
ARTIST Summer School Shanghai
July 2008

Designing a Compositional
Real-Time Operating System

Christoph Kirsch
Universität Salzburg

tiptoe.cs.uni-salzburg.at#

• Silviu Craciunas* (Programming Model)

• Hannes Payer* (Memory Management)

• Harald Röck (VM, Scheduling)

• Ana Sokolova* (Theoretical Foundation)

• Horst Stadler (I/O Subsystem)

#Supported by a 2007 IBM Faculty Award and the EU ArtistDesign Network of Excellence on Embedded Systems Design
*Supported by Austrian Science Fund Project P18913-N15

http://tiptoe.cs.uni-salzburg.at/
http://tiptoe.cs.uni-salzburg.at/

© C. Kirsch 2008

What We Want

1. Focus on principled engineering of real-time
and embedded software

2. Study the trade-off between temporal and
spatial performance and predictability as well
as compositionality of real-time programs

3. Design and implement a real-time operating
system kernel from scratch to support higher
levels of real-time programming abstractions

© C. Kirsch 2008

“Theorem”

• (Compositionality) The time and space a
software process needs to execute is
determined by the process, not the system
and not other software processes.

• (Predictability) The system can tell how
much time and space is available without
looking at any existing software processes.

© C. Kirsch 2008

“Corollary”

• (Memory) The time a software process
takes to allocate and free a memory object
is determined by the size of the object.

• (I/O) The time a software process takes to
read input data and write output data is
determined by the size of the data.

The JAviator
javiator.cs.uni-salzburg.at

© C. Kirsch 2008

Quad-Rotor Helicopter

Gyro

Propulsion

Gumstix

600MHz XScale, 128MB RAM, WLAN, Atmega uController

© C. Kirsch 2008

© C. Kirsch 2008

© C. Kirsch 2008

© C. Kirsch 2008

Oops

© C. Kirsch 2008

Flight Control

© C. Kirsch 2008

Free Flight

© C. Kirsch 2008

July 11, 2008

Outline

1. Introduction

2. Process Model

3. Concurrency Management

4. Memory Management

5. I/O Management

© C. Kirsch 2008

Applications

Operating System

Hardware

© C. Kirsch 2008

application-oriented
real-time programming

resource-oriented
real-time programming

processes processors/memory

concurrency distribution/isolation

response times execution times

frequencies timers

Application and Resources

© C. Kirsch 2008

Process Action

time

action

arrives completes

execution
time

© C. Kirsch 2008

Concurrency

time

action

arrives
completes

concurrent action

resumed
response time

completes
arrives

preempted

© C. Kirsch 2008

Process
vs.

System

© C. Kirsch 2008

Execution and Response

time

action

arrives
started

preempted
resumed

completes

response time

execution
time

© C. Kirsch 2008

Time
• The temporal behavior of a process action is

characterized by its execution time and its
response time

• The execution time is the time it takes to
execute the action in the absence of
concurrent activities

• The response time is the time it takes to
execute the action in the presence of
concurrent activities

© C. Kirsch 2008

Analyses
1. The execution time of a process action is

determined by the process action and the
executing processor.

‣ Worst-case execution time (WCET) analysis

2. The response time of a process action is
determined by the entire system of processes
executing on a processor.

‣ Real-time scheduling theory

© C. Kirsch 2008

WCET

• The worst-case execution time (WCET) of a
process action on a given processor is an
upper bound on the execution times of the
action on the processor on any possible input

• The challenge is to compute the least
conservative WCET on the most up-to-date
processor architectures with the least
amount of programmer assistance

© C. Kirsch 2008

WCET Analysis

• The WCET analysis of a process action on a
given processor involves the machine code
implementation of the action and the
machine code performance of the processor

• The less conservative a WCET bound is the
more utilized a system may potentially be
since WCETs constrain schedulability (in
hard real-time applications)

© C. Kirsch 2008

Real-Time Scheduling

• The worst-case response time of a process
action in a given context of other concurrent
process actions is bounded by its WCET and
the interference from the other actions

• The process model determines the context

• The scheduling algorithm determines the
interference

© C. Kirsch 2008

Context & Interference

time

action

arrives
completes

concurrent action

resumed
response time

completes
arrives

preempted

© C. Kirsch 2008

Context

• Standard model: a process P periodically
invokes a process action (also called task or
job) with a WCET λP and a period πP

‣ P = (λP, πP)

• Advanced models: sporadic, aperiodic,
conditional, logical, synchronous etc.

• Key advantage: finite description of temporal
context of non-terminating processes

© C. Kirsch 2008

Interference
• A scheduling algorithm A determines for a

given set of processes a schedule, i.e., for each
time instant which process executes

• A schedulability test T for A determines
whether a given set of processes can be
scheduled by A (is schedulable or feasible) such
that “timeliness” holds (e.g. deadlines are met)

• Schedulability involves matching application
requirements and resource capabilities

© C. Kirsch 2008

Process States

• A process (action) that has completed and not
yet arrived is called blocked

• A blocked process (action) may also be called
waiting (e.g. for some event to occur)

• A process (action) that has arrived and not yet
completed is called ready

• A process (action) that is executing is called
running

© C. Kirsch 2008

blocked process

© C. Kirsch 2008

ready process

© C. Kirsch 2008

running process

© C. Kirsch 2008

completion

arrival

dispatch

© C. Kirsch 2008

process
completes

process
arrives

process
is dispatched
by scheduler

© C. Kirsch 2008

preemption

© C. Kirsch 2008

process
suspended

process
resumed

© C. Kirsch 2008

EDF Algorithm

• The earliest-deadline-first (EDF) scheduling
algorithm always dispatches at any time instant
a ready process action with a relative deadline
(e.g. process period) that is earlier than the
relative deadline of any other ready process
action

• EDF is a dynamic priority assignment algorithm

© C. Kirsch 2008

Optimality

• A scheduling algorithm A is optimal with respect
to a property S (e.g. schedulability) if A always
determines a schedule that satisfies S provided
some schedule that satisfies S exists

• EDF is optimal with respect to schedulability but
requires preemption

© C. Kirsch 2008

EDF Test

• The standard utilization-based schedulability test
for EDF is:

∑P λP/πP ≤ 1

• The test returns true if and only if each process P
may invoke, every πP time instants, an EDF-
dispatched process action with at most λP
execution time within at most πP response time

© C. Kirsch 2008

Precision

• A schedulability test is sufficient if a positive test
result implies schedulability (required)

• A schedulability test is necessary if schedulability
implies a positive test result (optional)

• The utilization-based schedulability test for EDF
is sufficient and necessary but only works for
periodic processes

© C. Kirsch 2008

Scheduling & Schedulability

• Scheduling algorithms control the access of
processes to processors

‣ Time and space complexity should be
constant, or proportional to the number of
processes (p) and distinct time instants (t)

• Schedulability tests control the admission of
processes into the system

‣ Complexity should be similar to above

© C. Kirsch 2008

Scheduling & Admission

• Scheduling requires queue management:

• insert process into ready queue

• select process from ready queue

• Admission requires resource management:

• admit process into system

© C. Kirsch 2008

Complexity

list tree array

insert O(n) O(log n) O(1)

select O(1) O(log n) O(n)

admit O(1)

process queue: n = p (processes)
timeline queue: n = t (time instants)

© C. Kirsch 2008

Performance vs. Predictability

• Frequency of scheduler invocations:

• Conflict between throughput and latency

• Execution time of each scheduler invocation:

• Upper bound, lower bound, variance (jitter)

• Conflict between low variance and low
bounds (optimizations that work for all
inputs are difficult)

© C. Kirsch 2008

Predictability

1. A non-functional, quantifiable property of a
process action (such as its response time) is
predictable if its quantity can be bounded in
terms of other, known quantities

2. Such a property is more predictable than
another if the prediction effort is less and
the prediction accuracy is higher than for
the other property

© C. Kirsch 2008

Effort and Accuracy

1. The prediction effort should be proportional
to the bounding quantities, or even constant

2. The prediction accuracy should be
conservative, or even exact

© C. Kirsch 2008

Example

• Action response time is (0,πP] if

∑P λP/πP ≤ 1
• Constant-time effort for admission

• Actual response times may vary by at most πP

(bad for large πP)

©
 C

. K
ir

sc
h

20
08

Compositionality
1. A component model is compositional with

respect to some quantifiable, non-functional
property (such as action response times) if,
for any system composed in the model, the
respective quantities in the system’s
components do not change when composed.

2. Such a model is more compositional than
another if the composition effort is less and
the composition accuracy is higher than for
the other model.

© C. Kirsch 2008

Example

• Set of periodic processes:

• Existing processes still meet deadlines even
when adding/removing processes

• Giotto program:

• Existing Giotto processes maintain input and
output times even when adding/removing
Giotto processes

© C. Kirsch 2008

application kernel resource

processes
compositionality

processors/
memory

concurrency distribution
response

times predictability
execution

times
frequencies timers

Application and Resources

Outline

1. Introduction

2. Process Model

3. Concurrency Management

4. Memory Management

5. I/O Management

© C. Kirsch 2008

Process A

Kernel

Memory

Process B

I/OCPU

© C. Kirsch 2008

Tiptoe Process Model

• Tiptoe processes invoke process actions

• Process actions are system calls and
procedure calls but also just code, which
may have optional workload parameters

• Workload parameters determine the
amount of work involved in executing
process actions

© C. Kirsch 2008

Example

• Consider a process that reads a video
stream from a network connection,
compresses it, and stores it on disk, all in
real time

• The process periodically adapts the frame
rate, allocates memory, receives frames,
compresses them, writes the result to disk,
and finally deallocates memory to prepare
for the next iteration

© C. Kirsch 2008

Pseudo Code
loop {
 int number_of_frames = determine_rate();

 allocate_memory(number_of_frames);
 read_from_network(number_of_frames);

 compress_data(number_of_frames);

 write_to_disk(number_of_frames);
 deallocate_memory(number_of_frames);
} until (done);

© C. Kirsch 2008

Tiptoe Programming Model

• Process actions are characterized by their
execution time and response time in terms
of their workload parameters

• The execution time is the time it takes to
execute an action in the absence of
concurrent activities

• The response time is the time it takes to
execute an action in the presence of
concurrent activities

© C. Kirsch 2008

Compositionality

• System of Tiptoe processes:

• The individual actions of running Tiptoe
processes maintain their response times
even when adding/removing processes

©
 C

. K
ir

sc
h

20
08

Response-Time Function

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

desired memory allocation performance

Bad

Good

fR(w)

©
 C

. K
ir

sc
h

20
08

Compositional Response!

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

desired memory allocation performance

Bad

Good

fR(w)

A response-time (RT) function
is a discrete function

fR : N → Q+

©
 C

. K
ir

sc
h

20
08

Execution-Time Function

Bad

fE(w)

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

desired concurrent performance actual isolated performance

fR(w)

© C. Kirsch 2008

An execution-time (ET) function
is a discrete function

fE : ED → Q+

with ED⊆N

ED is the action’s
execution domain

© C. Kirsch 2008

Utilization Function:

fE(w)
fR(w)

fU(w) =

© C. Kirsch 2008

With

fR(w) = 4 * w (in ms)
fE(w) = 0.4 * w (in ms)

we have that

fU(w) = 10% (for w>0)

Outline

1. Introduction

2. Process Model

3. Concurrency Management

4. Memory Management

5. I/O Management

© C. Kirsch 2008

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

Scheduled Response Time

Bad

fU(w) = 10%

desired concurrent performance actual isolated performance

fS(10)

fR(w)

fE(w)

© C. Kirsch 2008

Scheduling and Admission

• Process scheduling:

• How do we efficiently schedule
processes on the level of individual
process actions?

• Process admission:

• How do we efficiently test schedulability
of newly arriving processes

© C. Kirsch 2008

Just use EDF, or not?
action arrives

fR(10)
deadline

fE(10)

action completes
fS(10)

© C. Kirsch 2008

Virtual Periodic Resource

π
λ

π
λ

π
λ

π
λ

π
λ

limit: λ
period: π
utilization: λ / π

© C. Kirsch 2008

Tiptoe Process Model

• Each Tiptoe process declares a finite set of
virtual periodic resources

• Each process action of a Tiptoe process
uses exactly one virtual periodic resource
declared by the process

© C. Kirsch 2008

Release, Dispatch,
Suspend, Resume, Terminate

action arrives action completes

release 1.resume 2.resume

π
λ

1.suspend

π
λ

π
λ

2.suspend

π
λ

π
λ

fR(10)

fS(10)

1.dispatch 2.dispatch 3.dispatch
terminate

©
 C

. K
ir

sc
h

20
08

Scheduling Strategies
• release action upon arrival at the beginning of

next period (release strategy)

• dispatch released actions in EDF order using
periods as deadlines (dispatch strategy)

• suspend running actions when limit is
exhausted and resume at beginning of next
period (limit strategy)

• terminate completed actions at the end of next
period (termination strategy)

© C. Kirsch 2008

completion

arrival

dispatch

© C. Kirsch 2008

release
strategy

© C. Kirsch 2008

dispatch
strategy

© C. Kirsch 2008

limit
strategy

limit
strategy

© C. Kirsch 2008

termination
strategy

∀w∈ED. fS(w) ≤ fR(w) ?

© C. Kirsch 2008

∀w∈ED.
πa *⎡fE(w) / λa⎤

≤ fS(w) ≤
(πa - 1) + πa *⎡fE(w) / λa⎤

if

∑P maxR(λPR/πPR) ≤ 1

© C. Kirsch 2008

∀w∈ED.
0

≤ fS(w) - πa *⎡fE(w) / λa⎤≤
πa - 1

if

∑P maxR(λPR/πPR) ≤ 1

© C. Kirsch 2008

Tiptoe Compositionality

∀fS,fS’.∀w∈ED.
0 ≤⎮fS(w) - fS’(w)⎮≤ πa - 1

if

∑P maxR(λPR/πPR) ≤ 1

∀w∈ED. fS(w) ≤ fR(w) ?

© C. Kirsch 2008

A set of workloads UD⊆ED

is a utilization domain if
there is a constant 0≤cU≤1 s.t.

∀w∈UD. fU(w) ≤ cU

and

∀c≤cU.∃w∈UD. c ≤ fU(w)

© C. Kirsch 2008

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

Infinite Utilization Domain

Bad

cU = fU(w) = 10%

desired concurrent performance actual isolated performance

fR(w)

fE(w)

© C. Kirsch 2008

0

20

40

60

80

100

0 5 10 15 20 25

R
es

po
ns

e
tim

es
 in

 m
s

Memory allocation requests in number_of_frames

Finite Utilization Domain

Bad

cU = 62.5%

fR(w)

fE(w)

for w∈UD = {0,...,25}

desired concurrent performance
actual isolated performance
upper bound on actual isolated performance

© C. Kirsch 2008

With λa / πa = cU, we know that
∀w∈UD. fS(w) ≤ fR(w) + πa

if
πa divides fR(w) evenly

and

∑P maxR(λPR/πPR) ≤ 1

© C. Kirsch 2008

For example,
for linear discrete functions

f(w) = n * w
we have that

πa divides f(w) evenly
if and only if

πa divides n evenly

∀w∈UD. fS(w) ≤ fR(w) + πa

© C. Kirsch 2008

For example, with
fR(w) = 4 * w + 4 (in ms)

fE(w) = 0.4 * w + 0.2 (in ms)
we have again

fU(w) = 10% (for w>0)

fR(1) = 8ms but only 125fps
fR(24) = 100ms yet 240fps

©
 C

. K
ir

sc
h

20
08

Intrinsic Delay

dR

dE

9.8 ms

100 mstime(ms)

dR = 4 ms

number of frames

dE = 200µs

cU = 10%

fE(w) = 0.4w + 0.2

fR(w) = 4w + 4

0 4 8 12 16 20 24

1

© C. Kirsch 2008

Since

∀w∈N. fR(w) > 0

there is a unique wd∈N s.t.

∀w∈N. fR(w) ≥ fR(wd)

fR(wd) is the intrinsic response
delay denoted by dR

© C. Kirsch 2008

Since

∀w∈ED. fE(w) > 0

there is a unique wd∈ED s.t.

∀w∈ED. fE(w) ≥ fE(wd)

fE(wd) is the intrinsic execution
delay denoted by dE

© C. Kirsch 2008

Utilization Function:

fE(w) - dE

fR(w) - dR
fU(w) =

(if fR(w) > dR)

© C. Kirsch 2008

With λa / πa = cU, we know that
∀w∈UD. fS(w) ≤ fR(w)

if
0 < πa ≤ dR - dE / cU, and

πa divides dR and fR(w)-dR evenly,

and ∑P maxR(λPR/πPR) ≤ 1

©
 C

. K
ir

sc
h

20
08

Scheduler

}

λ

0 1 2 3 4

time(ms)

fR

π

number of frames

4

8

16

20

12

2

2

© C. Kirsch 2008

Scheduling Algorithm

• maintains a queue of ready processes ordered
by deadline and a queue of blocked processes
ordered by release times

• ordered-insert processes into queues

• select-first processes in queues

• release processes by moving and sorting them
from one queue to another queue

©
 C

. K
ir

sc
h

20
08

list array matrix
ordered-insert O(n) Θ(log(t)) Θ(log(t))
select-first Θ(1) O(log(t)) O(log(t))
release O(n2) O(log(t) + n · log(t)) Θ(t)

4

list array matrix
time O(n2) O(log(t) + n · log(t)) Θ(t)
space Θ(n) Θ(t + n) Θ(t2 + n)

3

Time and Space

n: number of processes t: number of time instants

© C. Kirsch 2008

50 150 250 350 450 550 650

0.5

1

1.5

2

2.5

3

3.5

4

4.5
bitmap_array_avg
list_avg
matrix_avg

50 150 250 350 450 550 650

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300 bitmap_array_max

list_max
matrix_max

50 150 250 350 450 550 650

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

bitmap_array_stddev
list_stddev
matrix_stddev

Max

Scheduler Overhead

Average Jitter

© C. Kirsch 2008

0 33 65 98 131 180 229 278 327

5

20

100

500

2000

10000

50000

200000

1000000

0 33 65 98 130 179 228 276 325

5

20

100

500

2000

10000

50000

200000

1000000

0 33 67 100 150 200 250 300 349

5

20

100

500

2000

10000

50000

200000

List Array Matrix

Execution Time Histograms

© C. Kirsch 2008

0 33 67 100 150 200 250 300 349

5

20

100

500

2000

10000

50000

200000

List
Releases per Instant

Process Release Dominates

0 73 146 255 365 474 584 693

5

20

100

500

2000

10000

50000

200000

1000000

©
 C

. K
ir

sc
h

20
08

2
0

2
5

2
10

2
15

2
20

matrix

matrix-tree

array

list
2

5 2
8 2

11 2
14

5KB

100KB

5MB

100MB

1GB

memory usage

KB

time instants (t)

memory usage

Memory Overhead

©
 C

. K
ir

sc
h

20
08

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5
10
15
20
25
30
35
40
45
50
55
60
65
70

late_strategy_response
early_strategy_response

5 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

100
late_strategy_idle
early_strategy_idle

5 10 20 30 40 50 60 70 80 90

50
100
150
200
250
300
350
400
450
500
550
600
650
700 late_strategy_response

early_strategy_response

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

10

20

30

40

50

60

70

80

90

100
late_strategy_idle
early_strategy_idle

Release Strategies

Idle
Time

Response
Time

Outline

1. Introduction

2. Process Model

3. Concurrency Management

4. Memory Management

5. I/O Management

© C. Kirsch 2008

What We Want

• malloc(n) takes at most TIME(n)

• free(n) takes at most TIME(n)

• access takes small constant time

• small and predictable memory
fragmentation bound

© C. Kirsch 2008

The Problem

• Fragmentation
‣ Compaction
• References
‣ Abstract

Space

© C. Kirsch 2008

Memory

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

C

B

A

Example:

•There are three objects
•Object A starts at address 20
•Object A needs 40 bytes
•B starts at 100, needs 20 bytes
•C starts at 160, needs 30 bytes
•A contains a reference to B

© C. Kirsch 2008

Memory

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

C

B

A

Problem:

•The addresses of objects change
•Now A starts at address 0
•B at address 40, C at address 60
•The reference to B requires update

©
 C

. K
ir

sc
h

20
08

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Abstract Space Concrete Space

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

100

160

20

C

B

A

A

C

B

©
 C

. K
ir

sc
h

20
08

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Abstract Space Concrete Space

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

40

60

0A

C

B

C

B

A

© C. Kirsch 2008

Constant Access Time

• constant access times require contiguous space

• contiguous space gets fragmented over time

• non-contiguous space does not get fragmented
but results in non-constant access times

©
 C

. K
ir

sc
h

20
08

Non-Contiguous

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

Lists/Trees

C

B

A

Problem:

•No fragmentation but
•Lists: linear access time
•Trees: log access time

Keep It Compact?

Does Not Work!

Trade-off Speed for
Memory Fragmentation

Keep Speed and
Memory Fragmentation
Bounded and Predictable

© C. Kirsch 2008

Partition Memory into Pages

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

16KB 16KB 16KB 16KB 16KB 16KB

© C. Kirsch 2008

Partition Pages into Blocks

©
 C

. K
ir

sc
h

20
08

Objects < 32 Objects < 64Objects < 48

2

1

0

1

0

3

2

1

0

Size-Class Compact

©
 C

. K
ir

sc
h

20
08

©
 C

. K
ir

sc
h

20
08

Objects < 32 Objects < 64Objects < 48

just move ‘last’ object

2

1

0

1

0

3

2

1

0

“Compact-Fit”
(Bounded Compaction)

©
 C

. K
ir

sc
h

20
08

© C. Kirsch 2008

Results I

• malloc(n) takes O(1)

• free(n) takes O(n)
(because of compaction)

• access takes one indirection
(because of abstract address space)

• memory fragmentation is bounded and
predictable in constant time

©
 C

. K
ir

sc
h

20
08

Objects < 32 Objects < 64Objects < 48

2

1

0

1

0

3

2

1

0

Partial Compaction

©
 C

. K
ir

sc
h

20
08

© C. Kirsch 2008

Program Analysis

Definition:
Let k count deallocations in a given size-
class for which no subsequent allocation
was done (“k-band mutator”).

Proposition:
Each deallocation that happens when
k < max_number_of_non_full_pages
takes constant time.

© C. Kirsch 2008

Results II

• if mutator stays within k-bands:

• malloc(n) takes O(1)

• free(n) takes O(1)

• access takes one indirection

• memory fragmentation is bounded in k and
predictable in constant time

© C. Kirsch 2008

Two Implementations!

1. Concrete Space = Physical Memory

2. Concrete Space = Virtual Memory

©
 C

. K
ir

sc
h

20
08

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Abstract Space Physical Memory

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

100

160

20

C

B

A

A

C

B

Two Implementations!

1. Concrete Space = Physical Memory

2. Concrete Space = Virtual Memory

©
 C

. K
ir

sc
h

20
08

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Abstract Space Physical Memory

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

100

160

20A

C

B

Virtual Space

C

B

A

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

© C. Kirsch 2008

Results III

• malloc(n) takes Θ(n) (because of block table)

• free(n) takes Θ(n)
(because of block table and compaction)

• access takes two indirections
(because of abstract/virtual address space)

• memory fragmentation is bounded in k and
predictable in constant time

©
 C

. K
ir

sc
h

20
08

©
 C

. K
ir

sc
h

20
08

Outline

1. Introduction

2. Process Model

3. Concurrency Management

4. Memory Management

5. I/O Management

© C. Kirsch 2008

Tiptoe System

I/O Host Computer

Network AD/DADisk

OR
p2p Ethernet
Connection

Serial
Connection

Current/Future Work

• Concurrent memory management

• Process management

• I/O subsystem

Thank you

