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What We Want

1. Focus on principled engineering of real-time 
and embedded software

2. Study the trade-off between temporal and 
spatial performance and predictability as well 
as compositionality of real-time programs

3. Design and implement a real-time operating 
system kernel from scratch to support higher 
levels of real-time programming abstractions
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“Theorem”

• (Compositionality) The time and space a 
software process needs to execute is 
determined by the process, not the system 
and not other software processes.

• (Predictability) The system can tell how 
much time and space is available without 
looking at any existing software processes.
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“Corollary”

• (Memory) The time a software process 
takes to allocate and free a memory object 
is determined by the size of the object.

• (I/O) The time a software process takes to 
read input data and write output data is 
determined by the size of the data.
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Oops
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Flight Control
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Free Flight
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application-oriented 
real-time programming

resource-oriented 
real-time programming

processes processors/memory

concurrency distribution/isolation

response times execution times

frequencies timers

Application and Resources
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Process Action
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Concurrency
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Process
vs.

System
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Execution and Response
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Time
• The temporal behavior of a process action is 

characterized by its execution time and its 
response time

• The execution time is the time it takes to 
execute the action in the absence of 
concurrent activities

• The response time is the time it takes to 
execute the action in the presence of 
concurrent activities
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Analyses
1. The execution time of a process action is 

determined by the process action and the 
executing processor.

‣ Worst-case execution time (WCET) analysis

2. The response time of a process action is 
determined by the entire system of processes 
executing on a processor.

‣ Real-time scheduling theory
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WCET

• The worst-case execution time (WCET) of a 
process action on a given processor is an 
upper bound on the execution times of the 
action on the processor on any possible input

• The challenge is to compute the least 
conservative WCET on the most up-to-date 
processor architectures with the least 
amount of programmer assistance
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WCET Analysis

• The WCET analysis of a process action on a 
given processor involves the machine code 
implementation of the action and the 
machine code performance of the processor

• The less conservative a WCET bound is the 
more utilized a system may potentially be 
since WCETs constrain schedulability (in 
hard real-time applications)
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Real-Time Scheduling

• The worst-case response time of a process 
action in a given context of other concurrent  
process actions is bounded by its WCET and 
the interference from the other actions

• The process model determines the context

• The scheduling algorithm determines the 
interference
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Context & Interference
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Context

• Standard model: a process P periodically 
invokes a process action (also called task or 
job) with a WCET λP and a period πP

‣ P = (λP, πP)

• Advanced models: sporadic, aperiodic, 
conditional, logical, synchronous etc.

• Key advantage: finite description of temporal 
context of non-terminating processes
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Interference
• A scheduling algorithm A determines for a 

given set of processes a schedule, i.e., for each 
time instant which process executes

• A schedulability test T for A determines 
whether a given set of processes can be 
scheduled by A (is schedulable or feasible) such 
that “timeliness” holds (e.g. deadlines are met)

• Schedulability involves matching application 
requirements and resource capabilities
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Process States

• A process (action) that has completed and not 
yet arrived is called blocked

• A blocked process (action) may also be called 
waiting (e.g. for some event to occur)

• A process (action) that has arrived and not yet 
completed is called ready

• A process (action) that is executing is called 
running
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blocked process
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ready process
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running process
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completion

arrival

dispatch
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preemption
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EDF Algorithm

• The earliest-deadline-first (EDF) scheduling 
algorithm always dispatches at any time instant 
a ready process action with a relative deadline 
(e.g. process period) that is earlier than the 
relative deadline of any other ready process 
action

• EDF is a dynamic priority assignment algorithm
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Optimality

• A scheduling algorithm A is optimal with respect 
to a property S (e.g. schedulability) if A always 
determines a schedule that satisfies S provided 
some schedule that satisfies S exists

• EDF is optimal with respect to schedulability but 
requires preemption
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EDF Test

• The standard utilization-based schedulability test 
for EDF is:

∑P λP/πP ≤ 1

• The test returns true if and only if each process P 
may invoke, every πP time instants, an EDF-
dispatched process action with at most λP 
execution time within at most πP response time
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Precision

• A schedulability test is sufficient if a positive test 
result implies schedulability (required)

• A schedulability test is necessary if schedulability 
implies a positive test result (optional)

• The utilization-based schedulability test for EDF 
is sufficient and necessary but only works for 
periodic processes
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Scheduling & Schedulability

• Scheduling algorithms control the access of 
processes to processors

‣ Time and space complexity should be 
constant, or proportional to the number of 
processes (p) and distinct time instants (t)

• Schedulability tests control the admission of 
processes into the system

‣ Complexity should be similar to above
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Scheduling & Admission

• Scheduling requires queue management:

• insert process into ready queue

• select process from ready queue

• Admission requires resource management:

• admit process into system
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Complexity

list tree array

insert O(n) O(log n) O(1)

select O(1) O(log n) O(n)

admit O(1)

process queue: n = p (processes)
timeline queue: n = t (time instants)
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Performance vs. Predictability

• Frequency of scheduler invocations:

• Conflict between throughput and latency

• Execution time of each scheduler invocation:

• Upper bound, lower bound, variance (jitter)

• Conflict between low variance and low 
bounds (optimizations that work for all 
inputs are difficult)



© C. Kirsch 2008

Predictability

1. A non-functional, quantifiable property of a 
process action (such as its response time) is 
predictable if its quantity can be bounded in 
terms of other, known quantities

2. Such a property is more predictable than 
another if the prediction effort is less and 
the prediction accuracy is higher than for 
the other property
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Effort and Accuracy

1. The prediction effort should be proportional 
to the bounding quantities, or even constant

2. The prediction accuracy should be 
conservative, or even exact
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Example

• Action response time is (0,πP] if

∑P λP/πP ≤ 1
• Constant-time effort for admission

• Actual response times may vary by at most πP 

(bad for large πP)
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Compositionality
1. A component model is compositional with 

respect to some quantifiable, non-functional 
property (such as action response times) if, 
for any system composed in the model, the 
respective quantities in the system’s 
components do not change when composed.

2. Such a model is more compositional than 
another if the composition effort is less and 
the composition accuracy is higher than for 
the other model.
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Example

• Set of periodic processes:

• Existing processes still meet deadlines even 
when adding/removing processes

• Giotto program:

• Existing Giotto processes maintain input and 
output times even when adding/removing 
Giotto processes
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Process A

Kernel

Memory

Process B

I/OCPU
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Tiptoe Process Model

• Tiptoe processes invoke process actions

• Process actions are system calls and 
procedure calls but also just code, which 
may have optional workload parameters

• Workload parameters determine the 
amount of work involved in executing 
process actions
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Example

• Consider a process that reads a video 
stream from a network connection, 
compresses it, and stores it on disk, all in 
real time

• The process periodically adapts the frame 
rate, allocates memory, receives frames, 
compresses them, writes the result to disk, 
and finally deallocates memory to prepare 
for the next iteration
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Pseudo Code
loop {
  int number_of_frames = determine_rate();

  allocate_memory(number_of_frames);
  read_from_network(number_of_frames);

  compress_data(number_of_frames);

  write_to_disk(number_of_frames);
  deallocate_memory(number_of_frames);
} until (done);
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Tiptoe Programming Model

• Process actions are characterized by their 
execution time and response time in terms 
of their workload parameters

• The execution time is the time it takes to 
execute an action in the absence of 
concurrent activities

• The response time is the time it takes to 
execute an action in the presence of 
concurrent activities
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Compositionality

• System of Tiptoe processes:

• The individual actions of running Tiptoe 
processes maintain their response times 
even when adding/removing processes
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Compositional Response!
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A response-time (RT) function
is a discrete function

fR : N → Q+
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Execution-Time Function
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An execution-time (ET) function
is a discrete function

fE : ED → Q+

with ED⊆N

ED is the action’s
execution domain
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Utilization Function:

fE(w)
fR(w)

fU(w) =
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With

fR(w) = 4 * w (in ms)
fE(w) = 0.4 * w (in ms)

we have that

fU(w) = 10% (for w>0)
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Scheduling and Admission

• Process scheduling:

• How do we efficiently schedule 
processes on the level of individual 
process actions?

• Process admission:

• How do we efficiently test schedulability 
of newly arriving processes
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Just use EDF, or not?
action arrives

fR(10)
deadline

fE(10)

action completes
fS(10)
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Virtual Periodic Resource

π
λ

π
λ

π
λ

π
λ

π
λ

limit: λ
period: π
utilization: λ / π
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Tiptoe Process Model

• Each Tiptoe process declares a finite set of 
virtual periodic resources

• Each process action of a Tiptoe process 
uses exactly one virtual periodic resource 
declared by the process
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Release, Dispatch,
Suspend, Resume, Terminate

action arrives action completes

release 1.resume 2.resume

π
λ

1.suspend

π
λ

π
λ

2.suspend

π
λ

π
λ

fR(10)

fS(10)

1.dispatch 2.dispatch 3.dispatch
terminate
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Scheduling Strategies
• release action upon arrival at the beginning of 

next period (release strategy)

• dispatch released actions in EDF order using 
periods as deadlines (dispatch strategy)

• suspend running actions when limit is 
exhausted and resume at beginning of next 
period (limit strategy)

• terminate completed actions at the end of next 
period (termination strategy)
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completion

arrival

dispatch
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release
strategy
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dispatch
strategy
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limit
strategy

limit
strategy
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termination
strategy



∀w∈ED. fS(w) ≤ fR(w) ?
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∀w∈ED.
πa *⎡fE(w) / λa⎤

≤ fS(w) ≤
(πa - 1) + πa *⎡fE(w) / λa⎤

if

∑P maxR(λPR/πPR) ≤ 1
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∀w∈ED.
0

≤ fS(w) - πa *⎡fE(w) / λa⎤≤
πa - 1

if

∑P maxR(λPR/πPR) ≤ 1
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Tiptoe Compositionality

∀fS,fS’.∀w∈ED.
0 ≤⎮fS(w) - fS’(w)⎮≤ πa - 1

if

∑P maxR(λPR/πPR) ≤ 1



∀w∈ED. fS(w) ≤ fR(w) ?
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A set of workloads UD⊆ED

is a utilization domain if
there is a constant 0≤cU≤1 s.t.

∀w∈UD. fU(w) ≤ cU

and

∀c≤cU.∃w∈UD. c ≤ fU(w)
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With λa / πa = cU, we know that
∀w∈UD. fS(w) ≤ fR(w) + πa

if
πa divides fR(w) evenly

and

∑P maxR(λPR/πPR) ≤ 1



© C. Kirsch 2008

For example,
for linear discrete functions

f(w) = n * w
we have that

πa divides f(w) evenly
if and only if

πa divides n evenly



∀w∈UD. fS(w) ≤ fR(w) + πa
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For example, with
fR(w) = 4 * w + 4 (in ms)

fE(w) = 0.4 * w + 0.2 (in ms)
we have again

fU(w) = 10% (for w>0)

fR(1) = 8ms but only 125fps
fR(24) = 100ms yet 240fps
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Intrinsic Delay
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Since

∀w∈N. fR(w) > 0

there is a unique wd∈N s.t. 

∀w∈N. fR(w) ≥ fR(wd) 

fR(wd) is the intrinsic response 
delay denoted by dR 



© C. Kirsch 2008

Since

∀w∈ED. fE(w) > 0

there is a unique wd∈ED s.t.

∀w∈ED. fE(w) ≥ fE(wd)

fE(wd) is the intrinsic execution 
delay denoted by dE
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Utilization Function:

fE(w) - dE

fR(w) - dR
fU(w) =

(if fR(w) > dR)
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With λa / πa = cU, we know that
∀w∈UD. fS(w) ≤ fR(w)

if
0 < πa ≤ dR - dE / cU, and

πa divides dR and fR(w)-dR evenly,

and ∑P maxR(λPR/πPR) ≤ 1
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Scheduling Algorithm

• maintains a queue of ready processes ordered 
by deadline and a queue of blocked processes 
ordered by release times

• ordered-insert processes into queues

• select-first processes in queues

• release processes by moving and sorting them 
from one queue to another queue
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list array matrix
ordered-insert O(n) Θ(log(t)) Θ(log(t))
select-first Θ(1) O(log(t)) O(log(t))
release O(n2) O(log(t) + n · log(t)) Θ(t)

4

list array matrix
time O(n2) O(log(t) + n · log(t)) Θ(t)
space Θ(n) Θ(t + n) Θ(t2 + n)

3

Time and Space

n: number of processes   t: number of time instants
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What We Want

• malloc(n) takes at most TIME(n)

• free(n) takes at most TIME(n)

• access takes small constant time

• small and predictable memory 
fragmentation bound
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The Problem

• Fragmentation
‣ Compaction
• References
‣ Abstract

Space
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Memory
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Example:

•There are three objects
•Object A starts at address 20
•Object A needs 40 bytes
•B starts at 100, needs 20 bytes
•C starts at 160, needs 30 bytes
•A contains a reference to B
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Memory
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Problem:

•The addresses of objects change
•Now A starts at address 0
•B at address 40, C at address 60
•The reference to B requires update
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Constant Access Time

• constant access times require contiguous space

• contiguous space gets fragmented over time

• non-contiguous space does not get fragmented 
but results in non-constant access times
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Non-Contiguous
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Problem:

•No fragmentation but
•Lists: linear access time
•Trees: log access time



Keep It Compact?



Does Not Work!
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Partition Memory into Pages

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB
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Partition Pages into Blocks
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Results I

• malloc(n) takes O(1)

• free(n) takes O(n)
(because of compaction)

• access takes one indirection
(because of abstract address space)

• memory fragmentation is bounded and 
predictable in constant time
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Program Analysis

Definition:
Let k count deallocations in a given size-
class for which no subsequent allocation 
was done (“k-band mutator”).

Proposition:
Each deallocation that happens when
k < max_number_of_non_full_pages
takes constant time.
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Results II

• if mutator stays within k-bands:

• malloc(n) takes O(1)

• free(n) takes O(1)

• access takes one indirection

• memory fragmentation is bounded in k and 
predictable in constant time
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Two Implementations!

1. Concrete Space = Physical Memory

2. Concrete Space = Virtual Memory
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Two Implementations!

1. Concrete Space = Physical Memory

2. Concrete Space = Virtual Memory
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Results III

• malloc(n) takes Θ(n) (because of block table)

• free(n) takes Θ(n)
(because of block table and compaction)

• access takes two indirections
(because of abstract/virtual address space)

• memory fragmentation is bounded in k and 
predictable in constant time
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Outline

1. Introduction

2. Process Model

3. Concurrency Management

4. Memory Management

5. I/O Management
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Tiptoe System
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Current/Future Work

• Concurrent memory management

• Process management

• I/O subsystem



Thank you


