
Eidgenössisch-Technische Hochschule Zürich, March 2017

Selfie: What is the Difference between
Emulation and Virtualization?
Christoph Kirsch, University of Salzburg, Austria

scalloc.cs.uni-salzburg.at
concurrent memory allocator

scal.cs.uni-salzburg.at
concurrent data structures

selfie.cs.uni-salzburg.at

http://scalloc.cs.uni-salzburg.at
http://scal.cs.uni-salzburg.at
http://selfie.cs.uni-salzburg.at

Joint Work

✤ Martin Aigner, teaching assistant

✤ Sebastian Arming, teaching assistant

✤ Christian Barthel, bachelor thesis  
RISC-V port, presented @ Google PhD Summit

✤ Michael Lippautz, original emulator design

✤ Simone Oblasser, bachelor thesis  
RISC-V port, presented @ Google PhD Summit

Inspiration

✤ Niklaus Wirth: Compiler Construction

✤ Jochen Liedtke: Microkernels

Computer Science for Everyone

nsf.gov/csforall

computingatschool.org.uk

k12cs.org
bootstrapworld.org

code.org

programbydesign.org

csfieldguide.org.nz

http://nsf.gov/csforall
http://computingatschool.org.uk
http://k12cs.org
http://bootstrapworld.org
http://code.org
http://programbydesign.org
http://csfieldguide.org.nz

Teaching the
absolute basics!

What are the
absolute basics?

What is
Computer
Science?

To Create Meaning with a Machine

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]

✤ Selfie is a self-referential 7k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset
of C called C Star (C*) to a tiny subset of MIPS32 called MIPSter,

2. a self-executing emulator called mipster that executes MIPSter
code including itself when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster
and can host all of selfie including itself, and

4. a tiny C* library called libcstar utilized by all of selfie.

http://selfie.cs.uni-salzburg.at

Code

Book (Draft)

Website
selfie.cs.uni-salzburg.at

leanpub.com/selfie

github.com/cksystemsteaching/selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie

Discussion of Selfie recently reached 3rd place on Hacker News

news.ycombinator.com

http://news.ycombinator.com

int atoi(int *s) {
 int i;
 int n;
 int c;

 i = 0;
 n = 0;
 c = *(s+i);

 while (c != 0) {
 n = n * 10 + c - '0';
 if (n < 0)
 return -1;

 i = i + 1;
 c = *(s+i);
 }

 return n;
}

5 statements:
assignment

while
if

return
procedure()

no data structures,
just int and int*
and dereferencing:

the * operator

integer arithmetics
pointer arithmetics

no bitwise operators
no Boolean operators

character literals
string literals

library: exit, malloc, open, read, write

Selfie and Twelve Basic Principles

1. Semantics
2. Encoding
3. State
4. Regularity
5. Stack
6. Name
7. Time
8. Memory
9. Type
10.Bootstrapping
11. Interpretation
12.Virtualization

1. Building Selfie
2. Encoding C* Literals
3. Program/Machine State
4. C*/Command Line Scanners
5. C* Parser and Procedures
6. Symbol Table and the Heap
7. MIPSter Code Generator
8. Memory Management
9. Composite Data Types
10.MIPSter Boot Loader
11.MIPSter Emulator
12.MIPSter Hypervisor

Library

Compiler

Emulator
Hypervisor

selfie.c

> make
cc -w -m32 -D'main(a,b)=main(a,char**argv)' selfie.c -o selfie

bootstrapping selfie.c into x86 selfie executable  
using standard C compiler

(now also available for RISC-V machines)

> ./selfie
./selfie: usage: selfie { -c { source } | -o binary | -s assembly
| -l binary } [(-m | -d | -y | -min | -mob) size ...]

selfie usage

> ./selfie -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments

./selfie: with 97779(55.55%) characters in 28914 actual symbols

./selfie: 261 global variables, 289 procedures, 450 string literals

./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return

./selfie: 121660 bytes generated with 28779 instructions and 6544
bytes of data

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a MIPSter executable  
and  

then running that MIPSter executable to compile selfie.c again  
(takes ~6 minutes)

> ./selfie -c selfie.c -o selfie1.m -m 2 -c selfie.c -o selfie2.m

./selfie: this is selfie's starc compiling selfie.c

./selfie: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie1.m

./selfie: this is selfie's mipster executing selfie1.m with 2MB of
physical memory

selfie1.m: this is selfie's starc compiling selfie.c
selfie1.m: 121660 bytes with 28779 instructions and 6544 bytes of data
written into selfie2.m

selfie1.m: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie1.m with exit
code 0 and 1.16MB of mapped memory

compiling selfie.c into a MIPSter executable selfie1.m  
and  

then running selfie1.m to compile selfie.c  
into another MIPSter executable selfie2.m  

(takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)

“The OS is an interpreter until people wanted speed.”

–ck

> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)

“How do we introduce self-model-checking and  
maybe even self-verification into Selfie?”

https://github.com/cksystemsteaching/selfie/tree/vipster

https://github.com/cksystemsteaching/selfie/tree/vipster

Semantics and Performance

Compiler

Emulator

Formalism

Physics

Compiler

Emulator

Formalism

Physics

Emulator

Compiler

Emulator

Formalism

Physics

Hypervisor

Emulation

Machine Context

Unshared Program Context

Emulator

Virtualization

Shared Machine Context

Machine Context

Hypervisor

Proof Obligation

Emulator Hypervisor

Machine Context Machine Context
=
?

Hybrid of Emulator & Hypervisor

Emulation Virtualization

Machine Context

Machine Context

Hybrid

!
OR

Validation of 
Functional Equivalence?

Emulation Virtualization

Machine Context

Machine Context

Hybrid

?
AND

Verification of 
Functional Equivalence?

Emulation Virtualization

Machine Context

Machine Context

Hybrid

?
=

Questions

✤ What are the benefits of the hybrid design in Selfie?

✤ Will these benefits change the design of real kernels, that is, is the hybrid
design realistic?

✤ Can we develop C* into a useful specification language, cf. ACL2?

✤ Can we prove interesting properties with a, say, ~10k-line system?

✤ Will this help teaching rigorous systems and software engineering at
bachelor level?

✤ Will this help identifying basic principles that can be taught to everyone?

Thank you!

