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Memory Management

• Allocation:

‣malloc

• Deallocation:

‣free

• Access:

‣read and write
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1. Assumption:

Objects may have
different sizes
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2. Assumption:

Objects may be
allocated and deallocated

in random order
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Memory is fragmented if
the largest, contiguous
piece of available space

is
smaller than

the total available space
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Fragmentation

• Memory objects may have different sizes

• Memory objects may be allocated and 
deallocated in random order

‣ creates the problem of memory 
fragmentation!
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Static versus Dynamic

• Static memory management:

‣ Preallocate all memory at compile time

• Dynamic memory management:

‣ Allocate and deallocate memory at run time
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Implicit versus Explicit

• Implicit, dynamic memory management:

‣ Garbage collector (GC) deallocates objects, 
not programmer (implicit free calls by GC)

• Explicit, dynamic memory management:

‣ Objects are deallocated by programmer 
(explicit free calls)
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Temporal Performance

• Throughput:

‣ 10MB/s allocation rate

‣ 10MB/s deallocation rate

• Latency/Responsiveness:

‣ 1ms execution time (malloc/free)

‣ 0.1ms preemption time (malloc/free)
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Spatial Performance

• Degree of fragmentation:

‣ The number of contiguous pieces of memory 
of a given size that can still be allocated
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Spatial Performance

• Degree of fragmentation:

‣ The number of contiguous pieces of memory 
of a given size that can still be allocated

• Administrative space:

‣ meta data structures (used, free lists)



There is a trade-off
between

temporal and spatial
performance
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• Unpredictable complexity (in terms of input):

‣ allocation/deallocation may take time 
proportional to the total size of memory
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Temporal Predictability

• Unpredictable complexity (in terms of input):

‣ allocation/deallocation may take time 
proportional to the total size of memory

• Predictable complexity (in terms of input):

‣ allocation/deallocation takes time at most 
proportional to the size of involved object

‣ access takes time at most proportional to 
the size of involved object
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It may be difficult to
improve

average performance
but it may still be possible to

improve
predictability

without loosing too much
performance
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• Unpredictable fragmentation:

‣ the degree of fragmentation may depend on 
the full allocation and deallocation history, 
i.e., the order of invocations
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Spatial Predictability

• Unpredictable fragmentation:

‣ the degree of fragmentation may depend on 
the full allocation and deallocation history, 
i.e., the order of invocations

• Predictable fragmentation:

‣ the degree of fragmentation only depends on 
the number of allocations and deallocations, 
independently of the order of invocations
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Tiptoe
• Tiptoe is a microkernel-based virtual machine 

and process monitor for embedded systems

• Tiptoe virtualizes the host platform (system VM) 
and provides infrastructure to run process VMs 
and processes in real time

• Tiptoe controls throughput and latency of CPU, 
memory, and I/O

• I/O is multiplexed through IPC to a system VM 
running Linux
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Tiptoe
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Figure 1: Tiptoe system design

microkernel such as OKL4. The key problem is to design
all system components such that there always exists at most
a linear relationship between the amount of CPU time re-
quired by each component to process a workload and the
actual amount of the workload. In this case, the usage of
system components would be temporally isolated as well.

Figure 1 shows the Tiptoe system design. On the lowest
level, there is a microkernel, which contains the VBS sched-
uler and an IPC mechanism. On top of the microkernel, pro-
cesses using the channel subsystem, and operating system
services, e.g., device drivers, may run along with operating
system instances encapsulated in system VMs, and process
VMs, which may take advantage of CF and the channel sub-
system. Scheduling parameters for the VBS scheduler are
set via system calls.

Scheduling
Tiptoe uses a real-time O(1)-scheduler for scheduling all
system activities. The scheduler [9] is based on the pre-
viously mentioned notion of variable-bandwidth servers
(VBS). Tiptoe assigns each scheduling task, i.e., process or
VM instance, in the system to a unique VBS, which essen-
tially controls the execution speed of the assigned task and
may even change the speed at any time upon request.

A VBS is configured by a single number that determines
a utilization bound called bandwidth cap in percentage of
CPU time. Upon creating a new VBS, the system checks
if the sum of the bandwidth caps of the existing VBS and
the new VBS is still less than or equal to the system’s total
capacity. The admission test for running new processes or
VM instances is therefore also constant-time.

To configure their actual execution speed, each schedul-
ing task chooses a pair (λ,π) called virtual periodic resource
such that λ over π is less than or equal to the bandwidth cap
of the VBS to which the task is assigned. The λ and π val-
ues correspond to the previously mentioned notions of limit
and period, respectively. The VBS will then execute the as-
signed task for λ units of time every π units of time. The task
can switch at any time to a different virtual periodic resource
within the range of the bandwidth cap of the VBS, marking
the beginning of a new what we previously called action.

The key property of VBS is programmable temporal isola-
tion. If the admission test succeeds for a new VBS, the sys-
tem guarantees the VBS that the assigned task, upon choos-
ing a virtual periodic resource (λ,π) within the bandwidth
cap of the VBS, will be executed for λ units of time every

π units of time, with at most one π delay from the point in
time when the resource is chosen. Intuitively, what happens
is that the VBS must “re-synchronize” with the new virtual
periodic resource every time the resource is changed. We
tolerate the delay of at most one period because it makes the
admission test simple and constant-time. There appears to be
a fundamental trade-off between scheduling efficiency and
admission complexity. Note that the admission test comes
at the expense of precision. Even if the test fails, there may
be system configurations in which a VBS could guarantee
temporal isolation. However, a more precise test will have
to consider the system in more detail and therefore be more
expensive.

VBS guarantees that the response times of a process or
VM instance is temporally isolated on the level of their in-
dividual actions, i.e., portions of code, from any other sys-
tem activities. Moreover, the response times may only vary
within at most one period of the chosen virtual periodic re-
sources. Therefore, the smaller the periods are the smaller
the response time jitter will be, however, at the expense
of higher administrative overhead through more frequent
scheduler invocations. Conversely, the larger the periods are
the higher the net CPU throughput will be due to fewer in-
terruptions.

The bound on response time jitter only holds under the
assumption that scheduling overhead is zero. In fact, it turns
out that in practice the jitter may be more than one period
because of the non-zero scheduling overhead, see Section 5.
The jitter is nevertheless still bounded but only according to
a more complex relationship between scheduling overhead
and the periods in the system. We are currently working on
a precise formulation.

Legacy code not using VBS and not expecting any guar-
anteed response times may run outside of the real-time
scheduling domain, i.e., during idle time. Multiple non-VBS
processes are scheduled (during the idle time of the real-time
scheduler) using another scheduling policy such as round-
robin.

Memory Management
Similar to other hypervisors and microkernels (e.g. [2, 14]),
Tiptoe divides physical memory into pages and provides an
interface for processes to request new pages, to return pages
not needed anymore, and to update a process’ page table en-
tries. A process is responsible to establish the mapping of
virtual memory addresses to physical memory addresses us-
ing the interface to the microkernel.

Moreover, process VMs that use an object-based memory
model may use our Compact-fit explicit memory manage-
ment system [11] to manage their internal heaps in real time.
CF implements real-time versions of malloc and free, and
bounds fragmentation through real-time compaction such
that the available memory for a given object size can al-
ways be determined in constant time. Memory analysis tools
like [8] may therefore effectively bound heap sizes required
to run programs, if CF is used.
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What’s next?

• Autonomous single-vehicle flights

• position controller

• waypoint controller

• Autonomous multi-vehicle flights

• mission controller
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Memory Management
Systems Overview



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

First-fit
Best-fit



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

First-fit
Best-fit



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

Doug Lea



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

Doug Lea



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

TLSF



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

Half-fit



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

Jamaica



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

Jamaica



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

Compact-fit
Moving



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

Compact-fit
Moving



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

Compact-fit
Non-moving



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

Compact-fit
Non-moving



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg

Metronome



© C. Kirsch 2009

Best-fit versus First-fit

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object C

Object E



© C. Kirsch 2009

Best-fit versus First-fit

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object C

Object EBest-fit



© C. Kirsch 2009

First-fitFirst-fit

Best-fit versus First-fit

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object C

Object E



© C. Kirsch 2009

Free List

0 1 2 3 4 5 6 7 8 9 10 11 12

Memory

Object A Object C

free blockfree block



© C. Kirsch 2009

Best-fit, First-fit Complexity
• Allocation:

‣malloc may take time proportional to heap size



© C. Kirsch 2009

Best-fit, First-fit Complexity
• Allocation:

‣malloc may take time proportional to heap size

• Deallocation:

‣free takes constant time



© C. Kirsch 2009

Best-fit, First-fit Complexity
• Allocation:

‣malloc may take time proportional to heap size

• Deallocation:

‣free takes constant time

• Access:

‣read and write take constant time



© C. Kirsch 2009

Best-fit, First-fit Complexity
• Allocation:

‣malloc may take time proportional to heap size

• Deallocation:

‣free takes constant time

• Access:

‣read and write take constant time

• Unpredictable fragmentation



© C. Kirsch 2009

Introduction Fragmentation Problem Compact-Fit Partial Compaction Experiments Conclusion

Related Work

!"#$

%&'($

!"#$!"%&%

'"("

)*"+

)*,$-("+

)*.+

!"/0&%'123#,& /0&%'123#,&

4'05267'28(93,,$1

:&5267'28(93,,$1

;<8(93,,$1

4'05267'28(70&&=(%&0&7

:&5267'28(70&&=(%&0&7

;<8(70&&=(%&0&7

><?48(93,,$1=(70&&=(%&0&7

@3,767'28(93,,$1=(70&&=(%&0&7

A4B8(70&&

A4CB8(93,,$1=(70&&

D393'138(93,,$1=(70&&=(%&0&7

D393'138(%&0&7

A4B8(93,,$1=(%&0&7

A4CB8(%&0&7

B

&

2

0

$

"

$

9

&

Hannes Payer Computational Systems Group, University of Salzburg



Free List Operations

• Select:

‣malloc



Free List Operations

• Select:

‣malloc

• Insert:

‣free



Free List Operations

• Select:

‣malloc

• Insert:

‣free
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List Representations

• List: singly-linked or doubly-linked (using 
boundary tags)

• Segregated lists: array of lists for different sizes

• Buddy systems: split blocks in powers of two 
(called buddies if same size)

• Indexed lists: trees, bitmaps

• Hybrid: Doug Lea’s allocator



© C. Kirsch 2009

DL Complexity
• Allocation:

‣malloc may take time proportional to heap size

• Deallocation:

‣free takes constant time

• Access:

‣read and write take constant time

• Unpredictable fragmentation
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Figure 1. TLSF data structures example.

is possible to find the smaller non-empty list that holds blocks bigger or
equal than a given size; and the instruction fls7 can be used to compute
the !log2(x)" function. Note that it is not mandatory to have these ad-
vanced bit operations implemented in the processor to achieve constant
time, since it is possible to implement them by software using less than
6 non-nested conditional blocks (see glibc or Linux implementation).

Given a block of size r > 0, the first and second indexes (fl and
sl) of the list that holds blocks of its size range are: fl = !log2 (r)"
and sl =

⌊
(r − 2fl)/2fl−L

⌋
. This expression for sl can be rewritten as

!r/sfl−L" − 2L which leads to a more efficient implementation. The
function mapping insert computes efficiently fl and sl:

procedure mapping_insert (r: integer; fl, sl: out integer) is
begin

fl := fls (r);
sl := (r right shift (fl − L)) − 2L ;

end mapping_insert ;

For example, given the size r = 74, the first level index is fl = 6
and the second level index is sl = 1. The binary representation of the

7 fls: Find last set. Returns the position of the most significant bit set to 1.

tlsf.tex; 10/04/2008; 11:59; p.12

[Masmano et al., In J. of Real-Time Systems, 2008]

Half-fit
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Half-fit Complexity
• Allocation:

‣malloc takes constant time

• Deallocation:

‣free takes constant time

• Access:

‣read and write take constant time

• Unpredictable fragmentation
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equal than a given size; and the instruction fls7 can be used to compute
the !log2(x)" function. Note that it is not mandatory to have these ad-
vanced bit operations implemented in the processor to achieve constant
time, since it is possible to implement them by software using less than
6 non-nested conditional blocks (see glibc or Linux implementation).

Given a block of size r > 0, the first and second indexes (fl and
sl) of the list that holds blocks of its size range are: fl = !log2 (r)"
and sl =

⌊
(r − 2fl)/2fl−L

⌋
. This expression for sl can be rewritten as

!r/sfl−L" − 2L which leads to a more efficient implementation. The
function mapping insert computes efficiently fl and sl:

procedure mapping_insert (r: integer; fl, sl: out integer) is
begin

fl := fls (r);
sl := (r right shift (fl − L)) − 2L ;

end mapping_insert ;

For example, given the size r = 74, the first level index is fl = 6
and the second level index is sl = 1. The binary representation of the

7 fls: Find last set. Returns the position of the most significant bit set to 1.

tlsf.tex; 10/04/2008; 11:59; p.12

[Masmano et al., In J. of Real-Time Systems, 2008]

Two-level Segregated Fit (TLSF)
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TLSF Complexity
• Allocation:

‣malloc takes constant time

• Deallocation:

‣free takes constant time

• Access:

‣read and write take constant time

• Unpredictable fragmentation (yet better than HF)
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Jamaica Complexity
• Allocation:

‣malloc(n) takes time proportional to n

• Deallocation:

‣free(n) takes time proportional to n

• Access:

‣read and write take time proportional to n

• Predictable fragmentation
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Questions

• Does allocation/deallocation throughput 
scale with multiple processors?

• Which aspects influence scalability?

• Does compaction of large objects harm 
system latency?

• Does concurrency and incrementality affect 
memory consumption?
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Partial Compaction

• Per-size-class partial compaction bound κ 
bounds size-class fragmentation:

• κ = 1: fully compacting

• 1 < κ < ∞: partially compacting

• κ = ∞: non-compacting

• Non-compacting CF can be optimized by 
not using abstract addresses
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Fragmentation through 
Partitioning

• Fragmentation through partitioning is fixed 
at compile time and is not controlled by 
partial compaction:

• Page-block-internal fragmentation

• Page-internal fragmentation

• May dominate overall fragmentation



© C. Kirsch 2009

3 Compact-fit (CF)

Given that there are n predefined page-block sizes S1, . . . , Sn and a page is of size P ,
the total size-external fragmentation is bounded by

TFS =
n∑

i=1

P − Si.

The more size-classes there are in the system, the less block-internal fragmentation oc-
curs, but therefore the size-external fragmentation grows. Hence, there is a trade-off
between block-internal and size-external fragmentation, which must be considered when
designing the size-classes.

For example, the free page-blocks of size-class 3 in Figure 3.7 represent size-external
fragmentation.

3.4.4 Fragmentation overview

Figure 3.7 shows an exemplary view of the organization of the concrete address space:
There are three size-classes: in one of them there are two pages, in the other two there
is a single page per class.

Figure 3.7: Size-classes and different types of fragmentation

24
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Incremental Compaction

• Global compaction increment ι bounds 
size of memory involved in any atomic 
compaction operation:

• 1 < ι < ∞: incremental compaction of 
objects larger than ι

• ι = ∞: non-incremental compaction
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Incremental Compaction

• Global compaction increment ι bounds 
size of memory involved in any atomic 
compaction operation:

• 1 < ι < ∞: incremental compaction of 
objects larger than ι

• ι = ∞: non-incremental compaction

• Incremental compaction creates 
transient size-class fragmentation
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CF Configurations

• 1-CF(κ, ι)

• one CF instance for multiple threads

• partial compaction bound κ

• compaction increment ι

• n-CF(κ, ι)

• n CF instances for n threads

• allows to control degree of sharing
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object itself so that the object’s entry in the A2C map can be determined in
constant time. Otherwise, determining the abstract addresses of objects selected
for compaction, for which only the concrete addresses are known, would require
searching the A2C map.

After discussing related work (Section 2) and discussing the previously de-
scribed, moving (and non-incremental) version of CF in detail (Section 3), we
first argue probabilistically that, for any mutator behavior, both compaction
and worst-case size-class fragmentation are less likely to happen with increas-
ing partial compaction bounds κ. For systems whose memory resources are less
constrained and applications that do not require tight guarantees, partial com-
paction may therefore be set to large κ, or even turned off entirely. This observa-
tion has lead us to develop an optimized, non-compacting version of CF without
abstract addressing that does not maintain the A2C map and can therefore
be used in any application without modifications. Macrobenchmarks show that
the optimized version performs almost as fast as other constant-time systems
but requires up to 35% more memory, of which less than 5% can be attributed
to size-class fragmentation and the rest to fragmentation through partitioning
(Section 8). We argue that partitioning memory as in CF still has the benefit
of being subject to a probabilistic and not just an experimental fragmentation
analysis (Section 4), at the expense of increased memory consumption.
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Fig. 1. Deallocation throughput, system latency, and memory fragmentation with dif-
ferent versions and configurations of Compact-fit

We then introduce incremental CF for slow systems, at the other end of
the spectrum, whose memory resources are constrained and that run applica-
tions requiring tight guarantees, in particular on system latency and memory
consumption (Section 5). Incremental CF uses a global compaction increment
ι > 0, which breaks up compaction into logically atomic operations that do not
move more than ι bytes at a time. If n is the degree of concurrency, then there



To make CF
concurrent and incremental

we model the algorithm
as a

finite state machine
whose transitions
must be atomic!
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Fig. 3. Size-class automaton with π = 1

the interested reader to [7]. We extend the non-incremental CF with blocking and
non-blocking synchronization mechanisms so that multiple threads can share a
single (or multiple) instance(s). In particular, we make the size-class automaton
transitions (including a combination of a deallocating transition followed by a
compacting step) atomic. As a result, multiple threads can execute and use CF
in parallel, interleaving between the atomic transitions. The details of the par-
ticular implementation and the various choices of synchronization mechanisms
are discussed in Section 7. The results are encouraging for throughput oriented
environments, see Section 8.

4 Probabilistic Analysis

We present initial results of a probabilistic CF analysis. A complete study re-
mains for future work. Interestingly, it is the partitioned memory layout of CF
that allows for such an analysis, since the partitioning into pages and size-classes
significantly reduces the state space of the model. We aim at answering the fol-
lowing two questions:

1. What is the probability that compaction happens?
2. What is the probability of worst-case fragmentation?

We analyze the behavior of CF given a mutator, which is a sequence of
allocations A and deallocations D, hence a word in {A, D}∗. A mutator is not
aware of the internal CF configuration, e.g. in which page deallocation happens.
Therefore, we abstract away from the index i in the deallocation label Di and the
CF size-class automaton becomes a probabilistic I/O automaton (PIOA) [25],
with input actions A and D provided by the mutator, and an output action C
provided by CF. Note that the states of this automaton are either input states
in which A and D are enabled, or output states in which C is enforced, which
makes it simpler than general PIOA. For brevity we only discuss the behavior
of a single state. In a state 〈h, n, u1, . . . , un〉 with n ≤ κ, upon deallocation D,
there are several possible next states that are reached with different probabilities:
for all i with ui > 1, with probability ui

h deallocation happens in the not-full
page i which will remain not-full afterwards and the next state becomes 〈h −
1, n, u1, . . . , ui−1, ui − 1, ui+1, . . . , un〉; for all i such that ui = 1 with probability

Size-Class Automaton
for π = 1
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Fig. 3. Size-class automaton with π = 1

the interested reader to [7]. We extend the non-incremental CF with blocking and
non-blocking synchronization mechanisms so that multiple threads can share a
single (or multiple) instance(s). In particular, we make the size-class automaton
transitions (including a combination of a deallocating transition followed by a
compacting step) atomic. As a result, multiple threads can execute and use CF
in parallel, interleaving between the atomic transitions. The details of the par-
ticular implementation and the various choices of synchronization mechanisms
are discussed in Section 7. The results are encouraging for throughput oriented
environments, see Section 8.

4 Probabilistic Analysis

We present initial results of a probabilistic CF analysis. A complete study re-
mains for future work. Interestingly, it is the partitioned memory layout of CF
that allows for such an analysis, since the partitioning into pages and size-classes
significantly reduces the state space of the model. We aim at answering the fol-
lowing two questions:

1. What is the probability that compaction happens?
2. What is the probability of worst-case fragmentation?

We analyze the behavior of CF given a mutator, which is a sequence of
allocations A and deallocations D, hence a word in {A, D}∗. A mutator is not
aware of the internal CF configuration, e.g. in which page deallocation happens.
Therefore, we abstract away from the index i in the deallocation label Di and the
CF size-class automaton becomes a probabilistic I/O automaton (PIOA) [25],
with input actions A and D provided by the mutator, and an output action C
provided by CF. Note that the states of this automaton are either input states
in which A and D are enabled, or output states in which C is enforced, which
makes it simpler than general PIOA. For brevity we only discuss the behavior
of a single state. In a state 〈h, n, u1, . . . , un〉 with n ≤ κ, upon deallocation D,
there are several possible next states that are reached with different probabilities:
for all i with ui > 1, with probability ui

h deallocation happens in the not-full
page i which will remain not-full afterwards and the next state becomes 〈h −
1, n, u1, . . . , ui−1, ui − 1, ui+1, . . . , un〉; for all i such that ui = 1 with probability
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an incremental soft real-time garbage collector designed for memory constrained
devices, which cannot provide hard guarantees on maximum pause time and
CPU utilization, but comes with low space overhead and tight space bounds.
Stopless [21] is another garbage collector with soft guarantees on response times.
It provides low latency while preserving lock-freedom, supporting atomic opera-
tions, controlling fragmentation by compaction, and supporting multiprocessor
platforms. The main contribution of Stopless is a compaction algorithm which
moves objects in the heap concurrently with program execution. Exact bounds
for response times, as well as fragmentation, are missing in Stopless.

We remark that CF, like many of the above mentioned systems, is based on
segregated lists. Approaches that are not based on segregated lists, but rather on
data structures which maintain locality of objects, are known to perform better
when accessing objects by utilizing memory caches more effectively. However,
the use of segregated lists enables providing and trading-off temporal and spatial
guarantees.

3 Non-incremental Compact-fit
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Fig. 2. Size-class automaton with π > 1

Compact-Fit (CF) is a dynamic memory management system that provides
strict temporal and spatial (fragmentation) guarantees. Allocation as well as
deallocation without compaction takes constant time, whereas deallocation with
compaction takes linear time in the size of the object.

To be precise, there are two CF implementations [7], but in this paper we
only focus on the more fundamental so-called moving implementation.

The set-up of CF is as follows: The memory is divided in pages of equal size.
Each page (in use) contains a certain number of constant-sized page-blocks. In
total there are finitely many available page-block sizes, which determine to which
size-class a page belongs (namely all pages with a given page-block size belong
to one size-class). The pages are assigned to a size-class only if they are used
(non-empty). The number of page-blocks π per page in a size-class is therefore

Size-Class Automaton
for π > 1

h is the total # of allocated page-blocks in the size-class
n is the # of not-full pages
ui is the # of used page-blocks in a not-full page i
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• A page-block that is incrementally moved 
actually occupies two page-blocks:

• source page-block

• target page-block

• A page containing source page-blocks is called 
source page

• may also contain used and free page-blocks
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administration gain complexity in the incremental version. In a size-class, apart
from the full and not-full pages, there may exist one source page. In a source
page there are used page-blocks and source page-blocks. The latter are page-
blocks that are in the process of being incrementally moved. One source page
suffices, since compaction in CF requires moving a used page-block which is now
always taken from the source page. Allocation never happens in a source page.
A source page always contains at least one used page-block. If a source page
looses all its used page-blocks (due to deallocation or compaction), it is removed
from the size-class and placed into a global pool E of emptying source pages.
All pages in the pool contain page-blocks that are involved in ongoing incremen-
tal compaction operations. The space occupied by source page-blocks and free
page-blocks in (emptying) source pages, which is (temporarily) not available for
allocation in any size-class, is called transient size-class fragmentation. When
all incremental compaction operations in an emptying source page finish, then
the page is returned to the global list of free pages. On the other hand, if all
incremental compaction operations within a source page finish, i.e., the source
page has no more source page-blocks, and if there are still used page-blocks in
the source page, then there are two possibilities: (1) the source page becomes
a not-full page, if the number of not-full pages is smaller than the partial com-
paction bound, or (2) the source page is kept as a potential source page without
source page-blocks, otherwise. The evolution of a page is shown in Figure 5.
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Fig. 5. The lifetime of a page

The state of a size-class is described by a tuple

〈h, n, u1, . . . , un, us, s,m1, . . . ,ms〉

where, as before, h denotes the current heap size, n is the number of not-full
pages such that n ≤ κ + 1 with κ being the partial compaction bound, and the
values of u1, . . . , un are the numbers of used page-blocks in the not-full pages,
respectively. The value of us equals the number of used page-blocks in the source
page, with us = 0 representing that there is no source page in the size-class. The
variable s contains the number of source page-blocks in the source page and
equals 0 if there is no source page. Note that s = 0 and us > 0 represents

The Lifetime of a Page
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the existence of a potential source page, as discussed above. Finally, m1, . . . ,ms

are the sizes of the portions of the s source page-blocks that have already been
moved.

Figure 6 shows an abstraction of the size-class behavior. Similar to Figure 2,
we use abstract states to describe the state changes: EMPTY stands for the single
state 〈0, 0, 0, 0〉 representing an empty size-class; the state NOT-FULL, no source rep-
resents all states with at least one not-full page where no compaction is needed
and no source page is present, that is 〈h, n, u1, . . . un, 0, 0〉 with 0 < n ≤ κ; the
state FULL, no source represents all states with no not-full pages, at least one full
page, and no source page, that is 〈h, 0, 0, 0〉 with h > 0; NOT-FULL, source represents
all states with at least one not-full page where no compaction is needed and a
source page, that is 〈h, n, u1, . . . un, us, s,m1, . . . ,ms〉 with 0 < n ≤ κ, us > 0;
FULL, source represents all states with no not-full pages, at least one full page, and
a source page, that is 〈h, 0, us, s,m1, . . . ,ms〉 with h > 0 and us > 0; finally,
COMPACTION is used to represent states 〈h, κ + 1, u1, . . . , uκ+1, us, s,m1, . . . ,ms〉
in which compaction must be invoked. We note that the automaton and the dis-
cussion in this section is under the assumption that the number of page-blocks in
a page is larger than 1, π > 1. The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation
(Di, Dt

i), or incremental compaction (I, Ij , IE) transitions. The distinction be-
tween Di and Dt

i transitions will be clarified in the sequel and does not influence
the global state changes. A transition I represents an initial incremental com-
paction step, Ij is any further incremental compaction step which involves a
source page, and IE is a further incremental compaction step which involves an
emptying source page.
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Fig. 6. Incremental size-class automaton with π > 1

We next present the actual changes of states in a size-class in full detail
upon allocation, deallocation, and incremental compaction.

Incremental Size-Class 
Automaton for π > 1
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in which compaction must be invoked. We note that the automaton and the dis-
cussion in this section is under the assumption that the number of page-blocks in
a page is larger than 1, π > 1. The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation
(Di, Dt

i), or incremental compaction (I, Ij , IE) transitions. The distinction be-
tween Di and Dt

i transitions will be clarified in the sequel and does not influence
the global state changes. A transition I represents an initial incremental com-
paction step, Ij is any further incremental compaction step which involves a
source page, and IE is a further incremental compaction step which involves an
emptying source page.
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We next present the actual changes of states in a size-class in full detail
upon allocation, deallocation, and incremental compaction.
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the existence of a potential source page, as discussed above. Finally, m1, . . . ,ms

are the sizes of the portions of the s source page-blocks that have already been
moved.

Figure 6 shows an abstraction of the size-class behavior. Similar to Figure 2,
we use abstract states to describe the state changes: EMPTY stands for the single
state 〈0, 0, 0, 0〉 representing an empty size-class; the state NOT-FULL, no source rep-
resents all states with at least one not-full page where no compaction is needed
and no source page is present, that is 〈h, n, u1, . . . un, 0, 0〉 with 0 < n ≤ κ; the
state FULL, no source represents all states with no not-full pages, at least one full
page, and no source page, that is 〈h, 0, 0, 0〉 with h > 0; NOT-FULL, source represents
all states with at least one not-full page where no compaction is needed and a
source page, that is 〈h, n, u1, . . . un, us, s,m1, . . . ,ms〉 with 0 < n ≤ κ, us > 0;
FULL, source represents all states with no not-full pages, at least one full page, and
a source page, that is 〈h, 0, us, s,m1, . . . ,ms〉 with h > 0 and us > 0; finally,
COMPACTION is used to represent states 〈h, κ + 1, u1, . . . , uκ+1, us, s,m1, . . . ,ms〉
in which compaction must be invoked. We note that the automaton and the dis-
cussion in this section is under the assumption that the number of page-blocks in
a page is larger than 1, π > 1. The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation
(Di, Dt

i), or incremental compaction (I, Ij , IE) transitions. The distinction be-
tween Di and Dt

i transitions will be clarified in the sequel and does not influence
the global state changes. A transition I represents an initial incremental com-
paction step, Ij is any further incremental compaction step which involves a
source page, and IE is a further incremental compaction step which involves an
emptying source page.
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We next present the actual changes of states in a size-class in full detail
upon allocation, deallocation, and incremental compaction.
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the existence of a potential source page, as discussed above. Finally, m1, . . . ,ms

are the sizes of the portions of the s source page-blocks that have already been
moved.

Figure 6 shows an abstraction of the size-class behavior. Similar to Figure 2,
we use abstract states to describe the state changes: EMPTY stands for the single
state 〈0, 0, 0, 0〉 representing an empty size-class; the state NOT-FULL, no source rep-
resents all states with at least one not-full page where no compaction is needed
and no source page is present, that is 〈h, n, u1, . . . un, 0, 0〉 with 0 < n ≤ κ; the
state FULL, no source represents all states with no not-full pages, at least one full
page, and no source page, that is 〈h, 0, 0, 0〉 with h > 0; NOT-FULL, source represents
all states with at least one not-full page where no compaction is needed and a
source page, that is 〈h, n, u1, . . . un, us, s,m1, . . . ,ms〉 with 0 < n ≤ κ, us > 0;
FULL, source represents all states with no not-full pages, at least one full page, and
a source page, that is 〈h, 0, us, s,m1, . . . ,ms〉 with h > 0 and us > 0; finally,
COMPACTION is used to represent states 〈h, κ + 1, u1, . . . , uκ+1, us, s,m1, . . . ,ms〉
in which compaction must be invoked. We note that the automaton and the dis-
cussion in this section is under the assumption that the number of page-blocks in
a page is larger than 1, π > 1. The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation
(Di, Dt

i), or incremental compaction (I, Ij , IE) transitions. The distinction be-
tween Di and Dt

i transitions will be clarified in the sequel and does not influence
the global state changes. A transition I represents an initial incremental com-
paction step, Ij is any further incremental compaction step which involves a
source page, and IE is a further incremental compaction step which involves an
emptying source page.
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We next present the actual changes of states in a size-class in full detail
upon allocation, deallocation, and incremental compaction.

Incremental Size-Class 
Automaton for π > 1further incremental

compaction step
involving

a source page



© C. Kirsch 2009

the existence of a potential source page, as discussed above. Finally, m1, . . . ,ms

are the sizes of the portions of the s source page-blocks that have already been
moved.

Figure 6 shows an abstraction of the size-class behavior. Similar to Figure 2,
we use abstract states to describe the state changes: EMPTY stands for the single
state 〈0, 0, 0, 0〉 representing an empty size-class; the state NOT-FULL, no source rep-
resents all states with at least one not-full page where no compaction is needed
and no source page is present, that is 〈h, n, u1, . . . un, 0, 0〉 with 0 < n ≤ κ; the
state FULL, no source represents all states with no not-full pages, at least one full
page, and no source page, that is 〈h, 0, 0, 0〉 with h > 0; NOT-FULL, source represents
all states with at least one not-full page where no compaction is needed and a
source page, that is 〈h, n, u1, . . . un, us, s,m1, . . . ,ms〉 with 0 < n ≤ κ, us > 0;
FULL, source represents all states with no not-full pages, at least one full page, and
a source page, that is 〈h, 0, us, s,m1, . . . ,ms〉 with h > 0 and us > 0; finally,
COMPACTION is used to represent states 〈h, κ + 1, u1, . . . , uκ+1, us, s,m1, . . . ,ms〉
in which compaction must be invoked. We note that the automaton and the dis-
cussion in this section is under the assumption that the number of page-blocks in
a page is larger than 1, π > 1. The degenerate case with π = 1 is of no interest.

A state change in a size-class happens upon allocation (A), deallocation
(Di, Dt

i), or incremental compaction (I, Ij , IE) transitions. The distinction be-
tween Di and Dt

i transitions will be clarified in the sequel and does not influence
the global state changes. A transition I represents an initial incremental com-
paction step, Ij is any further incremental compaction step which involves a
source page, and IE is a further incremental compaction step which involves an
emptying source page.
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We next present the actual changes of states in a size-class in full detail
upon allocation, deallocation, and incremental compaction.
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Temporal and Spatial Complexity
per CF Configuration and Size-Class

4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction
operation which still keeps the source page, then the number of source page-
blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this
incremental step and the source page will no longer exist in the size-class,
then s gets the value 0. Furthermore, the source page either becomes a not-
full page if n < κ (in which case n increases by 1, un is assigned the value of
us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not
change the state, but only change the global pool E of emptying source pages.
We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence
of allocations and deallocations. If a deallocation triggers compaction, then be-
fore the thread can continue with any other allocation or deallocation operation
all incremental steps needed for the compaction must be finished. The first of
these steps is an initial incremental compaction step I which may be an initial
incremental moving step in case of compaction conflict. If it is the case, then
all other incremental steps are of type IE . Otherwise, if there is no compaction
conflict, a sequence of Ij incremental steps will be performed, and in case the
source page becomes emptying a sequence of IE incremental steps, in order to
complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + "β
ι #) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case
system latency, and Table 2 shows the memory size and size-class fragmentation
per CF configuration with n threads and m per-thread-allocated page-blocks in
a size-class with π page-blocks of size β per page. The fragmentation caused
by partitioning memory [2, 7] is not considered here. Although the partial com-
paction bound κ and the compaction increment ι are kept constant in our current
implementations, both κ and ι may be changed dynamically at runtime, which
is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation
actually begins executing, caused by currently executing, non-preemptive CF
operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take
constant time, the complexity of malloc and free only depends linearly on
the number of competing threads assuming fair scheduling. System latency is
bounded by a constant. However, the worst case in memory consumption is
one page for each allocated object due to potentially high size-class fragmenta-
tion, which has asymptotically the same bound as the overall memory consump-
tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and
worst-case latency for better bounds on memory consumption by limiting size-
class fragmentation through partial compaction. Note that in this case size-class
fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in
memory size and size-class fragmentation, as shown here, are obtained under
the assumption that there is no sharing among the n CF instances. The time
complexity of malloc and free of both multiple-instance configurations goes up
to the respective single-instance cases if there is sharing among the n CF in-
stances. While the non-compacting n-CF(∞,∞) configuration requires in the
worst case no more memory than the non-compacting single-instance configura-
tion, the compacting n-CF(κ,∞) configuration actually does require in the worst
case more memory than the compacting single-instance configuration since par-
tial compaction is performed per instance. However, allocation and deallocation
throughput may increase with both multiple-instance configurations with a de-
creasing degree of sharing among the n CF instances (without an increase in
worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case
in system latency whenever the compaction increment ι is less than the page-
block size of the size-class with the largest page-blocks, at the expense of the
complexity of free through more preemptions and at the expense of memory
consumption through increased transient size-class fragmentation. In comparison
to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up
to n additional (emptying) source pages in the system where n is the number
of threads. The worst case in non-transient size-class fragmentation does not
increase.
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4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction
operation which still keeps the source page, then the number of source page-
blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this
incremental step and the source page will no longer exist in the size-class,
then s gets the value 0. Furthermore, the source page either becomes a not-
full page if n < κ (in which case n increases by 1, un is assigned the value of
us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not
change the state, but only change the global pool E of emptying source pages.
We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence
of allocations and deallocations. If a deallocation triggers compaction, then be-
fore the thread can continue with any other allocation or deallocation operation
all incremental steps needed for the compaction must be finished. The first of
these steps is an initial incremental compaction step I which may be an initial
incremental moving step in case of compaction conflict. If it is the case, then
all other incremental steps are of type IE . Otherwise, if there is no compaction
conflict, a sequence of Ij incremental steps will be performed, and in case the
source page becomes emptying a sequence of IE incremental steps, in order to
complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + "β
ι #) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case
system latency, and Table 2 shows the memory size and size-class fragmentation
per CF configuration with n threads and m per-thread-allocated page-blocks in
a size-class with π page-blocks of size β per page. The fragmentation caused
by partitioning memory [2, 7] is not considered here. Although the partial com-
paction bound κ and the compaction increment ι are kept constant in our current
implementations, both κ and ι may be changed dynamically at runtime, which
is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation
actually begins executing, caused by currently executing, non-preemptive CF
operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take
constant time, the complexity of malloc and free only depends linearly on
the number of competing threads assuming fair scheduling. System latency is
bounded by a constant. However, the worst case in memory consumption is
one page for each allocated object due to potentially high size-class fragmenta-
tion, which has asymptotically the same bound as the overall memory consump-
tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and
worst-case latency for better bounds on memory consumption by limiting size-
class fragmentation through partial compaction. Note that in this case size-class
fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in
memory size and size-class fragmentation, as shown here, are obtained under
the assumption that there is no sharing among the n CF instances. The time
complexity of malloc and free of both multiple-instance configurations goes up
to the respective single-instance cases if there is sharing among the n CF in-
stances. While the non-compacting n-CF(∞,∞) configuration requires in the
worst case no more memory than the non-compacting single-instance configura-
tion, the compacting n-CF(κ,∞) configuration actually does require in the worst
case more memory than the compacting single-instance configuration since par-
tial compaction is performed per instance. However, allocation and deallocation
throughput may increase with both multiple-instance configurations with a de-
creasing degree of sharing among the n CF instances (without an increase in
worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case
in system latency whenever the compaction increment ι is less than the page-
block size of the size-class with the largest page-blocks, at the expense of the
complexity of free through more preemptions and at the expense of memory
consumption through increased transient size-class fragmentation. In comparison
to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up
to n additional (emptying) source pages in the system where n is the number
of threads. The worst case in non-transient size-class fragmentation does not
increase.

n is the # of threads
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4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction
operation which still keeps the source page, then the number of source page-
blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this
incremental step and the source page will no longer exist in the size-class,
then s gets the value 0. Furthermore, the source page either becomes a not-
full page if n < κ (in which case n increases by 1, un is assigned the value of
us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not
change the state, but only change the global pool E of emptying source pages.
We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence
of allocations and deallocations. If a deallocation triggers compaction, then be-
fore the thread can continue with any other allocation or deallocation operation
all incremental steps needed for the compaction must be finished. The first of
these steps is an initial incremental compaction step I which may be an initial
incremental moving step in case of compaction conflict. If it is the case, then
all other incremental steps are of type IE . Otherwise, if there is no compaction
conflict, a sequence of Ij incremental steps will be performed, and in case the
source page becomes emptying a sequence of IE incremental steps, in order to
complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + "β
ι #) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case
system latency, and Table 2 shows the memory size and size-class fragmentation
per CF configuration with n threads and m per-thread-allocated page-blocks in
a size-class with π page-blocks of size β per page. The fragmentation caused
by partitioning memory [2, 7] is not considered here. Although the partial com-
paction bound κ and the compaction increment ι are kept constant in our current
implementations, both κ and ι may be changed dynamically at runtime, which
is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation
actually begins executing, caused by currently executing, non-preemptive CF
operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take
constant time, the complexity of malloc and free only depends linearly on
the number of competing threads assuming fair scheduling. System latency is
bounded by a constant. However, the worst case in memory consumption is
one page for each allocated object due to potentially high size-class fragmenta-
tion, which has asymptotically the same bound as the overall memory consump-
tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and
worst-case latency for better bounds on memory consumption by limiting size-
class fragmentation through partial compaction. Note that in this case size-class
fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in
memory size and size-class fragmentation, as shown here, are obtained under
the assumption that there is no sharing among the n CF instances. The time
complexity of malloc and free of both multiple-instance configurations goes up
to the respective single-instance cases if there is sharing among the n CF in-
stances. While the non-compacting n-CF(∞,∞) configuration requires in the
worst case no more memory than the non-compacting single-instance configura-
tion, the compacting n-CF(κ,∞) configuration actually does require in the worst
case more memory than the compacting single-instance configuration since par-
tial compaction is performed per instance. However, allocation and deallocation
throughput may increase with both multiple-instance configurations with a de-
creasing degree of sharing among the n CF instances (without an increase in
worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case
in system latency whenever the compaction increment ι is less than the page-
block size of the size-class with the largest page-blocks, at the expense of the
complexity of free through more preemptions and at the expense of memory
consumption through increased transient size-class fragmentation. In comparison
to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up
to n additional (emptying) source pages in the system where n is the number
of threads. The worst case in non-transient size-class fragmentation does not
increase.
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4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction
operation which still keeps the source page, then the number of source page-
blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this
incremental step and the source page will no longer exist in the size-class,
then s gets the value 0. Furthermore, the source page either becomes a not-
full page if n < κ (in which case n increases by 1, un is assigned the value of
us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not
change the state, but only change the global pool E of emptying source pages.
We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence
of allocations and deallocations. If a deallocation triggers compaction, then be-
fore the thread can continue with any other allocation or deallocation operation
all incremental steps needed for the compaction must be finished. The first of
these steps is an initial incremental compaction step I which may be an initial
incremental moving step in case of compaction conflict. If it is the case, then
all other incremental steps are of type IE . Otherwise, if there is no compaction
conflict, a sequence of Ij incremental steps will be performed, and in case the
source page becomes emptying a sequence of IE incremental steps, in order to
complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + "β
ι #) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case
system latency, and Table 2 shows the memory size and size-class fragmentation
per CF configuration with n threads and m per-thread-allocated page-blocks in
a size-class with π page-blocks of size β per page. The fragmentation caused
by partitioning memory [2, 7] is not considered here. Although the partial com-
paction bound κ and the compaction increment ι are kept constant in our current
implementations, both κ and ι may be changed dynamically at runtime, which
is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation
actually begins executing, caused by currently executing, non-preemptive CF
operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take
constant time, the complexity of malloc and free only depends linearly on
the number of competing threads assuming fair scheduling. System latency is
bounded by a constant. However, the worst case in memory consumption is
one page for each allocated object due to potentially high size-class fragmenta-
tion, which has asymptotically the same bound as the overall memory consump-
tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and
worst-case latency for better bounds on memory consumption by limiting size-
class fragmentation through partial compaction. Note that in this case size-class
fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in
memory size and size-class fragmentation, as shown here, are obtained under
the assumption that there is no sharing among the n CF instances. The time
complexity of malloc and free of both multiple-instance configurations goes up
to the respective single-instance cases if there is sharing among the n CF in-
stances. While the non-compacting n-CF(∞,∞) configuration requires in the
worst case no more memory than the non-compacting single-instance configura-
tion, the compacting n-CF(κ,∞) configuration actually does require in the worst
case more memory than the compacting single-instance configuration since par-
tial compaction is performed per instance. However, allocation and deallocation
throughput may increase with both multiple-instance configurations with a de-
creasing degree of sharing among the n CF instances (without an increase in
worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case
in system latency whenever the compaction increment ι is less than the page-
block size of the size-class with the largest page-blocks, at the expense of the
complexity of free through more preemptions and at the expense of memory
consumption through increased transient size-class fragmentation. In comparison
to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up
to n additional (emptying) source pages in the system where n is the number
of threads. The worst case in non-transient size-class fragmentation does not
increase.

β is the page-block size
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4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction
operation which still keeps the source page, then the number of source page-
blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this
incremental step and the source page will no longer exist in the size-class,
then s gets the value 0. Furthermore, the source page either becomes a not-
full page if n < κ (in which case n increases by 1, un is assigned the value of
us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not
change the state, but only change the global pool E of emptying source pages.
We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence
of allocations and deallocations. If a deallocation triggers compaction, then be-
fore the thread can continue with any other allocation or deallocation operation
all incremental steps needed for the compaction must be finished. The first of
these steps is an initial incremental compaction step I which may be an initial
incremental moving step in case of compaction conflict. If it is the case, then
all other incremental steps are of type IE . Otherwise, if there is no compaction
conflict, a sequence of Ij incremental steps will be performed, and in case the
source page becomes emptying a sequence of IE incremental steps, in order to
complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + "β
ι #) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case
system latency, and Table 2 shows the memory size and size-class fragmentation
per CF configuration with n threads and m per-thread-allocated page-blocks in
a size-class with π page-blocks of size β per page. The fragmentation caused
by partitioning memory [2, 7] is not considered here. Although the partial com-
paction bound κ and the compaction increment ι are kept constant in our current
implementations, both κ and ι may be changed dynamically at runtime, which
is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation
actually begins executing, caused by currently executing, non-preemptive CF
operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take
constant time, the complexity of malloc and free only depends linearly on
the number of competing threads assuming fair scheduling. System latency is
bounded by a constant. However, the worst case in memory consumption is
one page for each allocated object due to potentially high size-class fragmenta-
tion, which has asymptotically the same bound as the overall memory consump-
tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and
worst-case latency for better bounds on memory consumption by limiting size-
class fragmentation through partial compaction. Note that in this case size-class
fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in
memory size and size-class fragmentation, as shown here, are obtained under
the assumption that there is no sharing among the n CF instances. The time
complexity of malloc and free of both multiple-instance configurations goes up
to the respective single-instance cases if there is sharing among the n CF in-
stances. While the non-compacting n-CF(∞,∞) configuration requires in the
worst case no more memory than the non-compacting single-instance configura-
tion, the compacting n-CF(κ,∞) configuration actually does require in the worst
case more memory than the compacting single-instance configuration since par-
tial compaction is performed per instance. However, allocation and deallocation
throughput may increase with both multiple-instance configurations with a de-
creasing degree of sharing among the n CF instances (without an increase in
worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case
in system latency whenever the compaction increment ι is less than the page-
block size of the size-class with the largest page-blocks, at the expense of the
complexity of free through more preemptions and at the expense of memory
consumption through increased transient size-class fragmentation. In comparison
to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up
to n additional (emptying) source pages in the system where n is the number
of threads. The worst case in non-transient size-class fragmentation does not
increase.
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4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction
operation which still keeps the source page, then the number of source page-
blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this
incremental step and the source page will no longer exist in the size-class,
then s gets the value 0. Furthermore, the source page either becomes a not-
full page if n < κ (in which case n increases by 1, un is assigned the value of
us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not
change the state, but only change the global pool E of emptying source pages.
We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence
of allocations and deallocations. If a deallocation triggers compaction, then be-
fore the thread can continue with any other allocation or deallocation operation
all incremental steps needed for the compaction must be finished. The first of
these steps is an initial incremental compaction step I which may be an initial
incremental moving step in case of compaction conflict. If it is the case, then
all other incremental steps are of type IE . Otherwise, if there is no compaction
conflict, a sequence of Ij incremental steps will be performed, and in case the
source page becomes emptying a sequence of IE incremental steps, in order to
complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + "β
ι #) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case
system latency, and Table 2 shows the memory size and size-class fragmentation
per CF configuration with n threads and m per-thread-allocated page-blocks in
a size-class with π page-blocks of size β per page. The fragmentation caused
by partitioning memory [2, 7] is not considered here. Although the partial com-
paction bound κ and the compaction increment ι are kept constant in our current
implementations, both κ and ι may be changed dynamically at runtime, which
is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation
actually begins executing, caused by currently executing, non-preemptive CF
operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take
constant time, the complexity of malloc and free only depends linearly on
the number of competing threads assuming fair scheduling. System latency is
bounded by a constant. However, the worst case in memory consumption is
one page for each allocated object due to potentially high size-class fragmenta-
tion, which has asymptotically the same bound as the overall memory consump-
tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and
worst-case latency for better bounds on memory consumption by limiting size-
class fragmentation through partial compaction. Note that in this case size-class
fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in
memory size and size-class fragmentation, as shown here, are obtained under
the assumption that there is no sharing among the n CF instances. The time
complexity of malloc and free of both multiple-instance configurations goes up
to the respective single-instance cases if there is sharing among the n CF in-
stances. While the non-compacting n-CF(∞,∞) configuration requires in the
worst case no more memory than the non-compacting single-instance configura-
tion, the compacting n-CF(κ,∞) configuration actually does require in the worst
case more memory than the compacting single-instance configuration since par-
tial compaction is performed per instance. However, allocation and deallocation
throughput may increase with both multiple-instance configurations with a de-
creasing degree of sharing among the n CF instances (without an increase in
worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case
in system latency whenever the compaction increment ι is less than the page-
block size of the size-class with the largest page-blocks, at the expense of the
complexity of free through more preemptions and at the expense of memory
consumption through increased transient size-class fragmentation. In comparison
to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up
to n additional (emptying) source pages in the system where n is the number
of threads. The worst case in non-transient size-class fragmentation does not
increase.

m is the # of
per-thread-allocated

page-blocks
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4. If mj+ι ≥ β and s > 1, i.e., this is the last incremental step for the compaction
operation which still keeps the source page, then the number of source page-
blocks s decreases by 1, the variable mj is removed from the state.

5. If mj + ι ≥ β and s = 1, i.e., the compaction operation finishes after this
incremental step and the source page will no longer exist in the size-class,
then s gets the value 0. Furthermore, the source page either becomes a not-
full page if n < κ (in which case n increases by 1, un is assigned the value of
us, us becomes 0) or it is kept as a potential source page.

Finally, there is a possibility for incremental operations IE which do not
change the state, but only change the global pool E of emptying source pages.
We skip the details on the description and the update of E due to IE operations.

We remark that the behavior of any thread can be expressed by a sequence
of allocations and deallocations. If a deallocation triggers compaction, then be-
fore the thread can continue with any other allocation or deallocation operation
all incremental steps needed for the compaction must be finished. The first of
these steps is an initial incremental compaction step I which may be an initial
incremental moving step in case of compaction conflict. If it is the case, then
all other incremental steps are of type IE . Otherwise, if there is no compaction
conflict, a sequence of Ij incremental steps will be performed, and in case the
source page becomes emptying a sequence of IE incremental steps, in order to
complete the compaction operation.

6 Complexity vs. Fragmentation

malloc free latency
1-CF(∞,∞) O(n) O(n) O(1)
1-CF(κ,∞) O(n) O(n + β) O(β)

n-CF(∞,∞) O(1) O(1) O(1)
n-CF(κ,∞) O(1) O(β) O(β)

1-CF(κ, ι) O(n) O(n + β + "β
ι #) O(min(β, ι))

Table 1. Time complexity of malloc and free as well as worst-case system latency per
CF configuration and size-class

Table 1 shows the time complexity of malloc and free as well as the worst-case
system latency, and Table 2 shows the memory size and size-class fragmentation
per CF configuration with n threads and m per-thread-allocated page-blocks in
a size-class with π page-blocks of size β per page. The fragmentation caused
by partitioning memory [2, 7] is not considered here. Although the partial com-
paction bound κ and the compaction increment ι are kept constant in our current
implementations, both κ and ι may be changed dynamically at runtime, which
is an interesting topic for future work. System latency is here the portion of the

memory size size-class fragmentation
1-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
1-CF(κ,∞) O((n ∗m + κ ∗ (π − 1)) ∗ β) O(κ ∗ (π − 1) ∗ β)

n-CF(∞,∞) O(n ∗m ∗ π ∗ β) O(n ∗m ∗ (π − 1) ∗ β)
n-CF(κ,∞) O(n ∗ (m + κ ∗ (π − 1)) ∗ β) O(n ∗ κ ∗ (π − 1) ∗ β)

1-CF(κ, ι) O((n ∗m + n ∗ π + κ ∗ (π − 1)) ∗ β) O((n ∗ π + κ ∗ (π − 1)) ∗ β)

Table 2. Worst-case memory size and size-class fragmentation per CF configuration
and size-class

delay a thread may experience, from invoking malloc or free until the operation
actually begins executing, caused by currently executing, non-preemptive CF
operations, not including the synchronization overhead.

Since all operations of the non-compacting 1-CF(∞,∞) configuration take
constant time, the complexity of malloc and free only depends linearly on
the number of competing threads assuming fair scheduling. System latency is
bounded by a constant. However, the worst case in memory consumption is
one page for each allocated object due to potentially high size-class fragmenta-
tion, which has asymptotically the same bound as the overall memory consump-
tion. The compacting 1-CF(κ,∞) configuration trades-off complexity of free and
worst-case latency for better bounds on memory consumption by limiting size-
class fragmentation through partial compaction. Note that in this case size-class
fragmentation is independent from the number of threads and allocated objects.

The results for the n-CF configurations, in particular the worst cases in
memory size and size-class fragmentation, as shown here, are obtained under
the assumption that there is no sharing among the n CF instances. The time
complexity of malloc and free of both multiple-instance configurations goes up
to the respective single-instance cases if there is sharing among the n CF in-
stances. While the non-compacting n-CF(∞,∞) configuration requires in the
worst case no more memory than the non-compacting single-instance configura-
tion, the compacting n-CF(κ,∞) configuration actually does require in the worst
case more memory than the compacting single-instance configuration since par-
tial compaction is performed per instance. However, allocation and deallocation
throughput may increase with both multiple-instance configurations with a de-
creasing degree of sharing among the n CF instances (without an increase in
worst-case system latency).

The incremental 1-CF(κ, ι) configuration actually improves the worst case
in system latency whenever the compaction increment ι is less than the page-
block size of the size-class with the largest page-blocks, at the expense of the
complexity of free through more preemptions and at the expense of memory
consumption through increased transient size-class fragmentation. In comparison
to the non-incremental, compacting 1-CF(κ,∞) configuration, there may be up
to n additional (emptying) source pages in the system where n is the number
of threads. The worst case in non-transient size-class fragmentation does not
increase.
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8.2 Concurrent Non-incremental CF

The microbenchmarks run mutator threads that each allocate 2048 objects of
random size, then deallocate the objects, and then start over again. The sizes
of allocated objects correspond to the distribution of object sizes allocated in a
popular optimizer for programmable logic arrays called Espresso used in several
memory allocator performance evaluations, e.g. in [11]. Each microbenchmark
runs for ten seconds performing more than one million allocation/deallocation
operations.
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Fig. 8. Allocation throughput of a single thread with decreasing partial compaction

Figure 8 shows the impact of partial compaction on the allocation throughput
of a single thread. Larger partial compaction bounds κ provide higher allocation
throughput because of less compaction activity. Independently of κ, the size-
class lock configuration performs better then the page-lock configuration since
the latter needs locks for both the size-class and the source and target pages.

Figure 9 depicts the allocation throughput with an increasing number of
threads. Up to seven threads run in parallel on seven cores while the eighth core
is used to minimize the influence of collecting data on the performance data. The
performance of the fully compacting and the optimized, non-compacting version
of CF without abstract addressing (in both cases with no sharing across the
thread-local CF instances) are shown in Figures 9(a) and 9(b), respectively. The
thread-local size-class versions show linear scalability in the number of threads
whereas the global size-class versions neither scale in the fully compacting nor
in the non-compacting configurations. Again, the size-class lock configurations
result in better allocation throughput than the page lock configurations. Scala-
bility only improves by a constant factor with increasing partial compaction (cf.
Figures 9(a) versus 9(b)). Scalability of the thread-local size-class versions de-
pends on the degree of sharing across the thread-local CF instances. Figure 9(c)
shows allocation throughput at varying degrees of sharing: mutator threads al-
locate and deallocate 512 objects periodically according to the Espresso object
size distribution. Each mutator frees its own just allocated objects and objects
previously allocated by other threads in a ratio that determines the degree of
sharing.

Single Thread
Allocation Throughput
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Figure 8 shows the impact of partial compaction on the allocation throughput
of a single thread. Larger partial compaction bounds κ provide higher allocation
throughput because of less compaction activity. Independently of κ, the size-
class lock configuration performs better then the page-lock configuration since
the latter needs locks for both the size-class and the source and target pages.

Figure 9 depicts the allocation throughput with an increasing number of
threads. Up to seven threads run in parallel on seven cores while the eighth core
is used to minimize the influence of collecting data on the performance data. The
performance of the fully compacting and the optimized, non-compacting version
of CF without abstract addressing (in both cases with no sharing across the
thread-local CF instances) are shown in Figures 9(a) and 9(b), respectively. The
thread-local size-class versions show linear scalability in the number of threads
whereas the global size-class versions neither scale in the fully compacting nor
in the non-compacting configurations. Again, the size-class lock configurations
result in better allocation throughput than the page lock configurations. Scala-
bility only improves by a constant factor with increasing partial compaction (cf.
Figures 9(a) versus 9(b)). Scalability of the thread-local size-class versions de-
pends on the degree of sharing across the thread-local CF instances. Figure 9(c)
shows allocation throughput at varying degrees of sharing: mutator threads al-
locate and deallocate 512 objects periodically according to the Espresso object
size distribution. Each mutator frees its own just allocated objects and objects
previously allocated by other threads in a ratio that determines the degree of
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The microbenchmarks run mutator threads that each allocate 2048 objects of
random size, then deallocate the objects, and then start over again. The sizes
of allocated objects correspond to the distribution of object sizes allocated in a
popular optimizer for programmable logic arrays called Espresso used in several
memory allocator performance evaluations, e.g. in [11]. Each microbenchmark
runs for ten seconds performing more than one million allocation/deallocation
operations.
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Figure 8 shows the impact of partial compaction on the allocation throughput
of a single thread. Larger partial compaction bounds κ provide higher allocation
throughput because of less compaction activity. Independently of κ, the size-
class lock configuration performs better then the page-lock configuration since
the latter needs locks for both the size-class and the source and target pages.

Figure 9 depicts the allocation throughput with an increasing number of
threads. Up to seven threads run in parallel on seven cores while the eighth core
is used to minimize the influence of collecting data on the performance data. The
performance of the fully compacting and the optimized, non-compacting version
of CF without abstract addressing (in both cases with no sharing across the
thread-local CF instances) are shown in Figures 9(a) and 9(b), respectively. The
thread-local size-class versions show linear scalability in the number of threads
whereas the global size-class versions neither scale in the fully compacting nor
in the non-compacting configurations. Again, the size-class lock configurations
result in better allocation throughput than the page lock configurations. Scala-
bility only improves by a constant factor with increasing partial compaction (cf.
Figures 9(a) versus 9(b)). Scalability of the thread-local size-class versions de-
pends on the degree of sharing across the thread-local CF instances. Figure 9(c)
shows allocation throughput at varying degrees of sharing: mutator threads al-
locate and deallocate 512 objects periodically according to the Espresso object
size distribution. Each mutator frees its own just allocated objects and objects
previously allocated by other threads in a ratio that determines the degree of
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Scalability of
Allocation Throughput
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(a) full compaction
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(b) optimized, non-compacting
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•global size-class locks do not 
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requires constant factor
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Fig. 10. Allocation throughput for Hummingbird and Emacs

The macrobenchmarks are based on Emacs and Hummingbird alloca-
tion/deallocation traces [6]. In the Emacs trace about 51% of the allocated
objects are of size 40B, 15% are of size 648B, and 11% are of size 104B. The
remaining objects of the trace are also of small size. In the Hummingbird trace
about 25% of the allocated objects are of size 8B and 23% are of size 32B. The
remaining allocation requests vary from 16B to around 38.1MB (object sizes
greater than 16KB are ignored here). Hummingbird’s allocation behavior is very
different from the behavior of a typical mutator where 99% of the objects are of
small and similar sizes [11].

Figure 10 shows the allocation throughput of a single thread running the
Hummingbird and Emacs benchmarks. Larger κ values allow the Hummingbird
benchmark to allocate more objects per second. In the Emacs benchmark the
allocation throughput does not improve for larger κ.

 2160

 2162

 2164

 2166

 2168

 2170

1 3 5 10 15 20 25 !
 40

 50

 60

 70

 80

 90

 100

m
e

m
o
ry

 s
iz

e
 i
n
 p

a
g
e
s

n
u

m
b
e
r 

o
f 
n
o

t-
fu

ll 
p
a
g
e
s

partial compaction bound " 

emacs

memory size
not-full pages

 15320

 15325

 15330

 15335

 15340

1 3 5 10 15 20 25 !
 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000

m
e

m
o
ry

 s
iz

e
 i
n

 p
a

g
e

s

n
u
m

b
e
r 

o
f 
n

o
t-

fu
ll 

p
a
g

e
s

hummingbird

memory size
not-full pages
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The macrobenchmarks are based on Emacs and Hummingbird alloca-
tion/deallocation traces [6]. In the Emacs trace about 51% of the allocated
objects are of size 40B, 15% are of size 648B, and 11% are of size 104B. The
remaining objects of the trace are also of small size. In the Hummingbird trace
about 25% of the allocated objects are of size 8B and 23% are of size 32B. The
remaining allocation requests vary from 16B to around 38.1MB (object sizes
greater than 16KB are ignored here). Hummingbird’s allocation behavior is very
different from the behavior of a typical mutator where 99% of the objects are of
small and similar sizes [11].

Figure 10 shows the allocation throughput of a single thread running the
Hummingbird and Emacs benchmarks. Larger κ values allow the Hummingbird
benchmark to allocate more objects per second. In the Emacs benchmark the
allocation throughput does not improve for larger κ.
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•less compaction may result in 
better allocation throughput

•size-class fragmentation 
increases with less compaction 
but total memory consumption 
may not
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Figure 11 shows the required memory size (in number of used pages) and
size-class fragmentation (in number of not-full pages) during the execution of
the Hummingbird and Emacs traces with increasing κ. As expected, size-class
fragmentation increases with increasing κ, whereas the required memory size
remains constant for κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the
Emacs trace since most not-full pages with smaller page-block sizes tend to
remain relatively full (in line with our probabilistic claims of Section 4).

memory (in MB)
TLSF CF (16B blocks) CF (32B blocks)

memory memory size-class memory size-class
size size fragmentation size fragmentation

Emacs 25.7 34.6 0.46 34.5 0.38
Hummingbird 203.7 245.3 8.3 245.9 11.4

Table 3. Memory consumption of TLSF versus optimized, non-compacting CF (with-
out abstract addressing)

malloc (in clock ticks) free (in clock ticks)
TLSF CF TLSF CF

avg max avg max avg max avg max
time time time time time time time time

Emacs 228 93359 260 81662 153 71159 279 74798
Hummingbird 411 109079 529 98820 500 69192 574 79914

Table 4. Performance of TLSF versus optimized, non-compacting CF (without ab-
stract addressing)

Finally, Table 3 and Table 4 show the results of macrobenchmarking
TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
block size). For Emacs, CF consumes around 35% more memory of which only
around 1.3% comes from size-class fragmentation while the difference between
the 16B and 32B configurations is only marginal. For Hummingbird, CF con-
sumes around 21% more memory of which only around 4.6% comes from size-
class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).
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Finally, Table 3 and Table 4 show the results of macrobenchmarking
TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
block size). For Emacs, CF consumes around 35% more memory of which only
around 1.3% comes from size-class fragmentation while the difference between
the 16B and 32B configurations is only marginal. For Hummingbird, CF con-
sumes around 21% more memory of which only around 4.6% comes from size-
class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).

Figure 11 shows the required memory size (in number of used pages) and
size-class fragmentation (in number of not-full pages) during the execution of
the Hummingbird and Emacs traces with increasing κ. As expected, size-class
fragmentation increases with increasing κ, whereas the required memory size
remains constant for κ ≥ 5 with the Hummingbird trace and κ ≥ 3 with the
Emacs trace since most not-full pages with smaller page-block sizes tend to
remain relatively full (in line with our probabilistic claims of Section 4).
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Table 4. Performance of TLSF versus optimized, non-compacting CF (without ab-
stract addressing)

Finally, Table 3 and Table 4 show the results of macrobenchmarking
TLSF [17] and the optimized, non-compacting version of CF without abstract
addressing (configured to 16B, and alternatively to 32B, for the smallest page-
block size). For Emacs, CF consumes around 35% more memory of which only
around 1.3% comes from size-class fragmentation while the difference between
the 16B and 32B configurations is only marginal. For Hummingbird, CF con-
sumes around 21% more memory of which only around 4.6% comes from size-
class fragmentation while the difference between the 16B and 32B configurations
is again only marginal. This means the bulk of CF’s increased memory usage
comes from fragmentation through partitioning [2, 7], which can only be reduced
by re-configuring size-classes to better match given mutators. The temporal per-
formance of malloc and free operations (in clock ticks measured on the Opteron
machine) for TLSF and non-compacting CF is similar with TLSF slightly out-
performing CF (except for malloc in the worst case where CF is slightly better).
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Allocation Throughput with 
Decreasing Compaction Increment
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Fig. 12. Allocation throughput, system latency, and transient size-class fragmentation
with decreasing compaction increments

8.3 Concurrent Incremental CF

The microbenchmark runs mutator threads allocating and deallocating objects
from 16B to 16KB randomly. The threads operate on global size classes.
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System Latency with 8 Threads 
and Increasing Block Size
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Fig. 12. Allocation throughput, system latency, and transient size-class fragmentation
with decreasing compaction increments

8.3 Concurrent Incremental CF

The microbenchmark runs mutator threads allocating and deallocating objects
from 16B to 16KB randomly. The threads operate on global size classes.
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Transient Size-Class Fragmentation with 
Decreasing Compaction Increment
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Fig. 12. Allocation throughput, system latency, and transient size-class fragmentation
with decreasing compaction increments

8.3 Concurrent Incremental CF

The microbenchmark runs mutator threads allocating and deallocating objects
from 16B to 16KB randomly. The threads operate on global size classes.
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