
SYMBOLIC EXECUTION
CHRISTOPH KIRSCH, CTU PRAGUE

CONCRETE VERSUS SYMBOLIC

WHAT IS SYMBOLIC EXECUTION?

▸ Concrete execution is the execution of code for a single input

▸ Input is everything that the executed code depends on
(system calls, uninitialized memory or variables; no
concurrency for now)

▸ Symbolic execution is the execution of code for all inputs (up
to a given number of instructions or statements)

▸ Concolic execution is the execution of code for some inputs
through concrete execution guided by symbolic execution

NO SPECIFICATION NECESSARY

WHAT IS THE PURPOSE OF SYMBOLIC EXECUTION?

Given an upper bound n on the number of executed
instructions or statements:

symbolic execution of code computes

the set of all inputs that

make the code produce runtime errors

within executing up to n instructions or statements

on any of the inputs in that set

HOW IS THE SET OF ALL INPUTS THAT
LEAD TO RUNTIME ERRORS

REPRESENTED?

NO CONDITIONALS, NO LOOPS

EXAMPLE: SEQUENTIAL CODE
uint64_t x;

// 0 <= x <= UINT64_MAX

x := x + 1;

// x‘ == x + 1

// but still 0 <= x‘ <= UINT64_MAX

x := x * 2;

// x‘‘ == x‘ * 2 && x‘ == x + 1

// that is, x‘‘ == (x + 1) * 2

CONDITIONALS

EXAMPLE: BRANCHING
…

// x‘‘ == x‘ * 2 && x‘ == x + 1

if (x == UINT64_MAX)

 exit(1); exit(1) is reachable

if and only if

x’’ == UINT64_MAX &&

x‘‘ == x‘ * 2 &&

x‘ == x + 1

is satisfiable

path condition ->

CODE VERSUS LOGIC

REACHABILITY IS SATISFIABILITY

code is reachable iff formula is satisfiable

x := x + 1; <> x’ == x + 1

x := x * 2; <> x‘ == x * 2

x == UINT64_MAX <> x == UINT64_MAX

but only if

C code 64-bit bit vector theory

SMT VERSUS SAT

SATISFIABILITY MODULO THEORY (SMT)
 x’’ == UINT64_MAX &&

x’’ == x’ * 2 &&

x’ == x + 1

the theory of 64-bit bit vectors:

+, *, ==, … over 64-bit bit vector variables x

P && Q && R

reduces to the SAT formula:

modulo

STATE OF THE ART

SMT SOLVERS

Z3 (Microsoft Research)

CVC4 (Stanford)

boolector (JKU Linz)

…

CONDITIONALS

EXAMPLE: BRANCHING
…

// x‘‘ == x‘ * 2 && x‘ == x + 1

if (x == 0) {

 // x‘‘ == 0 &&

 // x‘‘ == x‘ * 2 &&

 // x’ == x + 1

 // input: x == UINT64_MAX

 exit(1);

}

CONDITIONALS

EXAMPLE: BRANCHING, FULLY CONCURRENT!
…

// x‘‘ == x‘ * 2 && x‘ == x + 1

if (x == 0) {

 // x‘‘ == 0 && x‘‘ == x‘ * 2 && x‘ == x + 1

 // input: x == UINT64_MAX

} else {

 // x‘‘ != 0 && x‘‘ == x‘ * 2 && x‘ == x + 1

 // input: x != UINT64_MAX

}

CONDITIONALS

EXAMPLE: SYMBOLIC EXECUTION
…

if (x == 0) {

 // A holds

} else {

 // B holds

}

// try with A

x := x - 1

// x’’’ == x’’ - 1 && A

CONDITIONALS

EXAMPLE: SYMBOLIC EXECUTION
…

if (x == 0) {

 // A holds

} else {

 // B holds

}

// then or simultaneously try with B

x := x - 1

// x’’’ == x’’ - 1 && B

SYMBOLIC EXECUTION

CHALLENGES

Should we explore both branches?

Are we still reachable anyway?

How often should we ask the SMT solver?

How do we organize the symbolic store
to facilitate fast back tracking?

Can we integrate loop invariants for completeness?

How do we deal with procedures, recursion?

STATE OF THE ART

SYMBOLIC EXECUTION ENGINES

SAGE (Microsoft Research)

KLEE (Imperial)

…

CONDITIONALS

EXAMPLE: BOUNDED MODEL CHECKING (MERGING)
…

if (x == 0) {

 // A holds

} else {

 // B holds

}

// or try A || B

x := x - 1

// x’’’ == x’’ - 1 && (A || B)

BOUNDED MODEL CHECKING

CHALLENGES

Should we merge or not?

Are we, the symbolic execution engine, or

the SMT solver more efficient?

SALZBURG

OUR RESEARCH

Is there a way to generate minimal formulae

for bounded model checking?

(we generate SMT-LIB formulae)

Can we offload the work entirely to a solver?

(we generate BTOR2 formulae)

SELFIE MONSTER

SYMBOLIC EXECUTION OF RISC-V CODE

32x 64-bit registers

64-bit program counter

4GB byte-addressed, 64-bit-word-aligned memory

machine instructions are encoded in 32 bits

SYMBOLIC EXECUTION OF RISC-V CODE

INITIALIZATION

lui rd,imm:

rd = imm * 2^12; pc = pc + 4
with -2^19 <= imm < 2^19  

addi rd,rs1,imm:

rd = rs1 + imm; pc = pc + 4
with -2^11 <= imm < 2^11  

SMT-LIB: bvadd

SYMBOLIC EXECUTION OF RISC-V CODE

ARITHMETIC

add rd,rs1,rs2: rd = rs1 + rs2; pc = pc + 4

sub rd,rs1,rs2: rd = rs1 - rs2; pc = pc + 4

mul rd,rs1,rs2: rd = rs1 * rs2; pc = pc + 4

divu rd,rs1,rs2: rd = rs1 / rs2; pc = pc + 4
where rs1 and rs2 are unsigned integers.

remu rd,rs1,rs2: rd = rs1 % rs2; pc = pc + 4
where rs1 and rs2 are unsigned integers.  

SMT-LIB: bvadd, bvsub, bvmul, bvudiv, bvurem

SYMBOLIC EXECUTION OF RISC-V CODE

COMPARISON
sltu rd,rs1,rs2:

if (rs1 < rs2) {

 rd = 1;

} else {

 rd = 0;

}

pc = pc + 4;

where rs1 and rs2 are unsigned integers.

SMT-LIB: bvult

SYMBOLIC EXECUTION OF RISC-V CODE

MEMORY

ld rd,imm(rs1):

rd = memory[rs1 + imm]; pc = pc + 4
with -2^11 <= imm < 2^11

sd rs2,imm(rs1):

memory[rs1 + imm] = rs2; pc = pc + 4
with -2^11 <= imm < 2^11

SYMBOLIC EXECUTION OF RISC-V CODE

CONTROL
beq rs1,rs2,imm:

if (rs1 == rs2) pc = pc + imm else pc = pc + 4
with -2^12 <= imm < 2^12 and imm % 2 == 0

SMT-LIB: bvcomp

jal rd,imm:

rd = pc + 4; pc = pc + imm  
with -2^20 <= imm < 2^20 and imm % 2 == 0

jalr rd,imm(rs1):

tmp = ((rs1 + imm) / 2) * 2;  
rd = pc + 4; pc = tmp with -2^11 <= imm < 2^11

SYMBOLIC EXECUTION OF RISC-V CODE

SYSTEM CALLS

ecall:

system call number is in a7,
parameters are in a0-a2,
return value is in a0.

exit, brk, open, read, write

SYMBOLIC EXECUTION OF RISC-V CODE

SELFIE MONSTER

./selfie -c example.c -se 0 30

generates

example.smt

./selfie -c example.c -se 0 30 --merge-enabled

BTORMC

BOUNDED MODEL CHECKING WITH BTOR2

arithmetic: add, sub, mul, udiv, urem

comparison: ult

memory: read, write

control: eq, ite runtime error: bad

BTOR2

CODE AS STATE MACHINE

CPU

STACK

HEAP

DATA

CODE

4GB

32x 64-bit registers

64-bit program counter

theory of 64-bit bit vector arrays

theory of 64-bit bit vectors

BTOR2

RISC-V MACHINE STATE
each register is a 64-bit bit vector

the program counter is encoded by
one bit for each instruction that is set

if the instruction is currently being executed

memory is a 64-bit bit vector array
initialized with data segment and stack

plus control and data flow

BTOR2

RISC-V INSTRUCTIONS AS STATE TRANSITIONS

an instruction changes at most two 64-bit words:

a 64-bit register or a 64-bit memory word or nothing
(data flow)

and

the 64-bit program counter
(control flow)

BTOR2

RISC-V SYSTEM CALLS AS STATE TRANSITIONS

system calls are implemented as follows:

exit: final state

brk: bump pointer

open: file descriptor

read: write to memory

write: read from memory

SYMBOLIC EXECUTION OF RISC-V CODE

SELFIE MONSTER

./selfie -c example.c -mc 0

generates

example.btor2

DEMO
SELFIE MONSTER

