicit heap management

[USENIX ATC 2008]:

• malloc and free are constant-time, unless
compaction is necessary

‣ memory is kept size-class compact

• fragmentation is history-independent and
predictable in constant-time

• partial compaction: program analysis!

• C code available at:

‣ tiptoe.cs.uni-salzburg.at/compact-fit

Probably not

http://tiptoe.cs.uni-salzburg.at/compact-fit
http://tiptoe.cs.uni-salzburg.at/compact-fit

©
 C

. K
ir

sc
h

20
10

And Garbage Collectors?

• Short-term memory for self-collecting mutators
[SBG10, submitted]:

• all operations are constant-time

• constant per-object space consumption

• Java patch under EPL

‣ based on Jikes RVM, GNU Classpath class library

• Dynamic C library (libscm) under GPL

‣ based on POSIX threads, ptmalloc2 allocator

• Available at:

‣ tiptoe.cs.uni-salzburg.at/short-term-memory

Hopefully not

works with any
legacy code (1-word
space overhead per

memory block)

http://tiptoe.cs.uni-salzburg.at/short-term-memory
http://tiptoe.cs.uni-salzburg.at/short-term-memory

© C. Kirsch 2010

Short-term Memory

‣ Next week, Tue, Sept 7, 4pm @ UC Berkeley

• Memory objects are only guaranteed to exist
for a finite amount of time

• Memory objects are allocated with a given
expiration date

• Memory objects are neither explicitly nor
implicitly deallocated but may be refreshed
to extend their expiration date

With short-term memory
programmers or algorithms

specify which memory objects
are still needed

and not
which memory objects are

not needed anymore!

© C. Kirsch 2010

Explicit Programming Model

• Each thread advances a thread-local clock
by invoking an explicit tick() call

• Each object receives upon its allocation an
expiration date that is initialized to the
thread-local time

• An explicit refresh(Object, Extension)
call sets the expiration date of the Object
to the current thread-local time plus the
given Extension

© C. Kirsch 2010

Heap Management

heap

needed reachable

not-expired

conservative
expiration

conservative
refresh

Sources of Errors:

1. not-needed objects
are continuously refreshed or

time does not advance
(memory leaks)

2. needed objects expire
(dangling pointers)

Our Conjecture:

It is easier to say
which objects are still needed

than
which objects are not needed

anymore
in program analysis!

© C. Kirsch 2010

Use Cases

benchmark LoC tick refresh free aux total

mpg123 16043 1 0 (-)43 0 44

JLayer 8247 1 6 0 2 9

Monte Carlo 1450 1 3 0 2 6

LuIndex 74584 2 15 0 3 20

Table 2. Use cases of short-term memory: lines of code of the

benchmark, number of tick-calls, number of refresh-calls, number

of free-calls, number of auxiliary lines of code, and total number of

modified lines of code.

Upon allocation an object receives expiration dates for all

threads that are initialized to the respective thread-local times.

Refreshing is done by explicit refresh-calls, which take two pa-

rameters, an object which should be refreshed and an expiration

extension. The new expiration date of an object (for the thread in-

voking the refresh-call) is the current (thread-local) time plus the

given expiration extension. Moreover, the expiration dates for the

threads for which the object has already expired are set to the re-

spective thread-local times. This way other threads get a chance to

refresh the object before it expires. For example, a producer of an

object may stop refreshing the object and tick as soon as the object

is consumed by a consumer, which then still has a chance to refresh

the object and tick without further coordination with the producer.

Note that it makes no difference if an object is refreshed once or

multiple times (by the same thread) within one time unit. More-

over, in some cases it is useful to have a recursive refresh-call that

refreshes all objects reachable from a given object. Performing a

recursive refresh-call is similar to a mark-sweep garbage collector

performing a (partial) mark phase.

The explicit programming model does not require concurrent

reasoning for correct usage by the programmer similar to using

garbage collectors. In other words, each thread may tick and refresh

the objects it needs independently of any other threads. Note that

our implementations do not actually maintain expiration dates for

all threads and therefore only approximate this model in the sense

that objects may expire later than they could, but never earlier. As

a result, all memory management operations take constant time at

the expense of potentially increased memory consumption.

2.2.2 Benchmarks
We translated the following programs to use short-term memory:

1. the mpg123
1

MP3 converter version 1.12 written in C,

2. the JLayer MP3 converter
2
,

3. the Monte Carlo benchmark of the Grande Java Benchmark

Suite [15],

4. the LuIndex benchmark of the Dacapo Benchmark Suite [6],

version 9.12.

We informally applied a translation scheme that makes estab-

lishing correctness easy at the expense of potentially decreased

runtime performance and increased memory consumption. We first

identify the code location that marks the end of the period of the

most frequent periodic behavior of the benchmark, and where most

of the memory expires. We say that this memory is short-term with

respect to that period. We then place a tick-call at this code lo-

cation, which was easy for us to find in all four benchmarks. We

finally add refresh-calls on objects that are still needed after exe-

cuting the tick-call to maintain memory that is not short-term. All

other memory is short-term and will then expire.

1
http://www.mpg123.de

2
http://www.javazoom.net/javalayer/javalayer.html

The mpg123 benchmark converts a set of mp3 files to a set of

corresponding wav files. All memory needed for the conversion of a

single file is short-term, which means that it expires once the file is

converted. Therefore, one tick-call is sufficient and is conveniently

placed in the code where processing a file is finished. This removes

the need for all 43 free-calls in the original code. No refresh-calls

are required.

For the remaining three programs written in Java we only use re-

cursive refresh-calls. Similar to the mpg123 benchmark, the JLayer

benchmark converts mp3 files to wav files. However, we have only

benchmarked JLayer on a single file at a time, and therefore iden-

tified frame rather than file processing as the relevant periodic be-

havior for placing a tick-call in the code where processing a frame

is finished. Four refresh-calls are required for input and output

buffers. Another refresh-call is required for a progress-listener ob-

ject. The application root object allocated in the main method of

JLayer, which needs to exist during the whole program execution,

also requires a refresh-call. This object is a local object, only reach-

able from within the main method. Making this object reachable

from the code location where refreshing is done results in two aux-

iliary lines of code.

The Monte Carlo benchmark consists of a calculation loop to

which we added a tick-call at the end. Hence, all memory allocated

within one loop iteration is short-term, except for a result object

that is generated in every loop iteration and stored in a result set

which requires one recursive refresh-call. A second refresh-call

is required to refresh the application root object, again with two

auxiliary lines of code to make it accessible. A third refresh-call is

required on an object used for time measurements.

The LuIndex benchmark consists of two threads. The first thread

does not have a main loop but recursively iterates over files con-

tained in a hierarchical file system. File processing is the relevant

periodic behavior here according to our scheme but more difficult

to identify because of the absence of a main loop. A tick-call is

placed in the code where processing a file is finished. Two refresh-

calls and three auxiliary lines of code are necessary to refresh the

application root object and to prevent the current state of the recur-

sion from expiring. Another refresh-call is required for a result data

object. Finally, eleven refresh-calls are necessary to prevent static

variables from expiring. The second thread processes, in a loop, the

data generated by the first thread. We placed a tick-call at the end

of this loop and added a refresh-call on its only root object.

2.3 Related Work
Implementing short-term memory essentially requires a representa-

tion of the not-expired and expired sets as well as an algorithm that

determines expiration information and time advance. The algorithm

may be an offline analysis tool or an online system, as with most

related work, or even a programmer that provides the information

manually, as with self-collecting mutators. The representation may

implement sets to support any algorithm, as in self-collecting mu-

tators, or more specific data structures such as stacks and buffers

that are more efficient but work only for specific algorithms, as in

some related work.

Stack allocation can be seen as implementing a special case of

short-term memory where the representation are per-thread stacks

and the algorithm maintains per-frame expiration dates and per-

stack time that advances upon returns from subroutines, which

facilitates constant-time allocation and deallocation of multiple

objects. General refreshing is not possible.

Short-term memory is originally inspired by cyclic allocation

where the representation are cyclic fixed-size per-allocation-site

buffers [17]. The algorithm maintains per-buffer expiration dates

set to the size of the buffer and per-buffer time that advances upon

each allocation in the buffer. For example, an allocation in a three-

4 2010/8/23

© C. Kirsch 2010

C:
Memory

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160 180

number of allocations

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

tick tick tick tick tick

m
e

m
o

ry
 c

o
n

su
m

p
tio

n
 in

 K
B

 (

lo
w

e
r

is
 b

e
tt

e
r)

ptmalloc2 (1)
local-SCM(1, 256B)(2)

space-overhead(1, 256B)(3)
global-SCM(1, 256B)(4)
local-SCM(10, 256B)(5)

space-overhead(10, 256B)(6)
local-SCM(1, 4KB)(7)

space-overhead(1, 4KB)(8)
local-SCM(10, 4KB)(9)

space-overhead(10, 4KB)(10)

Figure 15. Memory overhead and consumption of the mpg123
benchmark. Again, local/global-SCM(n,m) stands for self-
collecting mutators with a maximal expiration extension of n
and descriptor page size m, using local/global-refresh. We write
space-overhead(n,m) to denote the memory overhead of the local-
SCM(n,m) configurations for storing descriptors and descriptor
counters.

self-collecting mutators significantly simplifies memory manage-
ment usage over explicit deallocation as shown in Table 2.

5. Conclusion and Future Work
We proposed the short-term memory model and presented Java
and C implementations of a memory management system called
self-collecting mutators that uses the model. In short-term memory
objects are allocated with an expiration date, which makes deal-
location unnecessary. Self-collecting mutators provides constant-
time memory operations, supports concurrency, and performs com-
petitively with garbage-collected and explicitly managed systems.
Moreover, short-term memory consumption typically becomes
constant after an initial period of time. We presented experiments
that confirm our claims in a number of benchmarks.

We informally described a simple translation scheme for port-
ing existing programs to self-collecting mutators. In most of the
benchmarks we only had to insert a negligible number of lines of
code compared to the total number of lines of code. Using self-
collecting mutators was here almost as easy as programming in a
garbage-collected system, yet with decreased runtime overhead and
improved predictability.

As near-term future work, we plan to implement the multiple-
expiration-dates approximation in Java in order to deal with block-
ing and faulty threads. The challenge will be to support recur-
sive refresh. In the C implementation we plan to finish integrating
blocking, resuming, and unregistering threads into the thread man-
agement system, and perform further experiments on non-trivial,
concurrent benchmarks. Finally, we started working on implement-
ing the multiple-expiration-dates approximation for Go. The chal-
lenge will probably be to maintain the scalability of goroutines.

Medium-term future work may be on fully time- and space-
predictable memory management by combining self-collecting
mutators with real-time allocators such as Compact-fit [11] and
comparing the result with real-time garbage collectors such as
Metronome [4]. More long-term research may focus on exploring
different time definitions, e.g. based on real time, but also establish-
ing correctness, by providing a program analysis tool for automatic

translation of programs to short-term memory or more advanced
runtime support.

References
[1] AIGNER, M., AND HAAS, A. Short-term memory implemen-

tation for C, 2010. http://tiptoe.cs.uni-salzburg.at/
short-term-memory/.

[2] AIGNER, M., HAAS, A., KIRSCH, C. M., PAYER, H., AND
SOKOLOVA, A. Short-term memory for self-collecting mutators.
Tech. Rep. TR 2010–03, University of Salzburg, 2010.

[3] ALPERN, B., ATTANASIO, C. R., BARTON, J. J., BURKE, M. G.,
CHENG, P., CHOI, J.-D., COCCHI, A., FINK, S. J., GROVE, D.,
HIND, M., HUMMEL, S. F., LIEBER, D., LITVINOV, V., MERGEN,
M. F., NGO, T., RUSSELL, J. R., SARKAR, V., SERRANO, M. J.,
SHEPHERD, J. C., SMITH, S. E., SREEDHAR, V. C., SRINIVASAN,
H., AND WHALEY, J. The Jalapeño virtual machine. IBM Syst. J. 39,
1 (2000), 211–238.

[4] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time garbage
collector with low overhead and consistent utilization. In Proc. POPL

(2003), ACM.
[5] BACON, D. F., CHENG, P., AND RAJAN, V. T. A unified theory of

garbage collection. In Proc. OOPSLA (2004), ACM.
[6] BLACKBURN, S. M., GARNER, R., HOFFMANN, C., KHANG,

A. M., MCKINLEY, K. S., BENTZUR, R., DIWAN, A., FEINBERG,
D., FRAMPTON, D., GUYER, S. Z., HIRZEL, M., HOSKING, A.,
JUMP, M., LEE, H., MOSS, J. E. B., MOSS, B., PHANSALKAR,
A., STEFANOVIĆ, D., VANDRUNEN, T., VON DINCKLAGE, D., AND
WIEDERMANN, B. The DaCapo benchmarks: Java benchmarking de-
velopment and analysis. In Proc. OOPSLA (2006), ACM.

[7] BLACKBURN, S. M., AND MCKINLEY, K. S. Immix: a mark-region
garbage collector with space efficiency, fast collection, and mutator
performance. In Proc. PLDI (2008), ACM.

[8] BOND, M. D., AND MCKINLEY, K. S. Leak pruning. In Proc. ASP-

LOS (2009), ACM.
[9] COLLINS, G. E. A method for overlapping and erasure of lists.

Commun. ACM 3, 12 (1960), 655–657.
[10] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C.

Introduction to Algorithms, Second Edition. MIT Press and McGraw-
Hill, 2001, ch. 6.5: Priority queues, pp. 138–142.

[11] CRACIUNAS, S. S., KIRSCH, C. M., PAYER, H., SOKOLOVA, A.,
STADLER, H., AND STAUDINGER, R. A compacting real-time mem-
ory management system. In Proc. ATC (2008), USENIX.

[12] DHURJATI, D., KOWSHIK, S., ADVE, V., AND LATTNER, C.
Memory safety without runtime checks or garbage collection. In
Proc. LCTES (2003), ACM.

[13] GREENWALD, M. Non-blocking synchronization and system design.
Tech. rep., Stanford University, 1999.

[14] JUMP, M., AND MCKINLEY, K. S. Cork: dynamic memory leak
detection for garbage-collected languages. In Proc. POPL (2007),
ACM.

[15] MATHEW, J. A., CODDINGTON, P. D., AND HAWICK, K. A. Anal-
ysis and development of Java Grande benchmarks. In Proc. JAVA

(1999), ACM.
[16] MCCARTHY, J. Recursive functions of symbolic expressions and their

computation by machine, Part I. Commun. ACM 3, 4 (1960), 184–195.
[17] NGUYEN, H. H., AND RINARD, M. Detecting and eliminating mem-

ory leaks using cyclic memory allocation. In Proc. ISMM (2007),
ACM.

[18] OANCEA, C. E., MYCROFT, A., AND WATT, S. M. A new approach
to parallelising tracing algorithms. In Proc. ISMM (2009), ACM.

[19] OGATA, K., ONODERA, T., KAWACHIYA, K., KOMATSU, H., AND
NAKATANI, T. Replay compilation: improving debuggability of a just-
in-time compiler. In Proc. OOPSLA (2006), ACM.

[20] TANENBAUM, A. S. Modern Operating Systems. Prentice Hall, 2001.
[21] TOFTE, M., AND TALPIN, J.-P. Region-based memory management.

Inf. Comput. 132, 2 (1997), 109–176.

12 2010/8/24

original
ptmalloc2

self-collecting
mutators

space
overhead

memory consumption
if all memory is

assumed to be shared

©
 C

. K
ir

sc
h

20
10

Java: Throughput

 98

 100

 102

 104

 106

 108

 110

 112

 114

 116

MC leaky MC fixed 4xMC fixed

to
ta

l r
u
n
tim

e
 in

 %

 o
f
th

e
 r

u
n
tim

e
 o

f
S

C
M

 (

lo
w

e
r

is
 b

e
tt
e
r)
Monte Carlo Benchmarks

SCM(50,20)
GEN

MS

SCM(50,20) double memory
GEN double memory

MS double memory

Figure 9. Total execution time of the Monte Carlo benchmarks in
percentage of the total execution time of the benchmark using self-
collecting mutators.

round classes are loaded dynamically by the VM resulting in mem-
ory allocations. We start measuring the time after the first round. In
the LuIndex benchmark the effect of the aggressive optimization is
significant, it reduces the needed heap size by 120MB.

For the performance measurements of the Monte Carlo bench-
marks we use the SCM(50,20) configuration. In our experience
this configuration results in the best performance. We measure
the performance of the systems with the heap sizes shown in Ta-
ble 4 as well as with doubled amount of memory. The results are
shown in Figure 9. Self-collecting mutators is slightly faster than
the garbage-collected systems, even when more memory is avail-
able. The sharing of the buffers in self-collecting mutators between
concurrent threads does not affect the performance much because
the contention on each buffer is low. The JLayer and LuIndex
benchmarks were not measured with the SCM(50,20) configura-
tion since they do not require refreshing and SCM(50,20) induces
additional overhead. These benchmarks were measured with the
SCM(1,1) configuration as well as with the aggressive space opti-
mization, the results are shown in Figure 10. Note that the aggres-
sive optimization may result in decreased execution time as in the
JLayer benchmark or in increased execution time as in the LuIndex
benchmark. Self-collecting mutators is competitive to the garbage-
collected systems in temporal performance of all benchmarks.

4.1.2 Loop Execution Time and Memory Consumption
To measure the pause times of the memory management system
and the memory consumption we recorded the loop execution time
and the amount of free memory at the end of every loop iteration in
the Monte Carlo benchmark.

Figure 11 shows the free memory and the loop execution time
of the fixed Monte Carlo benchmark. The amount of free mem-

 99

 99.5

 100

 100.5

 101

 101.5

 102

 102.5

 103

 103.5

 104

JLayer LuIndex

to
ta

l r
u
n
tim

e
 in

%

 o
f
th

e
 r

u
n
tim

e
 o

f
S

C
M

 (

lo
w

e
r

is
 b

e
tt
e
r)

SCM(1,1)
aggressive SCM(1,1)

GEN
MS

GEN double memory
MS double memory

Figure 10. Total execution time of the JLayer and the LuIndex
benchmarks in percentage of the total execution time of the bench-
mark using self-collecting mutators.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 500 1000 1500 2000 2500
 100

 1000

 10000

 100000

fr
e
e
 m

e
m

o
ry

 in
 M

B

 (
h
ig

h
e
r

is
 b

e
tt
e
r)

lo
o
p
 e

xe
cu

tio
n
 t
im

e

 in
 m

ic
ro

se
co

n
d
s

(l
o
g
a
ri
th

m
ic

)
 (

lo
w

e
r

is
 b

e
tt
e
r)

loop iteration

GEN free memory
MS free memory

SCM free memory

GEN loop execution time
MS loop execution time

SCM loop execution time

Figure 11. Free memory and loop execution time of the fixed
Monte Carlo benchmark.

 93

 93.02

 93.04

 93.06

 93.08

 93.1

 93.12

 93.14

 93.16

 93.18

 93.2

 0 5 10 15 20
 100

 1000

 10000

 100000

fr
e
e
 m

e
m

o
ry

 in
 M

B

 (
h
ig

h
e
r

is
 b

e
tt
e
r)

lo
o
p
 e

xe
cu

tio
n
 t
im

e

 in
 m

ic
ro

se
co

n
d
s

 (
lo

w
e
r

is
 b

e
tt
e
r)

loop iteration

loop execution time thread1
loop execution time thread2
loop execution time thread3
loop execution time thread4

free memory thread1
free memory thread2
free memory thread3
free memory thread4

Figure 12. Free memory and loop execution time of four concur-
rent instances of the Monte Carlo benchmark using self-collecting
mutators.

ory is nearly constant when the benchmark is executed with self-
collecting mutators. New result objects are allocated in every loop
iteration, but they do not require much space. The loop execution
time is nearly constant. It has a jitter of less than 100 microsec-
onds. Both garbage-collected systems have similar loop execution
times as self-collecting mutators except for the iterations in which
garbage collection is triggered. The loop execution time is much
larger then. The free-memory curve of the garbage-collected sys-
tems looks like a saw-tooth curve which has a peak after every
garbage collection run. The chart depicts the first 2500 loop iter-
ations, further iterations show the same pattern.

Next we measure the memory consumption and the loop ex-
ecution times of self-collecting mutators with four concurrent in-
stances of the Monte Carlo benchmark. Figure 12 shows the first
20 loop iterations. The values representing free memory for a given
thread correspond to the overall free memory measured at the end
of a loop iteration of the thread. The memory consumption is con-
stant (also for all further iterations), but the system initially requires
some loop iterations to find its steady state. Thereafter the buffers
of all allocation sites are large enough and no additional memory is
needed. The loop execution time still does not vary much.

At last we analyze the time-space trade-off controlled by the
number of loop iterations per tick-call. The loop execution times
are shown in Figure 13, the free memory over time is visualized
in Figure 14. For the measurements we considered three scenarios:
tick at every loop iteration, tick at every 50th loop iteration and tick
at every 200th iteration. We distributed the required refresh-calls
uniformly over all time units to achieve full incrementality. As a
result, the loop execution time has only small variance. The results
show that the more ticks, and thus the more refreshing happens,

10 2010/8/24

Programmable
Temporal Isolation

©
 C

. K
ir

sc
h

20
10

Do We Need Programmable?

• Variable-bandwidth servers (VBS) [SIES09]:

• a process is temporally isolated if the variance in
response time of any given piece of process code
is bounded independently of other processes

• response time (throughput) and variance
(latency) are programmable at runtime

• lower variance means more overhead [RTAS10]

• C code available at:

‣ tiptoe.cs.uni-salzburg.at/scheduler

Probably yes

http://tiptoe.cs.uni-salzburg.at/scheduler
http://tiptoe.cs.uni-salzburg.at/scheduler

© C. Kirsch 2010

But only for uniprocessors...

• Variable-bandwidth servers (VBS) [SIES09]:

• constant-time scheduling algorithm

• queue management plugins trade off
overall time and space complexity:

‣ from linear time (# of processes) and
constant space to constant time and
quadratic space (timer resolution)

• constant-time admission test:

‣ false negatives vs. more overhead

• what about I/O?

©
 C

. K
ir

sc
h

20
10

Yes, we can
at least, we think so

• VBS may likely support multicore, see other work

• however, what exactly is the relationship of
temporal isolation quality, cost, and scalability?

• Non-linearizable computing holds a preliminary
answer [submitted]:

• what if we relax correctness for scalability?

• shifts problem to program analysis

• e.g.: a concurrent FIFO queue may only return
k-th oldest element but scales like hell

• Code not yet available but will be, stay tuned

Can We Scale This?

works with data
structures that have an
“insert-remove API”,
e.g. stacks, queues

© C. Kirsch 2010

Lock-free FIFO Queue
(on 24-core machine)

 0.1

 1

 10

 100

 1000

 10000

 100000

1 4 8 12 16 20 24 32 48 64

a
ve

ra
g
e
 n

u
ll

re
tu

rn
s/

th
re

a
d
 (

lo
g
 s

ca
le

,
le

ss
 is

 b
e
tt
e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(a) lock-based FIFO

0.1

1

10

100

1000

10000

100000

1 4 8 12 16 20 24 32 48 64

a
ve

ra
g
e
 n

u
ll

re
tu

rn
s/

th
re

a
d
 (

lo
g
 s

ca
le

,
le

ss
 is

 b
e
tt
e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(b) lock-free FIFO

 0.1

 1

 10

 100

 1000

 10000

 100000

1 4 8 12 16 20 24 32 48 64

a
ve

ra
g
e
 n

u
ll

re
tu

rn
s/

th
re

a
d
 (

lo
g
 s

ca
le

,
le

ss
 is

 b
e
tt
e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(c) lock-based priority queue

 0.1

 1

 10

 100

 1000

 10000

 100000

1 4 8 12 16 20 24 32 48 64

a
ve

ra
g
e
 n

u
ll

re
tu

rn
s/

th
re

a
d
 (

lo
g
 s

ca
le

,
le

ss
 is

 b
e
tt
e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(d) lock-based stack

 0.1

 1

 10

 100

 1000

 10000

 100000

1 4 8 12 16 20 24 32 48 64

a
ve

ra
g
e
 n

u
ll

re
tu

rn
s/

th
re

a
d
 (

lo
g
 s

ca
le

,
le

ss
 is

 b
e
tt
e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(e) lock-free stack

Figure 5: Adherence to data structure semantics in average null returns/thread with increasing number of threads on a 24-core
server machine

and scalability.

The results of the lock-based and lock-free implementations of both
the stack and the FIFO queue show that balancing the operations
among the partial data structures is more important for the lock-
based data structures, especially if more threads are running than
CPUs are available on the machine. Descheduled threads that hold
the global lock of a partial data structure increase the waiting time
of other threads which are interested in the lock. The better the dis-
tribution of data structure operations over the partial data structures
the less frequent such a scenario happens.

The throughput results of a priority queue implementation are
shown in Figure 4(c). Again the perfect select function does not
scale. The 2-random select function provides the best performance
and scalability since it establishes the best balance of operations.
The random selection function scales but performs not as good as
the 2-random select function.

5.2.2 Semantics
The semantical performance is depicted in Figure 5. We measure
the quality of the data structure semantics by counting how often
null was returned by a remove operation. This method introduces
no measuring artifacts but is not precise. We nevertheless believe
that it is a reasonable approach to demonstrate semantical weak-
ening. A precise method would check the distance of the element
that is returned by a remove operation to the element that would
have been returned by a linearizable version of the data structure.
However, such a measurement is extremely costly and would sig-
nificantly distort the execution of the data structure operations.

In Figure 5 the baseline is not visible since it is a linearizable data

structure and therefore the remove operation never returns null. For
Scal these experiments confirm that a larger k leads to more null
returns, which indicates that small values of k provide better adher-
ence to the original semantics.

Comparing the different select functions we observed that the re-
move operation returns null several times when using the random
select function whereas the 2-random select function returns null
only a few times. The 2-random select function has three orders of
magnitude fewer null returns than the random select function. Even
though the results of the perfect select function are of an extreme
setting with k = 256 partial data structures its semantical perfor-
mance is similar to other select functions that have only 12 partial
data structures. We observed that using the perfect select function
and a small k the remove operation rarely returns null.

The correlation between balancing operations and scalability as
well as semantics is clearly visible. On the one hand, using the
random select function the number of times null is returned in-
creases with the number of threads. In the previous section we
also saw that its scalability is limited. On the other hand, with the
2-random select function the number of null returns is constant and
even slightly decreases if the number of threads increases. It scales
better than the random select function. More interestingly, the se-
mantical performance of the 2-random select function is similar and
only slightly worse than the perfect select function configuration,
while its performance in terms of throughput, however, is much
better.

5.3 Additional Load
In the producer-consumer benchmarks the threads perform only
data structure operations without any computation between each

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(a) lock-based FIFO

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(b) lock-free FIFO

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1 4 8 12 16 20 24 32 48 64
o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(c) lock-based priority queue

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(d) lock-based stack

 0

 5000

 10000

 15000

 20000

 25000

 30000

1 4 8 12 16 20 24 32 48 64

o
p
e
ra

tio
n
s/

m
s

(m
o
re

 is
 b

e
tt
e
r)

number of threads

baseline
2-random k=12

2-random k=24
2-random k=256

random k=12
random k=24

random k=256
perfect k=256

(e) lock-free stack

Figure 4: Throughput in data structure operations/ms with increasing number of threads on a 24-core server machine

5.2 Producer-Consumer Benchmark
We conducted several experiments using a producer-consumer

benchmark that creates high pressure on the shared data structure.

The benchmark starts with an empty instance of the data structure.

Then, each thread inserts and removes elements in alternating or-

der one million times. In total each thread performs 50% insert and

50% remove operations. To prevent measuring startup effects we

synchronize the start of all threads. Since the data structure is ini-

tially empty the maximum number of elements in the data structure

is bounded by the number of threads. Moreover, with a linearized

data structure each remove operation returns an element because it

is always preceded by an insert operation of the same thread. For

several different Scal configurations we repeated each benchmark

with a different number of threads and measured how much time

each thread needed to complete one million operations. Each mea-

surement was done ten times to eliminate measuring inaccuracies.

The presented results are the average of the ten measurements. We

use the number of operations performed by all threads per millisec-

ond as our metric of throughput. Additionally, we count how often

the remove operation returns null as an indicator of how close the

semantics of the k-linearizable data structure approximates its lin-

earizable counterpart.

We present two figures for each evaluated data structure. Figure 4

depicts the throughput in operations per millisecond on the y-axis

against the number of threads on the x-axis. Figure 5 depicts the

semantics using the average number of null-returns per thread on

the y-axis (log-scale) against the number of threads on the x-axis.

5.2.1 Throughput
The first type of data structure we analyze is a FIFO queue using

two different implementations. One implementation uses a lock

per partial data structure. The other implementation is the lock-

free Michael Scott queue [16].

Figure 4(a) shows the results of the k-linearizable lock-based FIFO

queue using different select functions and different values of k. The

baseline is the original algorithm not using Scal. If more than one

thread is present the baseline’s throughput is always lower than of

any Scal configuration. The perfect select function does not scale to

large numbers of threads and k > 1 provides only a constant speed-

up. In contrast both random and 2-random select functions achieve

positive scalability. The random select function performs slightly

better as long as the number of threads is smaller than or equal

to the number of available CPUs. For more threads than CPUs 2-

random provides better performance and still shows positive scal-

ability. Since a d-random select function provides a better distri-

bution of operations in comparison to the random select function it

allows more operations to be performed concurrently.

The throughput of the lock-free Michael Scott queue is depicted

in Figure 4(b). Similar to the lock-based FIFO queue the through-

put of the baseline decreases if more threads compete for access

to the data structure. The throughput of the perfect select function

is similar to the lock-based version. For smaller k the random and

2-random select functions perform much better than the lock-based

FIFO queue. Moreover, the difference between these two select

functions is not as distinct as in the previous implementation.

The results of lock-based and lock-free stack implementations are

shown in Figure 4(d) and Figure 4(e), respectively. Similar to the

queue experiment the perfect select function does not scale. Both

the random and the 2-random select functions provide scalability.

The 2-random select function even scales when more threads are

started than CPUs are available on the machine. For the lock-free

version the random select function provides the best performance

Scalability Semantics

best trade-off
Can we relate

temporal isolation
quality and scalability

through this?

Time and Power
Isolation

© C. Kirsch 2010

Time and Power

• temporal isolation if and only if power isolation?

• probably yes, if there is no frequency scaling,
and if scheduling and context switching cost
(time [RTAS10], power?) is accounted for

• problem: false negatives; solution: PA!?

• power-aware temporal isolation [EMSOFT10]

• time and power isolation w/ frequency scaling?

• problem: non-linear relationship of power
consumption and processor frequency

Thank you

Check out:
eurosys2011.cs.uni-salzburg.at

http://eurosys2011.cs.uni-salzburg.at
http://eurosys2011.cs.uni-salzburg.at

