Irom lLogical Execution Time to

Principled Systems Engineering

Christoph M. Kirsch, University of Salzburg, Austria

Dagstuhl Seminar on Logical Execution Time, Schloss Dagstuhl, Wadern, Germany

Joint Work

+ Joshua Auerbach

<+ David Bacon

+ Krishnendu Chatterjee
+ Perry Cheng

+ Silviu Craciunas

+ Arkadeb Ghosal

< David Grove

+ Matthias Hauswirth

+ Thomas Henzinger

<+ Michael Hind

<+ Ben Horowitz

<+ Daniel Iercan

Eduardo Marques
Rupak Majumdar
V.T. Rajan

Harald Rock
Alberto Sangiovanni-Vincentelli
Marco Sanvido
Raja Sengupta

Ana Sokolova
Daniel Spoonhower
Rainer Trummer
Martin Vechev

Eran Yahav

Topics 1996-2015

Concurrent Data Structures

[POPES PORINIG]
Automated Theorem Proving Memory Management
|[CADE97,LICS99] [USENIX08,00PSLA15]

1996 MaxPlanck 1999 Berkeley 2004 Salzburg 2015

Real-Time Programming
[EMSOFTO01,PLDIO2,ProcIEEE03, TOPLAS07,RTSS09]

Logical Execution Time (LET)
EMSOFTO1,Procl EEEOS)

/.ero Execution Time (ZKT
HRTESO7

output output

input input

synchronous reactive programming

Bounded kxecution Time (BE'T)
HRTESO7

output deadline

input

standard task model of real-time scheduling theory

Logical Execution Time (LET)
EMSOFTOL,ProclEEEO3

output

input

scheduling [BET]
buffering [ZET] buffering [ZET]

Physical Execution Time (PET
HRTESOY]

output

input

same or similar lower and upper bounds on cycle count per instruction

Concurrency with LET
EMSOFTOT,Procl EEEO3

output

output
input

input

LLET 2001-2016

Giotto Schedule-Carrying Code JAviator
|[EMSOFTO01] |[EMSOFTO03] |ATAA-GNCO08]
|ProclEEEQ03]

2001 2002 2003 2006 2008 2016

Embedded Machine Hierarchical Timing Language
[PLDI02] [EMSOFTO6]
[TOPLASO7] |RTSS09]

Time Determinism [EMSOFEFTO1

The execution of a LET program f is time-deterministic
if, for all sequences I of input values and times,
the program produces the same sequences f(I) of output values and times

Time Satety EMSOFRTOT]

The execution of a LET program is time-safe

if all tasks of the program complete within their LETs

Giotto | EMSOFEFTO1, Procl EEEOS)

The execution of a Giotto program is time-deterministic

if the execution of the program is time-safe

I Machie [PLDIO2,;TOPLASO7]

A: write (output) write (output)
read (1nput) read (1nput)
release (task) release (task)
future (10ms, A:) T tERE el Sy e r 5=

output

input 10ms

E Machine [PLDI02,TOPLAS07

The execution of E code compiled from a Giotto program

is time-deterministic if the execution of the program is time-safe

If the time safety check was wrong
the E machine throws an exception

Schedule-Carrying Code (SCC)
EMSOFEFTO5

SCC is E code plus S code which determines when to run which task

[t is generally easier to check whether SCC is time-safe
than generating SCC that is time-safe

Hierarchical Timing Language (H'TL)
EMSOFTO6,RTSS09

A concrete HTL program is time-safe
if it refines a time-sate, abstract HTL program

Standard Workflow Applies

+ Time safety checking

+ E code generation

+ Separate compilation

+ Incremental compilation

+ Dynamic linking and loading

xGiotto [Ghosal et al.] Flexible LET [Derler et al.]

Network Code [Fischmeister et al.]

Timing Definition Language (TDL) [Pree et al.]

LET in AUTOSAR for Multicore [Di Natale et al.]

LET in SystemC [Puschner et al.]

LET on Time-Predictable Multicore [Ungerer et al.]

Javiator.cs.uni-salzburg.at

| American Institute of Aeronautics and Astronautics GNC 2008]

http://javiator.cs.uni-salzburg.at

selfie.cs.uni-salzburg.at

http://selfie.cs.uni-salzburg.at

Joint Work

+ Alireza Abyaneh + Cornelia Mayer
+ Martin Aigner + Philipp Mayer

+ Sebastian Arming #+ Christian Moesl
+ Christian Barthel + Simone Oblasser
+ Simon Bauer + Clement Poncelet
+ Thomas Hiitter + Sara Seidl

+ Alexander Kollert + Ana Sokolova

+ Michael Lippautz + Manuel Widmoser

Selfie: Teaching Computer Science
selfie.cs.uni-salzburg.at|

+ Selfie is a self-referential 10k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset of C called C Star
(C*) to a tiny subset of RISC-V called RISC-U,

2. aself-executing emulator called mipster that executes RISC-U code including itself
when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster and can host all of
selfie including itself,

4. a self-executing symbolic execution engine called numster that executes RISC-U code
symbolically when compiled with starc which includes all of selfie,

5. atiny C* library called libcstar utilized by all of selfie, and

6. a tiny, experimental SAT solver called babysat.

http://selfie.cs.uni-salzburg.at

Also, there 1s a...

+ linker (in-memory only)
%+ disassembler (w/ source code line numbers)
+ debugger (tracks full machine state w/ rollback)

+ profiler (#proc-calls, #loop-iterations, #loads, #stores)

Discussion of Selfie reached
3rd place on Hacker News

http://news.ycombinator.com

Website

selfie.cs.uni-salzburg.at

Book (Draft)

leanpub.com /selfie

Code

github.com / cksystemsteaching / selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie

- /settie [settie]

./selfie:

./selfie:
./selfie:
./selfie:
./selfie:
/selfie:

b

ytes of

this is selfie's starc compiling selfie.c

176408 characters read in 7083 lines and 969 comments
with 97779(55.55%) characters in 28914 actual symbols

261 global variables, 289 procedures, 450 string literals
1958 calls, 723 assignments, 57 while, 572 if, 243 return
121660 bytes generated with 28779 instructions and 6544
data

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie —c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c
selfie.c: exiting with exit code @ and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
® and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a RISC-U executable
and

then running that RISC-U executable tg compile selfie.c again
(takes ~6 minutes)

> ./selfie —c selfie.c -m 2 -c selfie.c

compiling selfie.c with x86 selfie executable
and
then running that executable to compile selfie.c again
and

then running that executableta compile selfie.c again
(takes ~24 hours)

> ,/selfie —-c selfie.c —-m 2 -c selfie.c @—c selfie.c

compiling selfie.c with x86 selfie executable
and
then running that executable to compile selfie.c again
and

then hosting that executable in g pirtualagchine to compile selfie.c again
(takes ~12 minutes)

Ongoing Work

+ SAT/SMT Solvers (microsat/boolector)
Verification |+ Symbolic Execution Engine (KLEE/SAGE)
% Inductive Theorem Prover (ACL2)

-> microsat in C” is as fast as in C (forget structs, arrays, &&, | |, goto)

1. Large memory and multicore support
ISAs 2. x86 support through binary translation
3. ARM support?

Thank youl

AUSTRIAN COMPUTER

- . — : - . o :”- =3 #
: — ; o o T L T, o Rt ‘-.,,; . u'?.qa‘

.
] A

ﬁﬂﬁ 20187 SA;L' BUF

acsd2018.cs.uni-salzburg.at

http://acsd2018.cs.uni-salzburg.at

