
Dagstuhl Seminar on Logical Execution Time, Schloss Dagstuhl, Wadern, Germany

From Logical Execution Time to 
Principled Systems Engineering
Christoph M. Kirsch, University of Salzburg, Austria

Joint Work

✤ Joshua Auerbach

✤ David Bacon

✤ Krishnendu Chatterjee

✤ Perry Cheng

✤ Silviu Craciunas

✤ Arkadeb Ghosal

✤ David Grove

✤ Matthias Hauswirth

✤ Thomas Henzinger

✤ Michael Hind

✤ Ben Horowitz

✤ Daniel Iercan

✤ Eduardo Marques

✤ Rupak Majumdar

✤ V.T. Rajan

✤ Harald Röck

✤ Alberto Sangiovanni-Vincentelli

✤ Marco Sanvido

✤ Raja Sengupta

✤ Ana Sokolova

✤ Daniel Spoonhower

✤ Rainer Trummer

✤ Martin Vechev

✤ Eran Yahav

Topics 1996-2015

1996 1999 2015

Automated Theorem Proving
[CADE97,LICS99]

2004

Concurrent Data Structures
[POPL13,POPL15]

Memory Management
[USENIX08,OOPSLA15]

Max Planck Berkeley Salzburg

Real-Time Programming
[EMSOFT01,PLDI02,ProcIEEE03,TOPLAS07,RTSS09]

Logical Execution Time (LET)
[EMSOFT01,ProcIEEE03]

Zero Execution Time (ZET)
[HRTES07]

input

output

input

output

synchronous reactive programming

Bounded Execution Time (BET)
[HRTES07]

input

output deadline
task

standard task model of real-time scheduling theory

Logical Execution Time (LET)
[EMSOFT01,ProcIEEE03]

input

output

buffering [ZET] buffering [ZET]

task

scheduling [BET]

Physical Execution Time (PET)
[HRTES07]

input

output
cycles

same or similar lower and upper bounds on cycle count per instruction

Concurrency with LET
[EMSOFT01,ProcIEEE03]

input

output

input

output

LET 2001-2016

2001 2002 20162006

Giotto
[EMSOFT01]
[ProcIEEE03]

Embedded Machine
[PLDI02]

[TOPLAS07]

Hierarchical Timing Language
[EMSOFT06]

[RTSS09]

2008

Schedule-Carrying Code
[EMSOFT03]

2003

JAviator
[AIAA-GNC08]

Time Determinism [EMSOFT01]

The execution of a LET program f is time-deterministic
if, for all sequences I of input values and times,

the program produces the same sequences f(I) of output values and times

Time Safety [EMSOFT01]

The execution of a LET program is time-safe
if all tasks of the program complete within their LETs

Giotto [EMSOFT01,ProcIEEE03]

The execution of a Giotto program is time-deterministic
if the execution of the program is time-safe

E Machine [PLDI02,TOPLAS07]

input

output
task

read(input)
release(task)
future(10ms, A:)

A:

10ms

write(output)
read(input)
release(task)
future(10ms, A:)

write(output)

E Machine [PLDI02,TOPLAS07]

The execution of E code compiled from a Giotto program
is time-deterministic if the execution of the program is time-safe

If the time safety check was wrong
the E machine throws an exception

Schedule-Carrying Code (SCC)
[EMSOFT03]

SCC is E code plus S code which determines when to run which task

It is generally easier to check whether SCC is time-safe
than generating SCC that is time-safe

Hierarchical Timing Language (HTL)
[EMSOFT06,RTSS09]

A concrete HTL program is time-safe
if it refines a time-safe, abstract HTL program

Standard Workflow Applies

✤ Time safety checking

✤ E code generation

✤ Separate compilation

✤ Incremental compilation

✤ Dynamic linking and loading

Timing Definition Language (TDL) [Pree et al.]

Network Code [Fischmeister et al.]

LET in AUTOSAR for Multicore [Di Natale et al.]

xGiotto [Ghosal et al.]

LET in SystemC [Puschner et al.]

Flexible LET [Derler et al.]

LET on Time-Predictable Multicore [Ungerer et al.]

javiator.cs.uni-salzburg.at

[American Institute of Aeronautics and Astronautics GNC 2008]

http://javiator.cs.uni-salzburg.at

selfie.cs.uni-salzburg.at

http://selfie.cs.uni-salzburg.at

Joint Work

✤ Alireza Abyaneh

✤ Martin Aigner

✤ Sebastian Arming

✤ Christian Barthel

✤ Simon Bauer

✤ Thomas Hütter

✤ Alexander Kollert

✤ Michael Lippautz

✤ Cornelia Mayer

✤ Philipp Mayer

✤ Christian Moesl

✤ Simone Oblasser

✤ Clement Poncelet

✤ Sara Seidl

✤ Ana Sokolova

✤ Manuel Widmoser

Selfie: Teaching Computer Science
[selfie.cs.uni-salzburg.at]
✤ Selfie is a self-referential 10k-line C implementation (in a single file) of:

1. a self-compiling compiler called starc that compiles a tiny subset of C called C Star
(C*) to a tiny subset of RISC-V called RISC-U,

2. a self-executing emulator called mipster that executes RISC-U code including itself
when compiled with starc,

3. a self-hosting hypervisor called hypster that virtualizes mipster and can host all of
selfie including itself,

4. a self-executing symbolic execution engine called numster that executes RISC-U code
symbolically when compiled with starc which includes all of selfie,

5. a tiny C* library called libcstar utilized by all of selfie, and

6. a tiny, experimental SAT solver called babysat.

http://selfie.cs.uni-salzburg.at

Also, there is a…

✤ linker (in-memory only)

✤ disassembler (w/ source code line numbers)

✤ debugger (tracks full machine state w/ rollback)

✤ profiler (#proc-calls, #loop-iterations, #loads, #stores)

Discussion of Selfie reached  
3rd place on Hacker News

news.ycombinator.com

http://news.ycombinator.com

Code

Book (Draft)

Website
selfie.cs.uni-salzburg.at

leanpub.com/selfie

github.com/cksystemsteaching/selfie

http://selfie.cs.uni-salzburg.at
http://leanpub.com/selfie
http://github.com/cksystemsteaching/selfie

> ./selfie -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: 176408 characters read in 7083 lines and 969 comments

./selfie: with 97779(55.55%) characters in 28914 actual symbols

./selfie: 261 global variables, 289 procedures, 450 string literals

./selfie: 1958 calls, 723 assignments, 57 while, 572 if, 243 return

./selfie: 121660 bytes generated with 28779 instructions and 6544
bytes of data

compiling selfie.c with x86 selfie executable

(takes seconds)

> ./selfie -c selfie.c -m 2 -c selfie.c

./selfie: this is selfie's starc compiling selfie.c

./selfie: this is selfie's mipster executing selfie.c with 2MB of
physical memory

selfie.c: this is selfie's starc compiling selfie.c

selfie.c: exiting with exit code 0 and 1.05MB of mallocated memory

./selfie: this is selfie's mipster terminating selfie.c with exit code
0 and 1.16MB of mapped memory

compiling selfie.c with x86 selfie executable into a RISC-U executable  
and  

then running that RISC-U executable to compile selfie.c again  
(takes ~6 minutes)

> ./selfie -c selfie.c -m 2 -c selfie.c -m 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then running that executable to compile selfie.c again  
(takes ~24 hours)

> ./selfie -c selfie.c -m 2 -c selfie.c -y 2 -c selfie.c

compiling selfie.c with x86 selfie executable  
and  

then running that executable to compile selfie.c again  
and  

then hosting that executable in a virtual machine to compile selfie.c again  
(takes ~12 minutes)

Ongoing Work

✤ SAT/SMT Solvers (microsat/boolector)
✤ Symbolic Execution Engine (KLEE/SAGE)
✤ Inductive Theorem Prover (ACL2)

1. Large memory and multicore support
2. x86 support through binary translation
3. ARM support?

ISAs

Verification

-> microsat in C* is as fast as in C (forget structs, arrays, &&, ||, goto)

Thank you!

acsd2018.cs.uni-salzburg.at

http://acsd2018.cs.uni-salzburg.at

